JPH11337759A - Production of optical waveguide element - Google Patents

Production of optical waveguide element

Info

Publication number
JPH11337759A
JPH11337759A JP15848698A JP15848698A JPH11337759A JP H11337759 A JPH11337759 A JP H11337759A JP 15848698 A JP15848698 A JP 15848698A JP 15848698 A JP15848698 A JP 15848698A JP H11337759 A JPH11337759 A JP H11337759A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
optical
face
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15848698A
Other languages
Japanese (ja)
Inventor
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP15848698A priority Critical patent/JPH11337759A/en
Publication of JPH11337759A publication Critical patent/JPH11337759A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To substantially obviate the occurrence of difficulty in workability in putting into packages even in the case a substrate is obliquely connected by producing optical waveguide elements by cutting the substrate in such a manner that optical waveguide ends have an finite angle from perpendicularity to their end face and that the direction of the phase shift optical waveguides is not aligned to the ridge line direction of the flanks of the substrate. SOLUTION: The substrate is cut in such a manner that the optical axis at the ends of the optical waveguides 14 and the normal of the cut surfaces (element coupling end faces 4) attain an angle of α=5.4 to obtain the plural optical waveguide elements 1 of a parallelogram. On the other hand, the fiber coupling end face 23 of the optical fiber 20 to be optically coupled to the element coupling end face 4 of each of these optical waveguides 14 is formed by polishing in such a manner that the normal thereof attains the angle of β=8.0 deg.. A UV curing type adhesive is used for optical coupling of the element coupling end face 4 and the fiber coupling end face 23. The state that the entire part is crooked by the flexing as a result of connection of the optical fiber 20 and the optical waveguide element 1 is drastically reduced is such a manner.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気光学効果を示
す基板上に形成された光導波路を利用して構成される光
変調器、光電界センサ等の光導波路素子の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical waveguide device such as an optical modulator and an optical electric field sensor using an optical waveguide formed on a substrate exhibiting an electro-optic effect.

【0002】[0002]

【従来の技術】光変調器、光電界センサ等のデバイスに
使われる光導波路素子の多くは、ニオブ酸リチウム等の
電気光学効果を示す材料を基板として作製される。光導
波路素子は、ニオブ酸リチウムの結晶基板上に、Tiの
熱拡散によって形成される光導波路型分岐干渉計の、位
相シフト光導波路の近傍に、変調電極を形成して作製さ
れる。
2. Description of the Related Art Many optical waveguide elements used for devices such as optical modulators and optical electric field sensors are manufactured using a substrate exhibiting an electro-optical effect such as lithium niobate as a substrate. The optical waveguide element is manufactured by forming a modulation electrode in the vicinity of a phase shift optical waveguide of an optical waveguide type branch interferometer formed by thermal diffusion of Ti on a crystal substrate of lithium niobate.

【0003】通常、このような光導波路素子の各パター
ンは、一枚の結晶基板上に複数個を周期的に並べて形成
し、方形上に切断することによって、一度に多くの素子
が取得される。光導波路素子の作製技術には、蒸着ある
いはスパッタリング技術、フォトリソグラフィー技術、
微細加工技術等の半導体技術が駆使されている。
Usually, a plurality of such patterns of the optical waveguide device are formed by periodically arranging a plurality of patterns on a single crystal substrate and cutting them into a square to obtain many devices at once. . Optical waveguide device fabrication techniques include vapor deposition or sputtering techniques, photolithography techniques,
Semiconductor technology such as microfabrication technology is used.

【0004】[0004]

【発明が解決しようとする課題】従来、光導波路素子
は、製造上の容易さを求める理由もあり、長方形に加工
され、入射光導波路の光軸に対して、その端面は垂直と
されていた。他方、この光導波路素子に光学的に結合さ
れる光ファイバも、その端面は、光軸に対して垂直に形
成される場合が多かった。このため、入射光導波路端面
と光ファイバとの結合部では、入射光は光ファイバの出
射端面で、あるいは光導波路の入射端面でそれぞれ一部
が反射してしまう。この反射光は、入射光が伝播してき
た同じ光ファイバ中を戻り光として伝わって光源に戻
る。これが、光源の動作不安定を招く原因となる。
Conventionally, an optical waveguide element has been processed into a rectangular shape, and its end face is perpendicular to the optical axis of the incident optical waveguide, also for reasons of demand for ease of manufacture. . On the other hand, the optical fiber optically coupled to the optical waveguide element is often formed such that its end face is perpendicular to the optical axis. For this reason, at the coupling portion between the end face of the incident optical waveguide and the optical fiber, the incident light is partially reflected at the exit end face of the optical fiber or at the incident end face of the optical waveguide. This reflected light propagates as return light in the same optical fiber in which the incident light has propagated, and returns to the light source. This causes unstable operation of the light source.

