JPH11337478A - Measuring method for optical characteristic and polarimeter used therefor - Google Patents

Measuring method for optical characteristic and polarimeter used therefor

Info

Publication number
JPH11337478A
JPH11337478A JP14273398A JP14273398A JPH11337478A JP H11337478 A JPH11337478 A JP H11337478A JP 14273398 A JP14273398 A JP 14273398A JP 14273398 A JP14273398 A JP 14273398A JP H11337478 A JPH11337478 A JP H11337478A
Authority
JP
Japan
Prior art keywords
sample
light
hollow portion
sample cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14273398A
Other languages
Japanese (ja)
Inventor
Tatsuro Kawamura
達朗 河村
Kimimasa Miyazaki
仁誠 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14273398A priority Critical patent/JPH11337478A/en
Priority to TW087114848A priority patent/TW407201B/en
Priority to KR1019980036728A priority patent/KR100300920B1/en
Priority to US09/149,084 priority patent/US6046804A/en
Priority to EP98116995A priority patent/EP0902270B1/en
Priority to DE69829812T priority patent/DE69829812T2/en
Priority to CNB981191665A priority patent/CN1167952C/en
Publication of JPH11337478A publication Critical patent/JPH11337478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method in which the removal of a sample cell is not required when a sample to be inspected is replaced, in which the influence of bubbles is suppressed and in which the measuring accuracy of an optical characteristic is enhanced by a constitution, wherein the sample cell which is cylindrical and which is provided with transmitting faces at both ends is arranged in such a way that its axis is tilted. SOLUTION: A step wherein a sample cell 1 which is cylindrical and which is provided with light transmitting faces at both ends when the angle of rotation or the like of a liquid sample is measured, a step in which the sample is introduced into the cell 1 and a step in which light is projected comprise a measuring method for an optical characteristic. For example, a cell 1 which is provided with a coil 5 used to apply a magnetic field is arranged on a tilted rail 10, a sample such as a urine sample or the like is introduced from a sample introduction and discharge port in the lower end part of the cell 1, and the air is discharged from a vent in the upper end part. Prescribed parallel light from a projection optical module 11 is incident on an optical sensor 14 via a polarizer 12, the cell 1 and an analyzer 13, the current of the coil 5 is controlled by its output signal, and the angle of rotation of the sample is found. Since the cell 1 is tilted, it is possible to prevent the disturbance of bubbles to projected light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液状の被検試料の
光学特性の測定方法および測定装置に関するものであっ
て、特に被検試料を保持するサンプルセルの配置方法及
びこれへの被検試料の輸液方法の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the optical characteristics of a liquid test sample, and more particularly to a method of arranging a sample cell for holding a test sample and a test sample therefor. The present invention relates to an improvement of an infusion method of the invention.

【0002】[0002]

【従来の技術】従来より、液状試料の旋光度、光透過
率、光反射率等の光学特性の測定は、その溶質の同定、
純度検定、濃度決定等に応用されている。たとえば、旋
光度の測定は、水溶液中の果糖、ショ糖、グルコース等
の濃度判定に広く用いられている。近年では、尿糖値
(グルコース濃度)や尿タンパク値(アルブミン濃度)
の判定への応用も提案されている(国際公開番号WO9
7/18470号公報)。同公報によると、尿中のグル
コースおよびアルブミンが旋光性を示すのに対して、そ
の他の尿中成分は旋光性を示さないことから、尿の旋光
度を測定することによってこれらの濃度を求めることが
できるとしている。
2. Description of the Related Art Conventionally, measurement of optical properties such as optical rotation, light transmittance and light reflectance of a liquid sample has been carried out by identifying the solute,
It is applied to purity test, concentration determination, etc. For example, the measurement of optical rotation is widely used for determining the concentration of fructose, sucrose, glucose and the like in an aqueous solution. In recent years, urinary sugar levels (glucose levels) and urine protein levels (albumin levels)
It has also been proposed to apply it to the determination of international publication number (International Publication Number WO9
7/18470). According to the same publication, glucose and albumin in urine show optical rotation, while other urine components do not show optical rotation.Therefore, it is necessary to determine the concentration of these by measuring the optical rotation of urine. It can be done.

