JPH11337737A - Phase modulation type optical element and its production - Google Patents

Phase modulation type optical element and its production

Info

Publication number
JPH11337737A
JPH11337737A JP14252998A JP14252998A JPH11337737A JP H11337737 A JPH11337737 A JP H11337737A JP 14252998 A JP14252998 A JP 14252998A JP 14252998 A JP14252998 A JP 14252998A JP H11337737 A JPH11337737 A JP H11337737A
Authority
JP
Japan
Prior art keywords
phase modulation
modulation type
optical element
type optical
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14252998A
Other languages
Japanese (ja)
Inventor
Eiichiro Nishihara
英一郎 西原
Seiichiro Hayakawa
誠一郎 早川
Shinichiro Nakamura
振一郎 中村
Yasuhiro Takagi
康博 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP14252998A priority Critical patent/JPH11337737A/en
Publication of JPH11337737A publication Critical patent/JPH11337737A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to rapidly and inexpensively produce a phase modulation type optical element by forming a photomask by calculating a computer hologram of a phase modulation type forming prescribed wave fronts and exposing and forming the patterns thereof on a photosetting monomer compsn. SOLUTION: The computer hologram of the phase modulation type is calculated by using an algorithm. The patterns of the phase distribution obtd. by the calculation are deposited by evaporation on glass at a space frequency of, for example, 100/mm, by which the mask for exposure is obtd. Cr is used as a metal for vapor deposition which is manufactured by an emulsion method. As the photosetting monomer, 100 parts p-bis(β-methacryloyloxyethylthio)xylylene and 0.1 part 2,4,6-trimethylbenzoyl diphenylphosphineoxide which is a photopolymn. initiator are uniformly stirred and mixed. The photosetting monomer is cast into a mold consisting of the mask for exposure and a transparent glass plate. The photosetting monomer is cured by irradiation with UV parallel light using a metal halide lamp, by which the phase modulation optical element is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は位相変調型光学素子
に関するものである。さらに詳しくは位相変調型の計算
機ホログラムを光感光性樹脂上に形成し所定の波面制御
を行って製造されるホログラム光学素子(Holographic
Optical Element;以下「HOE」と称することもある)
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase modulation type optical element. More specifically, a hologram optical element (Holographic element) manufactured by forming a phase modulation type computer hologram on a photosensitive resin and performing predetermined wavefront control.
Optical Element; hereinafter sometimes referred to as "HOE")
It is about.

【0002】[0002]

【従来の技術】従来より位相型HOEはガラス、プラス
チック等の材料を用いて(1)金型による成形法、
(2)Ag、Pd、Li等を選択的にイオン拡散することによ
る屈折率分布型法等により製造されていた。しかしこれ
らの方法では、その生産性の低さや高コストという問題
点を抱えており、さらなる方法が望まれていた。
2. Description of the Related Art Conventionally, a phase-type HOE is formed by using a material such as glass, plastic, or the like.
(2) It has been manufactured by a refractive index distribution type method by selectively diffusing ions of Ag, Pd, Li and the like. However, these methods have problems of low productivity and high cost, and further methods have been desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記のような
課題を解決し、短時間に、かつ、安価に製造可能な位相
変調型光学素子を提供することを目的としたものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a phase modulation type optical element which can be manufactured in a short time and at low cost.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を行った結果、所定の波面を形
成する位相変調型の計算機ホログラムを計算してフォト
マスクを作り、そのパターンを光硬化性モノマー組成物
上に露光して形成することにより、従来品よりも短時間
で、かつ、安価に得られる位相変調型光学素子を見いだ
し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, calculated a phase modulation type computer generated hologram for forming a predetermined wavefront to produce a photomask. By exposing and forming a pattern on a photocurable monomer composition, a phase modulation optical element which can be obtained in a shorter time and at lower cost than conventional products has been found, and the present invention has been completed.