【0005】端面における反射光が、光ファイバを伝わ
って光源に戻らないような対策は、従来もとられてき
た。図5は、従来の反射型の光導波路素子を示す図であ
る。図5(a)は、長方形の導波路素子に光ファイバが
接続された図である。図5(b)は、光導波路素子と光
ファイバとの結合部分を拡大した説明図である。図5
(b)には、各端面の法線および光ファイバの光軸方向
を示す各補助線を付してある。
Measures have been taken to prevent reflected light from the end face from returning to the light source through the optical fiber. FIG. 5 is a diagram showing a conventional reflection type optical waveguide device. FIG. 5A is a diagram in which an optical fiber is connected to a rectangular waveguide element. FIG. 5B is an enlarged explanatory view of a coupling portion between the optical waveguide element and the optical fiber. FIG.
In (b), each normal line of each end face and each auxiliary line indicating the optical axis direction of the optical fiber are added.

【0006】図5(a)において、光導波路素子3の外
形は、長方形であるが、光導波路16端は、光導波路素
子3の端面と垂直に交わらないようになっている。図5
(b)において、光導波路素子に接続されるフェルール
(図示せず)の端面も、当然に、その長さ方向に対して
垂直ではなく、ある一定の角度をもって形成される。
In FIG. 5A, the outer shape of the optical waveguide element 3 is rectangular, but the end of the optical waveguide 16 does not cross the end face of the optical waveguide element 3 at right angles. FIG.
In (b), the end face of the ferrule (not shown) connected to the optical waveguide element is naturally formed not at a right angle to the length direction but at a certain angle.

【0007】図5(b)に示すように、光導波路素子3
および光ファイバ22は、互いに光学的に結合するた
め、素子結合端面4およびファイバ結合端面23をも
つ。光導波路16とその素子結合端面4の法線aとがな
す角度をαとし、光ファイバ22の光軸bとファイバ結
合端面23の法線aとがなす角度をβとすると、これら
の間には、下記の式(1)に示されるスネルの法則が満
たされねばならない。
[0007] As shown in FIG.
The optical fiber 22 has an element coupling end face 4 and a fiber coupling end face 23 for optically coupling with each other. Assuming that the angle between the optical waveguide 16 and the normal a of the element coupling end face 4 is α and the angle between the optical axis b of the optical fiber 22 and the normal a of the fiber coupling end face 23 is β, Satisfies the Snell's law shown in the following equation (1).

【0008】 sinα/sinβ=n2/n1 (1) ここで、n1およびn2は、それぞれ光導波路16および
光ファイバ22の屈折率である。
Sin α / sin β = n 2 / n 1 (1) where n 1 and n 2 are the refractive indexes of the optical waveguide 16 and the optical fiber 22, respectively.

【0009】以下においては、光導波路素子は、ニオブ
酸リチウム基板上に形成するものとし、n1=2.22、
2=1.50の各値を使うものとする。
In the following, the optical waveguide device is formed on a lithium niobate substrate, and n 1 = 2.22;
It is assumed that each value of n 2 = 1.50 is used.

【0010】従来、多くの場合、光導波路がその端面の
法線となす角度を5.4度、そして、光ファイバがその
端面の法線となす角度を8.0度に、それぞれ加工して
接続されていた。
Conventionally, in many cases, the angle formed by the optical waveguide with respect to the normal of its end face is 5.4 degrees, and the angle formed by the optical fiber with the normal of its end face is adjusted to 8.0 degrees. Was connected.

【0011】しかし、外形が長方形の光導波路素子に、
フェルールをもって光ファイバを接続すると、屈曲し、
全体的に「く」の字型となる。パッケージへの実装は、
全体的に「く」の字型となった状態でされることとな
り、ハンドリングが困難で、作業性が低下してしまう。
However, an optical waveguide element having a rectangular outer shape
When an optical fiber is connected with a ferrule, it bends,
The overall shape is "K". Implementation in the package,
As a whole, it is in the state of a "ku" shape, handling is difficult, and workability is reduced.