【0003】尿検査に限らず、一般に被検試料の光学特
性を測定する場合、光が内部を透過するように構成され
たサンプルセルに試料を導入し、この試料に対して光を
投射する。サンプルセルは、たとえばガラスからなり、
内部に光を透過させるための一対の透明な透過面を有す
る。従来、サンプルセルは、上部が開放された箱形で、
液状の被検試料は、スポイト、ピペッタ、シリンジ等を
用いてこの開口部より導入されていた。測定は、サンプ
ルセルごとに行われ、被検試料の交換も、サンプルセル
ごと行われていた。すなわち、サンプルセルに被検試料
を導入した後、サンプルセルを光学系に配置し、被検試
料の光学特性を測定していた。したがって、被検試料
は、サンプルセルごと交換する必要があり、さらにサン
プルセルを再利用するには、光学系より取り外したサン
プルセルから被検試料を排出し、サンプルセルを洗浄す
る必要があった。このように、従来の光学特性の測定
は、非常に手間がかかるものであった。さらに、サンプ
ルセルに試料を滴下すると、泡が発生しやすい。したが
って、測定中に光路に泡が介在して、測定精度が低下し
やすいといった問題点もあった。
[0003] In general, when measuring the optical characteristics of a test sample, not only in a urine test, the sample is introduced into a sample cell configured to allow light to pass therethrough, and light is projected on the sample. The sample cell is made of, for example, glass,
It has a pair of transparent transmitting surfaces for transmitting light inside. Conventionally, the sample cell has a box shape with an open top,
The liquid test sample was introduced from this opening using a dropper, pipettor, syringe, or the like. The measurement was performed for each sample cell, and the replacement of the test sample was also performed for each sample cell. That is, after introducing the test sample into the sample cell, the sample cell is arranged in the optical system, and the optical characteristics of the test sample are measured. Therefore, the test sample had to be replaced together with the sample cell, and in order to reuse the sample cell, it was necessary to discharge the test sample from the sample cell removed from the optical system and to wash the sample cell. . As described above, the conventional measurement of the optical characteristics is very troublesome. Further, when the sample is dropped into the sample cell, bubbles are easily generated. Therefore, there is also a problem that bubbles are interposed in the optical path during the measurement, and the measurement accuracy is likely to be reduced.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上の問題
点を解決し、被検試料の交換が容易な光学特性の測定方
法を提供することを目的とする。また、被検試料への泡
の混入を防ぐことができ、精度が高い光学特性の測定方
法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method for measuring optical characteristics in which a test sample can be easily exchanged. It is another object of the present invention to provide a method for measuring optical characteristics with high accuracy, which can prevent bubbles from being mixed into a test sample.

【0005】[0005]

【課題を解決するための手段】本発明では、光学特性を
測定しようとする被検試料を保持するサンプルセルとし
て、筒状でその両端に透過面を有するものを用いる。サ
ンプルセルはその軸を傾斜して配置し、サンプルセルに
対して投射する光の進行方向も傾斜させる。
In the present invention, a cylindrical sample cell having transmission surfaces at both ends is used as a sample cell for holding a test sample whose optical characteristics are to be measured. The sample cell is disposed with its axis inclined, and the traveling direction of light projected on the sample cell is also inclined.

【0006】[0006]

【発明の実施の形態】本発明の光学特性測定方法は、液
状試料の光学特性の測定において、筒状の中空部および
中空部の一対の端面に光を透過する透過面をそれぞれ具
備するサンプルセルを、中空部の軸を傾斜させて配置す
るステップと、中空部に測定しようとする試料を導入す
るステップと、中空部の軸に沿って透過面に光を投射す
るステップとを具備する。本発明では、従来の箱形で上
部が開放されたサンプルセルに代えて略密閉型で筒状の
サンプルセルを用い、さらにその軸を傾ける。このよう
な傾斜した筒状のサンプルセルを用いることによって、
試料の導入中に発生した泡を、中空部の上端に移動させ
ることができる。したがって、泡を効果的に測定光の光
路よりはずれた箇所に移動させることができ、精度の高
い測定が可能になる。上記のようなサンプルセルへの試
料の導入においては、軸を傾斜して配された中空部の下
端部および上端部にそれぞれ外部に連通した孔を設け、
下端部の孔より前記中空部に試料を導入する。これによ
り、試料の導入中に泡が発生しにくくし、さらに導入中
に発生した泡をより効果的に上端部に移動させることが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the optical characteristic measuring method of the present invention, in measuring optical characteristics of a liquid sample, a sample cell having a cylindrical hollow portion and a pair of end surfaces of the hollow portion each having a transmitting surface through which light is transmitted. And a step of introducing a sample to be measured into the hollow portion, and projecting light onto the transmission surface along the axis of the hollow portion. In the present invention, a substantially closed cylindrical sample cell is used in place of the conventional box-shaped open sample cell, and the axis thereof is further inclined. By using such an inclined cylindrical sample cell,
Bubbles generated during the introduction of the sample can be moved to the upper end of the hollow portion. Therefore, the bubble can be effectively moved to a position deviated from the optical path of the measurement light, and highly accurate measurement can be performed. In introducing the sample into the sample cell as described above, the lower end and the upper end of the hollow portion arranged with the axis inclined are provided with holes that respectively communicate with the outside,
A sample is introduced into the hollow part through the hole at the lower end. This makes it difficult for bubbles to be generated during the introduction of the sample, and allows the bubbles generated during the introduction to be more effectively moved to the upper end.