【0005】即ち本発明の要旨は、位相変調型の計算機
ホログラムを計算することにより露光用マスクを製造
し、次いでそのパターンを光硬化性モノマー組成物に露
光することにより製造される位相変調型光学素子及びそ
の製造方法に存する。本発明の好ましい態様として、光
硬化性モノマー組成物が、光照射により硬化収縮するモ
ノマーであること、光硬化性モノマー組成物が、多官能
(メタ)アクリレート化合物を含有すること、多官能
(メタ)アクリレート化合物が、含イオウ多官能(メ
タ)アクリレート化合物であること、位相変調型の計算
機ホログラムの計算がアルゴリズムを用いた計算である
ことが挙げられる。
[0005] That is, the gist of the present invention is that a phase modulation type computer hologram is calculated to produce an exposure mask, and then the pattern is exposed to a photocurable monomer composition to produce a phase modulation type optical mask. An element and a method for manufacturing the same. As a preferred embodiment of the present invention, the photocurable monomer composition is a monomer that cures and contracts upon irradiation with light, the photocurable monomer composition contains a polyfunctional (meth) acrylate compound, ) The acrylate compound is a sulfur-containing polyfunctional (meth) acrylate compound, and the calculation of the phase modulation type computer generated hologram is a calculation using an algorithm.

【0006】[0006]

【発明の実施の形態】以下本発明について更に詳細に説
明する。 (1)位相変調型の計算機ホログラムの計算方法 位相変調型計算機ホログラムの位相分布の計算方法を、
Simulated Annealing(焼きなまし法)(M.A.Seldowitz
et al.:Appl.Opt.,Vol.26,pp.2788 〜2798(1987)、A.
G.Kirk et al.:Opt.Comm.,Vol.94,pp.491 〜496(1992)
、N.Yoshikawaet al.:Appl.Opt.,Vol.33,pp.863〜868
(1994) 等参照)を例にとって、その詳細を説明する。
そのアルゴリズムのフローチャートを図1に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. (1) Calculation method of phase modulation type computer generated hologram
Simulated Annealing (MASeldowitz
et al .: Appl. Opt., Vol. 26, pp. 2788-2798 (1987), A.
G. Kirk et al .: Opt.Comm., Vol. 94, pp. 491-496 (1992)
, N. Yoshikawa et al .: Appl. Opt., Vol. 33, pp. 863-868
(1994) etc.) as an example.
FIG. 1 shows a flowchart of the algorithm.

【0007】まず初期位相分布としてランダムに与えら
れた位相からなる分布を用意する。次に位相分布の一点
をランダムに変化させ、その時の再生像を計算する。位
相は0から2πの間でとびとびの値を持つように設計す
る。このことを位相の量子化レベルという。次に表示し
ようとする原画と再生像の差を評価関数として計算す
る。評価関数の定義の仕方にはいろいろなものが提案さ
れており、本発明においては特に限定はされないが、一
例として二乗誤差を用いて行うことが挙げられる。評価
関数を計算してその値が減少していればその位相の変化
を受け入れる。評価関数が増加した場合には通常はその
位相変化は受け入れないが、ある程度の確率で受け入れ
を行う。この確率は、例えば、ボルツマン分布で与え、
変化を受け入れるか否かはその温度に相当する因子で決
定される。最適化が進むにつれて温度を下げて行き、確
率的な受け入れを減少させる。このように確率的な受け
入れを行うことにより、ローカルミニマムに収束するこ
とを避けながらグローバルミニマムな解に収束させるこ
とが可能に成る。
First, a distribution composed of randomly given phases is prepared as an initial phase distribution. Next, one point of the phase distribution is changed at random, and a reproduced image at that time is calculated. The phase is designed to have discrete values between 0 and 2π. This is called a phase quantization level. Next, the difference between the original image to be displayed and the reproduced image is calculated as an evaluation function. Various methods of defining the evaluation function have been proposed, and are not particularly limited in the present invention. For example, the evaluation function may be defined using a square error. The evaluation function is calculated, and if the value decreases, the change in the phase is accepted. When the evaluation function increases, the phase change is not normally accepted, but is accepted with a certain probability. This probability is given by, for example, a Boltzmann distribution,
Whether to accept the change is determined by a factor corresponding to that temperature. As the optimization progresses, the temperature is lowered to reduce stochastic acceptance. By performing stochastic acceptance in this way, it is possible to converge to a global minimum solution while avoiding convergence to a local minimum.