【0012】したがって、本発明は、光導波路素子と光
ファイバを、いわゆる斜めに接続しても、実質的にパッ
ケージへの実装における作業性に困難を生じないよう
な、光導波路素子の製造方法を提示する。
Accordingly, the present invention provides a method for manufacturing an optical waveguide element which does not substantially cause difficulty in workability in mounting on a package even when the optical waveguide element and the optical fiber are so-called diagonally connected. Present.

【0013】[0013]

【課題を解決するための手段】本発明は、光導波路およ
び光導波路から分岐した位相シフト光導波路が基板上に
形成して、分岐干渉型光導波路を構成する光導波路素子
を、光導波路端がその端面と垂直から有限の角度をな
し、位相シフト光導波路の方向が、基板の側面の稜線方
向と一致しないように、基板を切断して製造することが
特徴である。
According to the present invention, there is provided an optical waveguide device in which an optical waveguide and a phase-shifted optical waveguide branched from the optical waveguide are formed on a substrate. It is characterized in that the substrate is cut and manufactured so that a finite angle is formed from the perpendicular to the end face and the direction of the phase shift optical waveguide does not coincide with the ridge direction of the side surface of the substrate.

【0014】反射型光導波路素子の場合は、さらに、位
相シフト光導波路が、その端面と垂直に交わるように、
基板を切断して製造する。
In the case of the reflection type optical waveguide device, further, the phase shift optical waveguide is arranged so as to intersect perpendicularly with its end face.
The substrate is manufactured by cutting.

【0015】さらに、本発明において、光導波路素子
は、ニオブ酸リチウム結晶のZ板を基板をとし、その基
板上に形成された位相シフト光導波路の方向が、結晶軸
のX方向またはY方向となるように形成し、基板を切断
して製造される。
Further, in the present invention, the optical waveguide device has a Z-plate of lithium niobate crystal as a substrate, and the direction of the phase shift optical waveguide formed on the substrate is in the X direction or the Y direction of the crystal axis. And manufactured by cutting the substrate.

【0016】あるいは、本発明において、光導波路素子
は、ニオブ酸リチウム結晶のX板を基板とし、その基板
上に形成された位相シフト光導波路の方向が、結晶軸の
Y方向となるように形成し、基板を切断して製造され
る。
Alternatively, in the present invention, the optical waveguide element is formed such that the X-plate of lithium niobate crystal is used as a substrate, and the direction of the phase shift optical waveguide formed on the substrate is the Y direction of the crystal axis. Then, it is manufactured by cutting the substrate.

【0017】[0017]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて、図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明による透過型の光導波路素
子の製造方法を示す図である。図1(a)は平面図、図
1(b)は、図1(a)における光導波路素子と光ファ
イバとの結合部分を拡大した説明図である。なお、図1
(b)には、各端面の法線および光ファイバの光軸方向
を示す補助線を付して示す。光導波路素子1は、電気光
学効果を呈するニオブ酸リチウム結晶を基板11とし、
Z軸に垂直に切り出した面、すなわちZ板を用い、位相
シフト光導波路は、結晶軸のX方向としている。
FIG. 1 is a view showing a method of manufacturing a transmission type optical waveguide device according to the present invention. FIG. 1A is a plan view, and FIG. 1B is an enlarged explanatory view of a coupling portion between an optical waveguide element and an optical fiber in FIG. 1A. FIG.
FIG. 3B shows a normal line of each end face and an auxiliary line indicating the optical axis direction of the optical fiber. The optical waveguide element 1 has a substrate 11 made of a lithium niobate crystal exhibiting an electro-optical effect,
A plane cut out perpendicular to the Z axis, that is, a Z plate is used, and the phase shift optical waveguide is in the X direction of the crystal axis.

【0019】図2は、Z板からなる基板上に形成した分
岐干渉型で透過型の光導波路素子の複数のパターンをも
とに、切断するように区画した図である。位相シフト光
導波路13はX方向に形成されている。直径3インチの
ニオブ酸リチウムの結晶基板12上に、7個の分岐干渉
型光導波路のパターンを形成し、位相シフト光導波路の
13近傍に、金(Au)で変調電極18を形成した。こ
の手法はTi薄膜の形成、フォトリソグラフィー技術、
熱拡散、スパッタまたは蒸着技術等の公知技術によるも
ので、その詳細な記述は省略する。
FIG. 2 is a sectional view of a branching interference type transmission type optical waveguide device formed on a substrate made of a Z plate, which is cut off based on a plurality of patterns. The phase shift optical waveguide 13 is formed in the X direction. A pattern of seven branch interference optical waveguides was formed on a lithium niobate crystal substrate 12 having a diameter of 3 inches, and a modulation electrode 18 was formed of gold (Au) near 13 of the phase shift optical waveguide. This method uses Ti thin film formation, photolithography technology,
It is based on a known technique such as thermal diffusion, sputtering or vapor deposition technique, and a detailed description thereof is omitted.