【0007】本発明の旋光計は、光学特性を測定しよう
とする被検試料を保持するサンプルセルと、サンプルセ
ルに被検試料を供給する試料供給手段と、サンプルセル
に略平行光を投射する単色光源と、サンプルセルの前段
に配され、略平行光のうち特定方向の偏光成分のみを透
過する偏光子と、サンプルセル中の被検試料に略平行光
の伝搬方向に磁場を印加するコイルと、コイルに電流を
供給する電流源と、電流を掃引して磁場を掃引する磁場
掃引手段と、電流を変調して磁場を振動変調する磁場変
調手段と、サンプルセルの後段に配され、被検試料を透
過した光のうち特定方向の偏光成分のみを透過する検光
子と、検光子を透過した光を検知する光センサと、光セ
ンサの出力信号を磁場変調手段の振動変調信号を参照信
号として位相敏感検波するロックインアンプと、磁場掃
引手段の磁場掃引信号およびロックインアンプの出力信
号に基づいて被検試料の旋光度を算出する演算手段を備
え、サンプルセルが、筒状の中空部および中空部の一対
の端面にそれぞれ光を透過する透過面を具備し、中空部
の軸を傾斜させて配置される。上記のようにサンプルセ
ルを傾斜させ、さらに光の投射方向を傾斜させることに
より、泡が測定精度に及ぼす影響を小さくすることがで
きる。光学特性のうち、旋光度の測定においては、上記
のような旋光計を用いると、その他の旋光計、たとえば
特定方向に偏光した光を試料に投射し、その透過光の旋
光角を回転検光子を用いて直接旋光度を求める旋光計と
比べてより高い精度が得られる。
The polarimeter of the present invention has a sample cell for holding a test sample whose optical characteristics are to be measured, sample supply means for supplying the test sample to the sample cell, and projects substantially parallel light to the sample cell. A monochromatic light source, a polarizer disposed in front of the sample cell and transmitting only a polarized light component in a specific direction out of the substantially parallel light, and a coil for applying a magnetic field to the test sample in the sample cell in a propagation direction of the substantially parallel light A current source for supplying a current to the coil; a magnetic field sweeping means for sweeping the current to sweep the magnetic field; a magnetic field modulation means for modulating the current to oscillate the magnetic field; An analyzer that transmits only polarized light components in a specific direction out of the light that has passed through the test sample, an optical sensor that detects light that has passed through the analyzer, and an output signal of the optical sensor that is a reference signal that is a vibration modulation signal of the magnetic field modulation unit. As phase sensitive A lock-in amplifier that oscillates, and an arithmetic unit that calculates the optical rotation of the test sample based on a magnetic field sweep signal of the magnetic field sweep unit and an output signal of the lock-in amplifier, wherein the sample cell has a cylindrical hollow portion and a hollow portion. Are provided with transmission surfaces for transmitting light, respectively, and are arranged with the axis of the hollow portion inclined. By inclining the sample cell as described above and further inclining the light projection direction, the influence of bubbles on the measurement accuracy can be reduced. Among the optical characteristics, in the measurement of the optical rotation, if the above-described polarimeter is used, other polarimeters, for example, project light polarized in a specific direction onto the sample, and determine the angle of rotation of the transmitted light by a rotation analyzer. A higher accuracy can be obtained as compared with a polarimeter which directly obtains the optical rotation by using the optical system.

【0008】以上のような光学特性測定方法は、尿検査
に適用することができる。尿中に含まれる旋光性物質と
しては、たとえばグルコース、アルブミン、L−アスコ
ルビン酸およびアミノ酸が挙げられる。これらのうち、
とりわけ尿のグルコース濃度(タンパク値)およびグル
コース濃度(尿糖値)を精度よく測定することができ
る。尿検査装置として利用する場合、泡による妨害を受
けにくく、その高信頼性、小型、低価格等の特徴から実
用性が高い。
The method for measuring optical characteristics as described above can be applied to urinalysis. Examples of the optical rotation substance contained in urine include glucose, albumin, L-ascorbic acid and amino acids. Of these,
In particular, the glucose concentration (protein value) and the glucose concentration (urine sugar value) of urine can be measured with high accuracy. When used as a urinalysis device, it is less susceptible to bubbles and is highly practical due to its high reliability, small size and low cost.