【0008】再生させようとする原画として、256 ×25
6 の画素数、1バイトの階調からなるものを使用して、
量子化レベル2、繰り返し計算回数100,000 の条件で計
算された位相分布のパターンを作成し、以下で述べる露
光用マスクの製造に供した。なお、ここで得られた再生
像には共役像が生じていた。なお位相変調型ホログラム
の位相の最適化には上記のSimulated Annealing (焼き
なまし法)の他に、遺伝的アルゴリズム(N.Yoshikawa
et al.:Opt.Lett.,Vol.20,pp.752〜754(1995) 参照)や
Gerchberg-Saxton(R.W.Gerchberg et al.:Optik,Vol.3
5,pp.237〜246(1972) 、N.C.Gallagher et al.:Appl.Op
t.,Vol.12,pp.2328 〜2335(1973)等参照)のアルゴリズ
ムによる方法等が提案されており、本発明にはいずれの
方法も使用可能である。
[0008] As an original picture to be reproduced, 256 × 25
Using a pixel consisting of 6 pixels and 1-byte gradation,
A phase distribution pattern calculated under the conditions of a quantization level of 2 and the number of repetition calculations of 100,000 was prepared and used for manufacturing an exposure mask described below. Note that a conjugate image occurred in the reproduced image obtained here. In order to optimize the phase of the phase modulation hologram, in addition to the above-mentioned Simulated Annealing (annealing method), a genetic algorithm (N. Yoshikawa)
et al .: Opt. Lett., Vol. 20, pp. 752-754 (1995))
Gerchberg-Saxton (RWGerchberg et al .: Optik, Vol. 3
5, pp. 237-246 (1972), NC Gallagher et al .: Appl. Op.
t., Vol. 12, pp. 2328-2335 (1973), etc.), and the like, and any method can be used in the present invention.

【0009】(2)露光用マスクの製造 上記のような計算の結果得られた位相分布のパターン
は、100/mmの空間周波数でガラス上に蒸着され、露光用
のマスクとなる。蒸着用の金属にはCrを用いエマルジ
ョン法で作製した。なお、位相パターンを露光用マスク
へのせる方法としては、上記のような蒸着法以外にも、
写真撮影法、印刷等の他の方法を用いることもできる。
露光用マスクの基材としては、ガラス板が好ましいが、
ポリマーフィルムや紙製のものを用いてもよいし、それ
らをガラス等の固い透明材に貼り合わせても良い。
(2) Production of Exposure Mask The phase distribution pattern obtained as a result of the above calculation is deposited on glass at a spatial frequency of 100 / mm, and becomes an exposure mask. It was produced by an emulsion method using Cr as a metal for vapor deposition. In addition, as a method of applying a phase pattern to an exposure mask, in addition to the above-described evaporation method,
Other methods, such as photography, printing, etc., can also be used.
As a substrate of the exposure mask, a glass plate is preferable,
A polymer film or paper may be used, or they may be bonded to a hard transparent material such as glass.

【0010】(3)光硬化性モノマー組成物への露光 光硬化性モノマーとして、pービス(βーメタクリロイ
ルオキシエチルチオ)キシリレン100部と光重合開始
剤である2,4,6ートリメチルベンゾイルジフェニル
ホスフィンオキシド0.1部を均一に攪拌混合した。こ
のモノマーを露光用マスクと、1mm厚のシリコンスペ
ーサを介して配置された透明なガラス板よりなる型に注
入した(図2)。出力30W/cmのメタルハライドラ
ンプを用いて、マスク側から照射強度8mW/cm2
紫外線を平行光として10秒間照射し、次いで型の両面
から照射強度16mW/cm2 の紫外線平行光を3分間
照射して硬化を行った。脱型して、硬化物を120℃2
時間加熱処理を行い、目的とする位相変調光学素子を得
た。
(3) Exposure to Photocurable Monomer Composition As photocurable monomers, 100 parts of p-bis (β-methacryloyloxyethylthio) xylylene and 2,4,6-trimethylbenzoyldiphenyl as a photopolymerization initiator 0.1 part of phosphine oxide was uniformly stirred and mixed. This monomer was injected into a mold composed of a transparent glass plate arranged via an exposure mask and a 1 mm thick silicon spacer (FIG. 2). By using a metal halide lamp of output 30 W / cm, the ultraviolet irradiation intensity 8 mW / cm 2 from the mask side was irradiated for 10 seconds as parallel light and then irradiated with ultraviolet parallel light irradiation intensity 16 mW / cm 2 from both sides of the mold 3 minutes And cured. After demolding, the cured product is heated to 120 ° C2
Time heating treatment was performed to obtain a target phase modulation optical element.