【0020】ここで、取得する光導波路素子1の形状
を、平行四辺形とし、位相シフト光導波路に沿う辺は平
行でないようになっている。これらが相互になす角度
は、光導波路や変調電極のパターンに応じて設定するこ
とができる。
Here, the shape of the optical waveguide element 1 to be obtained is a parallelogram, and the sides along the phase shift optical waveguide are not parallel. The angle between them can be set according to the pattern of the optical waveguide and the modulation electrode.

【0021】ついで、図2に示すように、各区画に1個
の分岐干渉型光導波路が含まれるように、直径3インチ
の基板12を各分岐干渉型光導波路の長さ方向に沿って
平行に切断した。さらに、この切断によって形成される
各辺に対して、隣接しかつ相対向する平行な2辺を、光
導波路14の端部における光軸と切断面(素子結合端
面)の法線とが、5.4゜の角度をなすように、切断
し、図1に示すような、複数の平行四辺形の光導波路素
子1を得た。
Then, as shown in FIG. 2, the substrate 12 having a diameter of 3 inches is parallelly arranged along the longitudinal direction of each branch interference type optical waveguide so that each section includes one branch interference type optical waveguide. Cut into pieces. Further, two parallel sides that are adjacent and opposed to each side formed by the cutting are defined by the optical axis at the end of the optical waveguide 14 and the normal line of the cut surface (element coupling end surface) being 5 °. By cutting at an angle of 0.4 °, a plurality of parallelogram optical waveguide devices 1 were obtained as shown in FIG.

【0022】一方、図1に示すように、その光導波路1
4の素子結合端面4に光学的に結合れる光ファイバ20
のファイバ結合端面23は、その法線が8.0゜の角度
をなすように研磨加工によって形成される。素子結合端
面4とファイバ端面23の光学的結合には、紫外線硬化
型接着剤が用いられる。
On the other hand, as shown in FIG.
Optical fiber 20 optically coupled to the element coupling end face 4
The fiber coupling end face 23 is formed by polishing such that the normal line forms an angle of 8.0 °. An ultraviolet curing adhesive is used for optical coupling between the element coupling end face 4 and the fiber end face 23.

【0023】なお、Z板の基板11上に、結晶軸のY方
向の位相シフト光導波路を形成した光導波路素子も、上
記と同様の手順で作製される。
An optical waveguide element in which a phase shift optical waveguide in the Y direction of the crystal axis is formed on the substrate 11 of the Z plate is manufactured in the same procedure as described above.

【0024】図3は、反射型の光導波路素子を製作する
ための説明図である。すなわち、位相シフト光導波路1
3の端面と垂直に交わるように結晶基板12を切断する
ことが、前述の方法に、付け加えられる。
FIG. 3 is an explanatory view for manufacturing a reflection type optical waveguide device. That is, the phase shift optical waveguide 1
Cutting the crystal substrate 12 so that it intersects perpendicularly with the end face of 3 is added to the method described above.

【0025】図4は、ニオブ酸リチウム結晶のX板、す
なわちX軸に垂直に切り出した面をもつ基板11上に、
位相シフト光導波路13が形成された反射型光導波路素
子3の構成を示す図である。電界が基板11の面と平行
に印加されるように、変調電極18は基板11上で、位
相シフト光導波路13を挟んで両側に形成されている。
FIG. 4 shows a lithium niobate crystal X plate, that is, a substrate 11 having a plane cut out perpendicular to the X axis.
FIG. 2 is a diagram illustrating a configuration of a reflection type optical waveguide element 3 on which a phase shift optical waveguide 13 is formed. The modulation electrodes 18 are formed on both sides of the phase shift optical waveguide 13 on the substrate 11 so that an electric field is applied in parallel with the surface of the substrate 11.