【0009】[0009]

【実施例】以下、本発明の好ましい実施例として、旋光
度の測定について図面を用いて詳細に説明する。本実施
例では、試料内に磁場を発生させて、試料中の旋光性物
質による旋光を補償し、その磁場の大きさより旋光度を
算出する。光は、磁場を通過する際に旋光する。このと
き、旋光する角度は、磁場の大きさに比例する。また、
上記のように、旋光性物質を含む液状試料内に光が透過
すると、旋光性物質の濃度に比例して旋光する。そこ
で、本実施例の旋光計は、消光点が現れたときの磁場の
強さから、試料の旋光度を求め、さらに試料中の旋光性
物質の濃度を求めるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a preferred embodiment of the present invention, measurement of optical rotation will be described in detail with reference to the drawings. In this embodiment, a magnetic field is generated in the sample to compensate for the optical rotation caused by the optically rotating substance in the sample, and the optical rotation is calculated from the magnitude of the magnetic field. Light rotates when passing through a magnetic field. At this time, the angle of optical rotation is proportional to the magnitude of the magnetic field. Also,
As described above, when light passes through the liquid sample containing the optical rotatory substance, the optical rotation is performed in proportion to the concentration of the optical rotatory substance. Therefore, the polarimeter of the present embodiment obtains the optical rotation of the sample from the strength of the magnetic field when the extinction point appears, and further obtains the concentration of the optical rotation substance in the sample.

【0010】図1に示すサンプルセル1は、以下のよう
にして得られたものである。まず、断面が一辺25mm
の正方形で長さが55mmのアルミニウム製ブロックの
側面を、両端にそれぞれ10mmを残して切削すること
により直径12mmの円筒状に加工した。さらに、長さ
方向の一対の端面の間を貫通させて穴をあけて、直径1
0mmの円筒状の中空部2を形成した。ついで、この中
空部2の開口部に、それぞれ深さが2.5mmで直径が
12mmの円形の穴を開け、これらの穴の部分に厚さが
2.5mmで直径が12mmの円形のガラス板3および
4を嵌合した。中空部2は、容積が約2.5ccで、そ
の軸の長さすなわち光路長が50mmである。サンプル
セル1の円筒状に加工された外側面に、直径0.7mm
のエナメル線を600回捲回して、中空部2に収容する
被検試料に磁場を印加するためのコイル5を構成した。
サンプルセル1の中空部2の一方の端部近傍に、外側面
に連通し、直径1.0mmの導入排出口6を形成した。
また、中空部2の他方の端部側であって、導入排出口6
が配された箇所より180度回転した箇所に同じく直径
2.5mmで外側面に連通した通気口7を形成した。
The sample cell 1 shown in FIG. 1 is obtained as follows. First, the cross section is 25mm on a side
Was cut into a cylindrical shape having a diameter of 12 mm by cutting a side surface of an aluminum block having a length of 55 mm and a length of 55 mm at each end. Further, a hole is made by penetrating between a pair of end faces in the length direction, and a diameter of 1 mm is formed.
A 0 mm cylindrical hollow portion 2 was formed. Next, circular holes having a depth of 2.5 mm and a diameter of 12 mm are respectively formed in the openings of the hollow portion 2, and a circular glass plate having a thickness of 2.5 mm and a diameter of 12 mm is formed in these holes. 3 and 4 were fitted. The hollow portion 2 has a volume of about 2.5 cc and an axial length, that is, an optical path length of 50 mm. A 0.7 mm diameter is formed on the cylindrical outer surface of the sample cell 1.
The enameled wire was wound 600 times to form a coil 5 for applying a magnetic field to the test sample accommodated in the hollow portion 2.
In the vicinity of one end of the hollow portion 2 of the sample cell 1, an inlet / outlet 6 having a diameter of 1.0 mm was formed so as to communicate with the outer surface.
Also, on the other end side of the hollow portion 2, the inlet / outlet 6
A vent hole 7 having a diameter of 2.5 mm and communicating with the outer surface was formed at a location rotated 180 degrees from the location where was disposed.

【0011】サンプルセル1は、たとえば以下のように
して用いられる。図2に示すように、サンプルセル1を
たとえば45度で傾斜したレール10の上に配する。投
射モジュール11は、半導体レーザを光源とし、波長が
670nmで強度が5mWの略平行光をサンプルセル1
に向けて投射する。投射モジュール11の投射した光
は、図中矢印方向に進行して光センサ14により検出さ
れる。サンプルセル1の上流には投射モジュール11の
投射光のうち、特定偏光成分のみを透過させる偏光子1
2が配されている。サンプルセル1の下流には、投射モ
ジュール11より投射され、サンプルセル1を透過した
光を透過させる検光子13が配されている。検光子13
は偏光子12に対して直交ニコルの状態に配置されてい
る。
The sample cell 1 is used, for example, as follows. As shown in FIG. 2, the sample cell 1 is placed on a rail 10 inclined at, for example, 45 degrees. The projection module 11 uses a semiconductor laser as a light source and emits substantially parallel light having a wavelength of 670 nm and an intensity of 5 mW to the sample cell 1.
Project toward. The light projected by the projection module 11 travels in the direction of the arrow in the figure and is detected by the optical sensor 14. Upstream of the sample cell 1, a polarizer 1 that transmits only a specific polarization component of the projection light of the projection module 11
2 are arranged. Downstream of the sample cell 1, an analyzer 13 that transmits light that is projected from the projection module 11 and transmitted through the sample cell 1 is arranged. Analyzer 13
Are arranged in a state of orthogonal Nicols with respect to the polarizer 12.