【0011】図3に上記で得られた露光用マスク上に形
成された位相分布を転写した樹脂表面のレーザー顕微鏡
写真を示す。計算された位相分布が正確に転写されてい
ることがわかる。この場合では段差が0.2 μm であり、
位相差は約0.3 πである。ここで、量子化レベル2の場
合には位相差がπであることがより望ましいが、本手法
においては露光時間を調節することにより容易に段差を
制御し得るので、位相差を最適化することは容易であ
る。
FIG. 3 shows a laser microscope photograph of the resin surface on which the phase distribution formed on the exposure mask obtained above has been transferred. It can be seen that the calculated phase distribution is accurately transferred. In this case, the step is 0.2 μm,
The phase difference is about 0.3π. Here, in the case of the quantization level 2, it is more preferable that the phase difference is π. However, in this method, the step difference can be easily controlled by adjusting the exposure time. Is easy.

【0012】なお、本発明に用いられる光硬化性モノマ
ーは、光照射によって重合硬化し透明な重合体を形成す
るものであれば良く、上記に限定されない。(メタ)ア
クリレート系、ポリエン−ポリチオール系、エポキシ
系、ビニルエーテル系、環状エーテル系いずれも用いる
ことが可能であるが、本発明においては、(メタ)アク
リレート化合物を含有することが好ましい。なかでも、
多官能(メタ)アクリレート化合物、特に、含イオウ多
官能(メタ)アクリレートを含有することが好ましい。
その他、特開平9−164601号公報に記載の光硬化
性モノマー組成物が好ましいものとして挙げられる。
The photocurable monomer used in the present invention is not limited to the above, as long as it can be polymerized and cured by light irradiation to form a transparent polymer. Any of a (meth) acrylate type, a polyene-polythiol type, an epoxy type, a vinyl ether type, and a cyclic ether type can be used, but in the present invention, it is preferable to contain a (meth) acrylate compound. Above all,
It is preferable to contain a polyfunctional (meth) acrylate compound, particularly a sulfur-containing polyfunctional (meth) acrylate.
In addition, a photocurable monomer composition described in JP-A-9-164601 is preferable.

【0013】(4)ホログラムの再生 得られたホログラムを、図4に示すフーリエ変換光学系
を用いて再生して像を得る。ここで得られたホログラム
は位相の量子化レベルを2で製作したため、前記の結果
と同様、共役像が現れていた。細部についても前記で得
られた計算結果とよい一致を示していた。
(4) Reproduction of hologram The obtained hologram is reproduced using a Fourier transform optical system shown in FIG. 4 to obtain an image. Since the hologram obtained here was manufactured with a phase quantization level of 2, a conjugate image appeared as in the case of the above result. The details also showed good agreement with the calculation results obtained above.

【0014】(5)位相の多階調 位相の量子化レベルを2にした場合には原画の共役像も
再生されることは計算結果、実験から明らかである。な
お、量子化レベルを3以上にした場合には共役像を再生
しないことも容易に確認できる。すなわち、上記のよう
な光硬化性モノマー組成物からなる樹脂に3以上の量子
化レベルを形成するには、露光用マスクの作成時に、該
樹脂に3以上の位相の量子化レベルを形成するようにC
rの蒸着膜の厚みを制御して、紫外光の透過率を制御す
ればよい。
(5) Multi-gradation of phase It is clear from the calculation results and experiments that when the quantization level of the phase is 2, the conjugate image of the original image is also reproduced. When the quantization level is 3 or more, it can be easily confirmed that the conjugate image is not reproduced. That is, in order to form a quantization level of 3 or more in a resin made of the photocurable monomer composition as described above, a quantization level of 3 or more phases is formed in the resin at the time of forming an exposure mask. To C
The transmittance of ultraviolet light may be controlled by controlling the thickness of the deposited film of r.