【0026】光導波路素子の形状を平行四辺形とし、位
相シフト光導波路に沿う辺は、位相シフト光導波路とは
平行でないように切り出し、光ファイバと光導波路素子
の接続により、屈曲して、全体的に「く」の字型となる
状態は著しく減少した。これにより、パッケージへの実
装の作業性が大幅に改善された。また、本発明による光
導波路素子の製造方法は、すでに述べた内容から明らか
なように、量産性があり工業的に有用である。
The shape of the optical waveguide element is a parallelogram, and the side along the phase-shifted optical waveguide is cut out so as not to be parallel to the phase-shifted optical waveguide, and is bent by connecting the optical fiber and the optical waveguide element. The state of the "ku" shape was significantly reduced. This greatly improved the workability of mounting on a package. Further, the method for manufacturing an optical waveguide device according to the present invention is mass-producible and industrially useful, as is clear from the contents already described.

【0027】[0027]

【発明の効果】以上、説明したように、本発明は、光導
波路素子と光ファイバの光学的結合部での反射による戻
り光を低減するための、いわゆる斜めに接続しても、光
導波路素子と光ファイバは実質的に直線に近い状態で結
合され、パッケージへの実装に困難を生じない光導波路
素子の製造方法を提示した。
As described above, according to the present invention, even if the optical waveguide device is connected obliquely to reduce return light due to reflection at the optical coupling portion between the optical waveguide device and the optical fiber, the optical waveguide device can be used. And a method of manufacturing an optical waveguide device in which the optical fiber and the optical fiber are coupled in a substantially linear state without causing any difficulty in mounting on a package.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光導波路素子の製造方法を示す
図。図1(a)は平面図。図1(b)は、図1(a)に
おける光導波路素子と光ファイバとの結合部分を拡大し
た説明図。
FIG. 1 is a diagram showing a method for manufacturing an optical waveguide device according to the present invention. FIG. 1A is a plan view. FIG. 1B is an explanatory diagram in which a coupling portion between an optical waveguide element and an optical fiber in FIG. 1A is enlarged.

【図2】基板上に形成した分岐干渉型の光導波路素子の
複数のパターンをもとに、切断するように区画した図。
FIG. 2 is a diagram of a section that is cut based on a plurality of patterns of a branching interference type optical waveguide element formed on a substrate.

【図3】反射型の光導波路素子を製作するための説明
図。
FIG. 3 is an explanatory view for manufacturing a reflection type optical waveguide element.

【図4】X板の基板上に、位相シフト光導波路を形成す
る反射型光導波路素子の構成を示す図。
FIG. 4 is a diagram showing a configuration of a reflection type optical waveguide element for forming a phase shift optical waveguide on an X-plate substrate.

【図5】従来の光導波路素子を示す図。図5(a)は、
長方形の導波路素子に光ファイバが接続された図。図5
(b)は、光導波路素子と光ファイバとの結合部分を拡
大した説明図。
FIG. 5 is a diagram showing a conventional optical waveguide device. FIG. 5 (a)
FIG. 4 is a diagram in which an optical fiber is connected to a rectangular waveguide element. FIG.
(B) is an explanatory view in which a coupling portion between an optical waveguide element and an optical fiber is enlarged.

【符号の説明】[Explanation of symbols]

1,2 光導波路素子 3 反射型光導波路素子 4 素子結合端面 11 基板 12 結晶基板 13 位相シフト光導波路 14,16 光導波路 17 反射部 18 変調電極 20,21,22 光ファイバ 23 ファイバ端面 1, 2 optical waveguide element 3 reflection type optical waveguide element 4 element coupling end face 11 substrate 12 crystal substrate 13 phase shift optical waveguide 14, 16 optical waveguide 17 reflecting section 18 modulation electrode 20, 21, 22 optical fiber 23 fiber end face