【0012】コンピュータ16は、電流源17に指令信
号を発し、コイル5に流す電流を−5〜5Aの範囲で掃
引させる。信号発生器18は、1.3kHzの振動変調
信号を電流源17に供給する。電流源17は、信号発生
器18からの振動変調信号を振幅0.02Aの振動変調
電流信号に変換し、さらにコンピュータ16から指令さ
れた掃引電流に重畳した後、これをコイル5に供給す
る。ロックインアンプ15は、信号発生器18の振動変
調信号を参照信号として、光センサ14の出力信号を位
相敏感検波する。このロックインアンプ15の出力信号
は、光センサ14の出力信号の角周波数成分に相当する
ことから、ロックインアンプ15の出力信号がゼロにな
る時が消光点である。
The computer 16 issues a command signal to the current source 17 to sweep the current flowing through the coil 5 in the range of -5 to 5A. The signal generator 18 supplies a 1.3 kHz vibration modulation signal to the current source 17. The current source 17 converts the vibration modulation signal from the signal generator 18 into a vibration modulation current signal having an amplitude of 0.02 A, and superimposes the vibration modulation current signal on the sweep current instructed by the computer 16, and then supplies this to the coil 5. The lock-in amplifier 15 performs phase-sensitive detection of the output signal of the optical sensor 14 using the vibration modulation signal of the signal generator 18 as a reference signal. Since the output signal of the lock-in amplifier 15 corresponds to the angular frequency component of the output signal of the optical sensor 14, the time when the output signal of the lock-in amplifier 15 becomes zero is the extinction point.

【0013】ここで、サンプルセル1は、導入排出口6
が下端部に位置し、通気口7が上端部に位置するように
配する。試料は、シリンジ、ポンプ等を用いて、導入排
出口6よりサンプルセル1に導入する。このとき、中空
部2内の空気は通気口7より排出されるため、円滑に液
状試料を導入することができる。ここで、中空部2は、
その軸が傾斜して配されているため、試料導入中に泡が
発生しにくい。さらに、泡が発生しても、泡は試料の上
方に移動した後、中空部2上面に沿って、通気口7のあ
る中空部2の上端部に向けて移動することから、泡が投
射光を妨害するのを防ぐことができる。
Here, the sample cell 1 has an inlet / outlet 6
Are located at the lower end, and the ventilation holes 7 are located at the upper end. The sample is introduced into the sample cell 1 through the introduction / exhaust port 6 using a syringe, a pump, or the like. At this time, since the air in the hollow portion 2 is exhausted from the vent 7, the liquid sample can be smoothly introduced. Here, the hollow portion 2
Since the axis is inclined, bubbles are less likely to be generated during sample introduction. Furthermore, even if bubbles are generated, the bubbles move above the sample, and then move along the upper surface of the hollow portion 2 toward the upper end of the hollow portion 2 having the ventilation port 7, so that the bubbles are projected light. Can be prevented.

【0014】測定が終了して試料を交換するときは、中
空部2内の試料を導入排出口6より排出する。また、測
定しようとする試料の量が中空部2の容積と比べて多量
である場合には、先に測定が終了した試料が中空部2に
残存した状態で、新たな試料を導入排出口6より導入
し、測定が終了した試料を通気口7より排出するように
して置換するようにしてもよい。サンプルセル1を洗浄
するときは、同様に導入排出口6から中空部2に洗浄液
または水を導入する。ここで、中空部2に多量の洗浄液
等を連続的に供給し通気口7より排出することにより、
効果的にサンプルセル1を洗浄することができる。な
お、光をサンプルセル1に向けて、斜め下方より上方に
向けて投射したが、斜め上方から下方に向けて光を投射
してもよい。
When the measurement is completed and the sample is to be replaced, the sample in the hollow portion 2 is discharged from the inlet / outlet 6. When the amount of the sample to be measured is larger than the volume of the hollow portion 2, a new sample is introduced into the inlet / outlet 6 while the sample whose measurement has been completed remains in the hollow portion 2. The sample that has been introduced and the measurement of which has been completed may be discharged from the vent 7 and replaced. When the sample cell 1 is washed, a washing solution or water is similarly introduced into the hollow portion 2 from the inlet / outlet 6. Here, by continuously supplying a large amount of cleaning liquid and the like to the hollow portion 2 and discharging the same through the ventilation port 7,
The sample cell 1 can be effectively cleaned. In addition, although the light is projected toward the sample cell 1 upward from the oblique lower side, the light may be projected downward from the oblique upper side.