【0015】[0015]

【発明の効果】本発明によれば、位相変調型の計算機ホ
ログラムを計算して露光用マスクを製造するため、短時
間に、かつ、安価に製造可能な位相変調型光学素子を提
供することが可能である。
According to the present invention, it is possible to provide a phase modulation type optical element which can be manufactured in a short time and at a low cost, since a phase modulation type computer hologram is calculated to manufacture an exposure mask. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いたアルゴリズムのフローチャート
を示す図である。
FIG. 1 is a diagram showing a flowchart of an algorithm used in the present invention.

【図2】本発明で用いた型の断面を示す図である。図
中、1はガラス板、2はマスクパターン、3はスペーサ
ー、4は光硬化性モノマー組成物を示す。
FIG. 2 is a diagram showing a cross section of a mold used in the present invention. In the figure, 1 is a glass plate, 2 is a mask pattern, 3 is a spacer, and 4 is a photocurable monomer composition.

【図3】露光用マスク上に形成された位相分布を転写し
た樹脂表面のレーザー顕微鏡写真、即ち、基板上に形成
された微細なパターンを示す図面に変わる写真である。
FIG. 3 is a laser microscope photograph of a resin surface to which a phase distribution formed on an exposure mask has been transferred, that is, a photograph replacing a drawing showing a fine pattern formed on a substrate.

【図4】本発明で用いたフーリエ変換光学系を示す図で
ある。図中、1はHe-Ne レーザー、2は対物レンズ、3
は空間フィルター、4は凸レンズ、5は位相変調型光学
素子、6はCCDカメラ、7はモニターを示す。
FIG. 4 is a diagram showing a Fourier transform optical system used in the present invention. In the figure, 1 is a He-Ne laser, 2 is an objective lens, 3
Denotes a spatial filter, 4 denotes a convex lens, 5 denotes a phase modulation type optical element, 6 denotes a CCD camera, and 7 denotes a monitor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 康博 神奈川県横浜市都筑区仲町台4−19−12− 203 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhiro Takagi 4-19-12-203 Nakamachidai, Tsuzuki-ku, Yokohama-shi, Kanagawa 203

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 位相変調型の計算機ホログラムを計算す
ることにより露光用マスクを製造し、次いでそのパター
ンを光硬化性モノマー組成物に露光することにより製造
される位相変調型光学素子。
1. A phase modulation type optical element manufactured by manufacturing an exposure mask by calculating a phase modulation type computer generated hologram and then exposing the pattern to a photocurable monomer composition.
【請求項2】 光硬化性モノマー組成物が、光照射によ
り硬化収縮するモノマーであることを特徴とする請求項
1記載の位相変調型光学素子。
2. The phase modulation type optical element according to claim 1, wherein the photocurable monomer composition is a monomer which cures and contracts upon irradiation with light.
【請求項3】 光硬化性モノマー組成物が、多官能(メ
タ)アクリレート化合物を含有することを特徴とする請
求項2記載の位相変調型光学素子。
3. The phase modulation type optical element according to claim 2, wherein the photocurable monomer composition contains a polyfunctional (meth) acrylate compound.
【請求項4】 多官能(メタ)アクリレート化合物が、
含イオウ多官能(メタ)アクリレート化合物であること
を特徴とする請求項3記載の位相変調型光学素子。
4. The polyfunctional (meth) acrylate compound,
4. The phase modulation type optical element according to claim 3, wherein the phase modulation type optical element is a sulfur-containing polyfunctional (meth) acrylate compound.
【請求項5】 位相変調型の計算機ホログラムの計算す
ることが、アルゴリズムを用いた計算であることを特徴
とする請求項1〜4のいずれかに記載の位相変調型光学
素子。
5. The phase modulation type optical element according to claim 1, wherein the calculation of the phase modulation type computer generated hologram is a calculation using an algorithm.
【請求項6】 位相変調型の計算機ホログラムを計算す
ることにより露光用マスクを製造し、次いでそのパター
ンを光硬化性モノマー組成物に露光することにより製造
することを特徴とする位相変調型光学素子の製造方法。
6. A phase modulation type optical element characterized in that an exposure mask is manufactured by calculating a phase modulation type computer generated hologram, and then the pattern is exposed to a photocurable monomer composition. Manufacturing method.
JP14252998A 1998-05-25 1998-05-25 Phase modulation type optical element and its production Pending JPH11337737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14252998A JPH11337737A (en) 1998-05-25 1998-05-25 Phase modulation type optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14252998A JPH11337737A (en) 1998-05-25 1998-05-25 Phase modulation type optical element and its production

