JP3638573B2 - Infusion method of test sample for optical property measurement - Google Patents

Infusion method of test sample for optical property measurement Download PDF

Info

Publication number
JP3638573B2
JP3638573B2 JP2002170419A JP2002170419A JP3638573B2 JP 3638573 B2 JP3638573 B2 JP 3638573B2 JP 2002170419 A JP2002170419 A JP 2002170419A JP 2002170419 A JP2002170419 A JP 2002170419A JP 3638573 B2 JP3638573 B2 JP 3638573B2
Authority
JP
Japan
Prior art keywords
test sample
sample
sample cell
syringe
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002170419A
Other languages
Japanese (ja)
Other versions
JP2003042940A (en
Inventor
達朗 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002170419A priority Critical patent/JP3638573B2/en
Publication of JP2003042940A publication Critical patent/JP2003042940A/en
Application granted granted Critical
Publication of JP3638573B2 publication Critical patent/JP3638573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液状試料の純度検定や、その溶質の同定、濃度判定等に用いる光学特性測定装置、特に尿検査装置に応用可能な旋光計に関するものであり、より詳しくは、試料をその測定用サンプルセルへ導入するための輸液装置および輸液方法に関するものである。
【0002】
【従来の技術】
一般に、被検試料の光学特性、例えば吸光度や旋光度は、サンプルセルに保持された被検試料に光を伝搬させ、被検試料中を伝搬した光を分析して求める。サンプルセルには、主としてガラス等からなる箱形で、光を透過させるための一対の透明な透過面を備えた容器が用いられている。
従来、これら光学特性の測定は、サンプルセルに、その開放された上部からスポイト、ピペッタ、シリンジ等で被検試料を注入したのち、サンプルセルを光学系に設置して行われていた。すなわち、被検試料の導入、排出やサンプルセルの洗浄は、いったんサンプルセルを光学系から取り外して行う必要があった。このように、これら光学特性の測定は作業性が悪く、非常に手間がかかるものであった。また、サンプルセル内の光路中に泡が存在すると、測定値にばらつきが生じやすかった。
【0003】
近年、旋光計を用いた尿検査方法が提案されている。グルコースや蛋白質すなわちアルブミンは、旋光性を示す。そこで、尿の旋光度を測定することにより、尿中のこれらの濃度を求めようとするものである。この方法によると、試薬等を尿に浸し、その呈色反応を分光測定機等によって観測する従来の尿検査方法のように試験紙等の消耗品を必要とせず、低濃度のグルコースや蛋白質を検出することが可能である。
【0004】
【発明が解決しようとする課題】
本発明は、上記のような従来の光学特性測定のもつ問題点を解決し、被検試料の導入排出や、サンプルセルの洗浄が容易で、サンプルセル内の被検試料に泡が混入して光路を妨害することなく精度の高い測定を可能とする光学特性測定用被検試料の液方法を提供することを目的とする
【0005】
【課題を解決するための手段】
本発明は、光学特性を測定するための液状の被検試料を一時的に収容するための容器、前記被検試料を保持し、同被検試料に投射光を透過させるためのサンプルセル、記容器の前記試料に浸漬する箇所と前記サンプルセルを接続する管路、前記管路の経路に配された三方活栓、および前記三方活栓の一端と接続されたシリンジを具備し、前記三方活栓の他の一端に前記管路の一部を介して前記容器が接続され、前記三方活栓の残りの一端に前記管路の他の一部を介して前記サンプルセルが接続され、前記シリンジはプランジャ部を上方にして配置されている光学特性測定装置を用い、
被検試料または洗浄液を前記容器に注入するステップと、
前記シリンジを用いて吸引することにより、前記容器内に注入された前記被検試料または洗浄液を、前記管路を通じて前記シリンジに導入するステップと
前記シリンジ内に導入された前記被検試料または洗浄液内の泡の移動が停止するまで待機するステップと、
前記シリンジ内に導入された前記被検試料または洗浄液を、前記シリンジにより、前記管路を通じて前記サンプルセルに導入するステップと、を具備する光学特性測定用被検試料の輸液方法に関する
た、前記サンプルセルに前記被検試料が残存した状態で、さらに前記各ステップにより前記サンプルセルに光学特性を測定するための他の液状被検試料または洗浄液を導入し、前記サンプルセルに残存した前記被検試料または洗浄液を前記サンプルセルより排出するとともに前記他の液状被検試料または洗浄液で置換するのが好ましい。