【0015】試料の発泡の抑制に関しては、例えば、図
3に示すように、中空部22の軸を傾斜させ、導入排出
口26および通気口27を設けたサンプルセル21にお
いて、水平方向に光を投射して測定する場合にも同様の
効果は得られる。ただし、この方法は、以下のような問
題点を有する。測定光路長は、光学特性の測定精度に大
きな影響を及ぼす。投射光が試料に入射する際に屈折す
るのを防ぐためには、光の進行方向が透過面23および
24に対して垂直である必要があることから、サンプル
セル21の中空部22の軸を傾けると、本実施例で用い
たサンプルセル1と同程度の光路長を確保するために
は、中空部22の長さをより長くする必要がある。ま
た、中空部22の軸を高角度で傾斜させるには、中空部
22の径を大きくする必要がある。したがって、本実施
例におけるサンプルセル1と比べて中空部の容積を大き
くする必要があり、測定により多量の試料が必要とされ
る。
Regarding suppression of foaming of the sample, for example, as shown in FIG. 3, the axis of the hollow portion 22 is inclined, and light is emitted in the horizontal direction in the sample cell 21 provided with the inlet / outlet 26 and the vent 27. Similar effects can be obtained when measuring by projection. However, this method has the following problems. The measurement optical path length has a great influence on the measurement accuracy of the optical characteristics. In order to prevent the projection light from being refracted when entering the sample, the light traveling direction needs to be perpendicular to the transmission surfaces 23 and 24, so that the axis of the hollow portion 22 of the sample cell 21 is inclined. In order to ensure the same optical path length as the sample cell 1 used in this embodiment, the length of the hollow portion 22 needs to be longer. Further, in order to incline the axis of the hollow portion 22 at a high angle, it is necessary to increase the diameter of the hollow portion 22. Therefore, the volume of the hollow portion needs to be larger than that of the sample cell 1 in the present embodiment, and a large amount of sample is required for measurement.

【0016】サンプルセルの透過面の法線方向を中空部
の軸方向より傾斜させる加工は、効率が悪く、サンプル
セルの価格を上げる要因になる。また、鋭角な頂部を有
することから、試料中の固形分が付着して残存しやす
い。サンプルセル21を実施例のサンプルセル1と同様
にコイル25によって被検試料に磁場を印加する場合、
中空部22の径や長さが大きくなることから、サンプル
セル1と同等の磁場を形成しようとすると、コイル25
の巻き数またはコイル25に供給する電流量をより大き
くする必要がある。コイルの巻き数を多くすると、コイ
ルの発熱量が大きくなる。また、コイルに供給する電流
量を大きくしても、同様にコイルの発熱量が大きくな
る。このようにコイルの発熱量が大きくなると、測定精
度が悪化する。すなわち、このような測定は、精度、コ
スト等で本発明の測定方法に劣る。
The process of inclining the normal direction of the transmission surface of the sample cell from the axial direction of the hollow portion is inefficient and increases the cost of the sample cell. In addition, since the sample has an acute peak, solids in the sample tend to adhere and remain. When applying a magnetic field to the sample to be tested by the coil 25 in the same manner as the sample cell 1 of the embodiment,
Since the diameter and the length of the hollow portion 22 become large, if an attempt is made to form a magnetic field equivalent to that of the sample cell 1, the coil 25
Or the amount of current supplied to the coil 25 needs to be increased. Increasing the number of turns of the coil increases the amount of heat generated by the coil. Also, even if the amount of current supplied to the coil is increased, the amount of heat generated by the coil also increases. As described above, when the amount of heat generated by the coil increases, measurement accuracy deteriorates. That is, such measurement is inferior to the measurement method of the present invention in accuracy, cost, and the like.

【0017】[0017]

【発明の効果】本発明によれば、光学特性の測定におい
て試料の交換にサンプルセルの取り外しを要さないこと
から、作業性の高い測定が可能になる。また、試料の導
入の際に発生した泡が測定精度におよぼす影響を抑制す
ることができ、精度の高い測定が可能になる。さらに、
測定に必要なサンプル量を低減することができる。ま
た、本発明によると、尿中の旋光性物質であるグルコー
スやタンパク質の濃度を精度よく検査することができ、
信頼性が高く、小型で低価格の尿検査装置を提供するこ
とができる。
According to the present invention, it is not necessary to remove the sample cell for exchanging the sample in the measurement of the optical characteristics, so that the measurement with high workability can be performed. In addition, it is possible to suppress the influence of bubbles generated at the time of introducing the sample on the measurement accuracy, so that highly accurate measurement can be performed. further,
The amount of sample required for measurement can be reduced. Further, according to the present invention, it is possible to accurately test the concentration of glucose and protein, which are optical rotation substances in urine,
It is possible to provide a small, inexpensive urinalysis device with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の旋光計に用いたサンプルセル
の構造を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing the structure of a sample cell used in a polarimeter according to an embodiment of the present invention.