Publications (1)

Publication Number Publication Date
JPH11337737A true JPH11337737A (en) 1999-12-10

Family

ID=15317489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14252998A Pending JPH11337737A (en) 1998-05-25 1998-05-25 Phase modulation type optical element and its production

Country Status (1)

Country Link
JP (1) JPH11337737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060429A (en) * 2000-06-09 2002-02-26 Mitsubishi Chemicals Corp Composition for recording three-dimensional hologram and three dimensional hologram-recording medium
JP2005338787A (en) * 2004-04-26 2005-12-08 Ntt Docomo Inc Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
JP2006293010A (en) * 2005-04-11 2006-10-26 Ntt Docomo Inc Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
US8022344B2 (en) 2004-04-26 2011-09-20 Ntt Docomo, Inc. Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060429A (en) * 2000-06-09 2002-02-26 Mitsubishi Chemicals Corp Composition for recording three-dimensional hologram and three dimensional hologram-recording medium
JP2005338787A (en) * 2004-04-26 2005-12-08 Ntt Docomo Inc Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
US8022344B2 (en) 2004-04-26 2011-09-20 Ntt Docomo, Inc. Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
JP2006293010A (en) * 2005-04-11 2006-10-26 Ntt Docomo Inc Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
JP4718223B2 (en) * 2005-04-11 2011-07-06 株式会社エヌ・ティ・ティ・ドコモ Light wavefront control pattern generation apparatus and light wavefront control pattern generation method

Similar Documents

Publication Publication Date Title
Gale et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists
US7119894B2 (en) Light adjustable aberration conjugator
DE69126975T2 (en) MICRO LENS SCREENS MADE FROM PHOTOPOLYMERISABLE MATERIALS AND METHOD FOR THE PRODUCTION THEREOF
JPH04502219A (en) Method for manufacturing a lens made of a transparent polymer with a modulated refractive index
US20070103639A1 (en) Method of manufacturing a mould for producing an optical surface, a method of producing a contact lens and a device for use with these methods
JP2001255660A (en) Generation method for special, surface shape and optical element
JPH0618739A (en) Production of waveguide
JP3611613B2 (en) Three-dimensional shape forming method, three-dimensional structure formed by the method, and press mold
JPH11337737A (en) Phase modulation type optical element and its production
JPH05228946A (en) Manufacture of optical part and matrix for duplication of optical part
JP2002311565A (en) Method for manufacturing fine structure, binary mask and method for manufacturing binary mask
JPWO2020153319A1 (en) Diffusion plate
EP4123347A1 (en) Method for replicating large-area holographic optical element, and large-area holographic optical element replicated thereby
JP2002244273A (en) Distributed density mask and method for producing the same
JPH05150700A (en) Manufacture of high-efficiency volume phase hologram
JPS5835578A (en) Method for duplicating hologram
JP2022521243A (en) Methods and systems for manufacturing optical volume elements from curable materials using additive manufacturing techniques
JP3041916B2 (en) Method for manufacturing lens array
JPH063506A (en) Production of lens and production of lens array plate
Zhang et al. Fabrication of a curved linear grating by using a laser direct writer system
KR20040032514A (en) Optical diffuser for lcd using sterolithography and method for preparing the same
WO2024052033A1 (en) Method for patterning a mask, method for producing an insert or a mold, and optical article with surface microstructures
KR20230024571A (en) Curved holographic optical element using transparent blocks and manufacturing method
JPH0713476A (en) Formation of hologram
JP3947279B2 (en) Method for forming uneven pattern

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426