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光導波路および該光導波路から分岐した
位相シフト光導波路を基板上に形成して、分岐干渉型光
導波路を構成する光導波路素子の製造方法において、前
記光導波路は、該光導波路の端面の法線と有限の角度を
なし、前記位相シフト光導波路の方向が、前記基板の側
面の稜線方向と一致しないように、前記基板を切断する
工程を含むことを特徴とする光導波路素子の製造方法。
1. A method of manufacturing an optical waveguide device comprising: an optical waveguide and a phase shift optical waveguide branched from the optical waveguide formed on a substrate to form a branch interference optical waveguide. Forming a finite angle with the normal of the end face of the optical waveguide, and cutting the substrate so that the direction of the phase-shifted optical waveguide does not coincide with the ridge direction of the side surface of the substrate. Manufacturing method.
【請求項2】 前記位相シフト光導波路が、該位相シフ
ト光導波路の端面と垂直に交わるように、前記基板を切
断する工程を含むことを特徴とする請求項1記載の光導
波路素子の製造方法。
2. The method according to claim 1, further comprising a step of cutting the substrate so that the phase-shifted optical waveguide intersects perpendicularly with an end face of the phase-shifted optical waveguide. .
【請求項3】 前記基板は、該基板の法線が結晶軸のZ
方向であるニオブ酸リチウム結晶からなり、前記位相シ
フト光導波路の方向は、結晶軸のX方向またはY方向と
なるように形成し、前記基板を切断する工程を含むこと
を特徴とする請求項1ないし請求項2記載の光導波路素
子の製造方法。
3. The substrate according to claim 1, wherein a normal line of the substrate has a crystal axis Z.
2. The method according to claim 1, further comprising a step of cutting the substrate, the direction of the phase shift optical waveguide being made of a lithium niobate crystal that is a direction, the direction being the X direction or the Y direction of the crystal axis. 3. A method for manufacturing an optical waveguide device according to claim 2.
【請求項4】 前記基板は、該基板の法線が結晶軸のX
方向であるニオブ酸リチウム結晶で、前記基板上に形成
された前記位相シフト光導波路の方向は、結晶軸のY方
向となるように、前記基板を切断する工程を含むことを
特徴とする請求項1ないし請求項2記載の光導波路素子
の製造方法。
4. The substrate according to claim 1, wherein a normal line of the substrate has a crystal axis X.
A step of cutting the substrate such that a direction of the phase shift optical waveguide formed on the substrate in the direction of the lithium niobate crystal is a Y direction of a crystal axis. 3. A method for manufacturing an optical waveguide device according to claim 1.
JP15848698A 1998-05-22 1998-05-22 Production of optical waveguide element Withdrawn JPH11337759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15848698A JPH11337759A (en) 1998-05-22 1998-05-22 Production of optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15848698A JPH11337759A (en) 1998-05-22 1998-05-22 Production of optical waveguide element

Publications (1)

Publication Number Publication Date
JPH11337759A true JPH11337759A (en) 1999-12-10

Family

ID=15672801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15848698A Withdrawn JPH11337759A (en) 1998-05-22 1998-05-22 Production of optical waveguide element

Country Status (1)

Country Link
JP (1) JPH11337759A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645896A1 (en) * 2004-06-29 2006-04-12 Anritsu Corporation Waveguide type optical device
JP2013218351A (en) * 2006-07-19 2013-10-24 Fujitsu Optical Components Ltd Optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645896A1 (en) * 2004-06-29 2006-04-12 Anritsu Corporation Waveguide type optical device
EP1645896A4 (en) * 2004-06-29 2008-07-30 Anritsu Corp Waveguide type optical device
JP2013218351A (en) * 2006-07-19 2013-10-24 Fujitsu Optical Components Ltd Optical device

Similar Documents

Publication Publication Date Title
EP2015112B1 (en) Optical waveguide device
US6571026B2 (en) Traveling wave optical modulators and a method for the production thereof
CA2328787C (en) Integrated optics chip having reduced surface wave propagation
WO2007058366A1 (en) Optical waveguide device
KR100602288B1 (en) A device for reflecting light
JP2001235714A (en) Traveling-wave optical modulator and its manufacturing method
KR100496309B1 (en) Optical modulation device equipped with a reflector plate slanting against a reflective side plane of an optical waveguide path
US5625726A (en) Optical waveguide substrate, an article comprising the same and a substrate coupled thereto for holding optical fibers
JPH11167032A (en) Curved optical waveguide circuit
JPH11337759A (en) Production of optical waveguide element
CN215375995U (en) Optical modulator
JP2001350046A (en) Integrated optical waveguide element
JP2827320B2 (en) Connection method between optical waveguide and fiber
JP3664933B2 (en) Optical waveguide type optical switch
JP2625289B2 (en) Waveguide type optical branching device
JP6260631B2 (en) Optical waveguide device
JP2008058344A (en) All pass wavelength filter and light deflector
WO2021146929A1 (en) Optical waveguide integrated device
JPH1068916A (en) Optical waveguide device and its production
WO1993019389A1 (en) Waveguide type optical part
JPH06308338A (en) Waveguide type optical parts
JP2003207664A (en) Optical circuit
JPH0588123A (en) Variable wavelength filter
JP2982691B2 (en) Waveguide type optical circulator
JPH05288963A (en) Waveguide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050302