【図2】同旋光計の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a homorotometer.

【図3】比較例のサンプルセルの構造を示す縦断面図で
ある。
FIG. 3 is a longitudinal sectional view showing a structure of a sample cell of a comparative example.

【符号の説明】[Explanation of symbols]

1、21 サンプルセル 2、22 中空部 3、4 ガラス板 5、25 コイル 6、26 導入排出口 7、27 通気口 11 投射モジュール 12 偏光子 13 検光子 14 光センサ 15 ロックインアンプ 16 コンピュータ 17 電流源 18 信号発生器 23、24 透過面 1,21 sample cell 2,22 hollow part 3,4 glass plate 5,25 coil 6,26 inlet / outlet port 7,27 vent port 11 projection module 12 polarizer 13 analyzer 14 optical sensor 15 lock-in amplifier 16 computer 17 current Source 18 Signal generator 23, 24 Transmission surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液状試料の光学特性を測定する方法であ
って、筒状の中空部および前記中空部の一対の端面に光
を透過する透過面をそれぞれ具備するサンプルセルを、
前記中空部の軸を傾斜させて配置するステップと、前記
中空部に測定しようとする液状試料を導入するステップ
と、前記中空部の軸に沿って前記透過面に光を投射する
ステップとを具備する光学特性測定方法。
1. A method for measuring optical properties of a liquid sample, comprising: a sample cell having a cylindrical hollow portion and a pair of end surfaces of the hollow portion each having a light transmitting surface for transmitting light;
Arranging the axis of the hollow portion at an angle, introducing a liquid sample to be measured into the hollow portion, and projecting light onto the transmission surface along the axis of the hollow portion. Optical property measurement method.
【請求項2】 前記サンプルセルが前記中空部の下端部
および上端部にそれぞれ外部に連通した孔を有し、前記
下端部の孔より前記中空部に試料を導入する請求項1記
載の光学特性測定方法。
2. The optical characteristic according to claim 1, wherein the sample cell has holes communicating with the outside at the lower end and the upper end of the hollow portion, respectively, and the sample is introduced into the hollow portion through the hole at the lower end. Measuring method.
【請求項3】 前記サンプルセルを、前記下端部の孔を
前記光が上流側に、前記上端部の孔が下流側になるよう
に配する請求項2記載の光学特性測定方法。
3. The optical characteristic measuring method according to claim 2, wherein the sample cell is arranged so that the light at the lower end portion is on the upstream side and the hole at the upper end portion is on the downstream side.
【請求項4】 光学特性を測定しようとする被検試料を
保持するサンプルセルと、前記サンプルセルに前記被検
試料を供給する試料供給手段と、前記サンプルセルに略
平行光を投射する単色光源と、前記サンプルセルの前段
に配され、前記略平行光のうち特定方向の偏光成分のみ
を透過する偏光子と、前記サンプルセル中の被検試料に
前記略平行光の伝搬方向に磁場を印加するコイルと、前
記コイルに電流を供給する電流源と、前記電流を掃引し
て磁場を掃引する磁場掃引手段と、前記電流を変調して
前記磁場を振動変調する磁場変調手段と、前記サンプル
セルの後段に配され、前記被検試料を透過した光のうち
特定方向の偏光成分のみを透過する検光子と、前記検光
子を透過した光を検出する光センサと、前記光センサの
出力信号を前記磁場変調手段の振動変調信号を参照信号
として位相敏感検波するロックインアンプと、前記磁場
掃引手段の磁場掃引信号および前記ロックインアンプの
出力信号に基づいて前記被検試料の旋光度を算出する演
算手段を備え、前記サンプルセルが、筒状の中空部およ
び前記中空部の一対の端面に光を透過する透過面を具備
し、前記中空部の軸を傾斜させて配置された旋光計。
4. A sample cell for holding a test sample whose optical characteristics are to be measured, sample supply means for supplying the test sample to the sample cell, and a monochromatic light source for projecting substantially parallel light to the sample cell. And a polarizer disposed in front of the sample cell and transmitting only a polarization component in a specific direction of the substantially parallel light, and applying a magnetic field to a test sample in the sample cell in a propagation direction of the substantially parallel light. Coil, a current source that supplies a current to the coil, a magnetic field sweeping unit that sweeps the current to sweep a magnetic field, a magnetic field modulation unit that modulates the current to vibrate the magnetic field, and the sample cell An analyzer that is disposed at a subsequent stage and transmits only a polarized light component in a specific direction out of the light transmitted through the test sample, an optical sensor that detects light transmitted through the analyzer, and an output signal of the optical sensor. The magnetic field A lock-in amplifier that performs phase-sensitive detection using a vibration modulation signal of a modulation unit as a reference signal, and a calculation unit that calculates an optical rotation of the test sample based on a magnetic field sweep signal of the magnetic field sweep unit and an output signal of the lock-in amplifier. A polarimeter, wherein the sample cell includes a cylindrical hollow portion and a pair of end surfaces of the hollow portion that transmit light, and is arranged with the axis of the hollow portion inclined.
【請求項5】 前記被検試料が尿であり、得られた旋光
度より前記尿に含まれる旋光性物質の濃度を定量する請
求項4記載の旋光計。
5. The polarimeter according to claim 4, wherein the test sample is urine, and the concentration of the optical rotation substance contained in the urine is determined from the obtained optical rotation.
【請求項6】 前記旋光性物質がグルコースおよびアル
ブミンの少なくともいずれか一方である請求項5記載の
旋光計。
6. The polarimeter according to claim 5, wherein the optical rotation substance is at least one of glucose and albumin.
JP14273398A 1997-09-09 1998-05-25 Measuring method for optical characteristic and polarimeter used therefor Pending JPH11337478A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14273398A JPH11337478A (en) 1998-05-25 1998-05-25 Measuring method for optical characteristic and polarimeter used therefor
TW087114848A TW407201B (en) 1997-09-09 1998-09-07 Sample cell for polarimetry, polarimeter, and polarimetry
KR1019980036728A KR100300920B1 (en) 1997-09-09 1998-09-07 Measurement method of sample cell, photometer and optical angle
US09/149,084 US6046804A (en) 1997-09-09 1998-09-08 Sample cell for polarimetry, polarimeter, and polarimetry
EP98116995A EP0902270B1 (en) 1997-09-09 1998-09-08 Sample cell for polarimetry and polarimeter
DE69829812T DE69829812T2 (en) 1997-09-09 1998-09-08 Polarimetric sample cell and polarimeter
CNB981191665A CN1167952C (en) 1997-09-09 1998-09-09 Sampling box, polaristrobometer and rotation angle measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14273398A JPH11337478A (en) 1998-05-25 1998-05-25 Measuring method for optical characteristic and polarimeter used therefor

Publications (1)

Publication Number Publication Date
JPH11337478A true JPH11337478A (en) 1999-12-10

Family

ID=15322323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14273398A Pending JPH11337478A (en) 1997-09-09 1998-05-25 Measuring method for optical characteristic and polarimeter used therefor

Country Status (1)

Country Link
JP (1) JPH11337478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271068A (en) * 2009-05-19 2010-12-02 Nippon Hoso Kyokai <Nhk> Magnetooptical spectrum measuring instrument and magnetooptical spectrum measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271068A (en) * 2009-05-19 2010-12-02 Nippon Hoso Kyokai <Nhk> Magnetooptical spectrum measuring instrument and magnetooptical spectrum measuring method

Similar Documents

Publication Publication Date Title
EP1146329B1 (en) Method for verifying amount of sample solution, method for controlling measurement system and method for measuring concentration of solution in apparatus for measuring optical characteristic
EP1113270B1 (en) Method for measuring a concentration of protein
JP3332149B2 (en) Infusion method of test sample for measuring optical characteristics, infusion device, and polarimeter using the same
JP3390354B2 (en) Control method of optical characteristics measurement system
KR100300920B1 (en) Measurement method of sample cell, photometer and optical angle
US6750063B1 (en) Method for measuring concentration of solution and apparatus for measuring concentration of solution
US6620622B1 (en) Method of polarimetry and method of urinalysis using the same
JPH11337478A (en) Measuring method for optical characteristic and polarimeter used therefor
JP2005189245A (en) Method and instrument for measuring solution concentration
WO2003076913A1 (en) Method of judging homogenization/reaction completion and method of measuring solution concentration using the same
JP2002286602A (en) Method and device for stirring solution, sample cell using the device, and solution consistency measuring instrument using the same
JP2006098345A (en) Device and method of measuring fixed value of sensor
JP3694449B2 (en) Solution concentration measuring method and solution concentration measuring apparatus
JPH10300651A (en) Chemical analyzed
JP3751971B2 (en) Infusion device for test sample for optical property measurement, polarimeter using the same, and infusion method for test sample for optical property measurement
JP2001074649A (en) Method for measuring angle of optical rotation, and method for inspecting urine
JP3638573B2 (en) Infusion method of test sample for optical property measurement
JPH1194732A (en) Sample cell and polarimeter, urea-inspecting apparatus using the same
JP3393997B2 (en) Measurement system control method for liquid optical characteristic measurement device
JP2001174457A (en) Solution concentration measurement method and device therefor, and urine examination method
JP2002131223A (en) Measuring method for angle-of-rotation and urianalysis method using the same
JP2000046730A (en) Angle-of-rotation measuring method, concentration judgment method, and concentration control method, and/or polarimeter
JP2002131221A (en) Flow cell device
JP2002131223A5 (en)
JPH1092890A (en) Method of measuring number of particles generated from semiconductor wafer