【0006】
【発明の実施の形態】
本発明の光学特性測定用被検試料の輸液方法は、光学特性を測定するための液状の試料を一時的に収容するための容器、被検試料を保持し、同被検試料に投射光を透過させるためのサンプルセル、および容器の試料に接する箇所とサンプルセルを接続する管路を具備する光学特性測定装置を用い、被検試料または洗浄液を容器に注入するステップと、サンプルセルの上端に配された開口部より吸引することにより、容器内に注入された被検試料または洗浄液を、管路を通じてサンプルセルに導入するステップとを具備する。
サンプルセル内の被検試料は、開口部より吸引することによりサンプルセルから排出する。
また、サンプルセルに被検試料が残存した状態で、さらに各ステップによりサンプルセルに光学特性を測定するための他の液状被検試料または洗浄液を導入し、サンプルセルに残存した被検試料または洗浄液をサンプルセルより排出するとともに他の液状被検試料または洗浄液で置換することができる。
【0007】
発明の光学特性測定用被検試料の輸液装置は、光学特性測定用の液状の被検試料を保持するサンプルセルに一端を接続するための三方活栓と、三方活栓の他の一端に接続されたシリンジを備える。前記三方活栓の残りの一端には、例えば試料収容容器を接続する。
本発明の光学特性測定用被検試料の輸液装置は、光学特性測定用の液状試料を保持するサンプルセルに接続するための試料排出用のシリンジを具備する。また、シリンジとサンプルセルの間に三方活栓を介して接続することで、サンプルセル内の試料を三方活栓の開放された一端より外部へ排出することができる。
【0008】
上記の輸液装置は、例えば水溶液中の果糖、ショ糖、グルコース等の濃度を測定する旋光計等に適用できる。
とりわけ、略平行光を投射する単色光源と、略平行光のうち特定方向の偏光成分のみを透過する偏光子と、偏光子を透過した略平行光が透過するように配された液状の被検試料を保持するためのサンプルセルと、サンプルセル中の被検試料を透過する略平行光の伝搬方向に磁場を印加するためのコイルと、コイルに電流を流す電流源と、コイルに流す電流を掃引する磁場掃引手段と、コイルに流す電流を変調する磁場変調手段と、被検試料を透過した光のうち特定方向の偏光成分のみを透過する検光子と、検光子を透過した光を検知する光センサと、光センサの出力信号を磁場変調手段の振動変調信号を参照信号として位相敏感検波するロックインアンプと、磁場掃引手段の磁場掃引信号およびロックインアンプの出力信号に基づいて被検試料の旋光度を算出する演算部とを具備する旋光計に用いることにより、旋光度の測定が容易な旋光計が得られる。
特に、この旋光計を用いて尿の旋光度を測定することにより、容易かつ高精度で尿中のグルコースおよびアルブミンの濃度を求めることができる。したがって、優れた尿検査装置を提供することが可能になる。
【0009】
【実施例】
本発明の輸液装置は、様々な液状試料用の光学特性測定装置に応用可能である。
以下の参考例および実施例では、光学特性測定装置の一例として旋光計、とりわけ試料中を伝搬する光に磁場を印加し、試料中の旋光性物質による旋光を磁場の印加によって補償して旋光性物質の濃度を求める磁場印加型の旋光計について説明する。
【0010】
参考例1》
本参考例の輸液装置を図1を用いて説明する。
一時収容容器1は、採取した液状の被検試料を収容する。サンプルセル2は、一時収容容器1より供給された被検試料を保持する。サンプルセル2に収容された被検試料に対し、図中、矢印方向に光を透過させて光学特性が測定される。サンプルセル2は、光路長が50mmで、約5.7ccの被検試料を保持することができる。
【0011】
サンプルセル2は、以下のようにして加工して得られたものである。
まず、直方体のアルミニウム製ブロックの長軸方向(長さ55mm)の側面を、両端それぞれ長さ10mmを残して削り出して直径17mmの円筒状に加工した。さらに、長軸方向の二面の間に、長軸に対して約5.7度(≒tan−1(5/50))傾斜して貫通した直径が12mmの円筒状の空間部を形成した。ついで、これらの面に、それぞれ深さが2.5mmで直径が22mmの円形の穴を開け、これらに厚さが2.5mmで直径が22mmの円形のガラス板4を嵌合した。
サンプルセル2の削り出された円筒形の外周には、サンプルセル2の内部に収容された被検試料に磁場を印加するためのコイル3が捲回されている。このコイル3は、直径0.7mmのエナメル線を600回転巻いて構成されたものである。
サンプルセル2には、円筒状空間部の上端部および下端部には、それぞれ直径が1.0mmの通気口6および直径が2.5mmの導入排出口5が配されている。
導入排出口5は、直径が2.5mmの配管7を通じて一時収容容器1に接続されている。一時収容容器1は、昇降機8に保持されている。
【0012】
以下、本輸液装置の作動方法について説明する。
まず、被検試料を、ビーカ等から一時収容容器1に供給する。尿検査装置のサル供給用に用いる場合には、一時収容容器1に直接排尿してもよい。
ここで、一時収容容器1に供給する際には、供給された被検試料の液面がサンプルセル2の導入排出口5よりも低くなるように、一時収容容器1の高さが昇降機8により調整される。ここで、被検試料供給時に被検試料に泡が発生した場合、泡が上部へ移動し終わるまで待機することが好ましい。
泡の上昇が終了した時点で、昇降機8によって一時収容容器1を上昇させる。このとき、サンプルセル2は固定されている。一時収容容器1中の被検試料の液面が導入排出口5より高くなると、一時収容容器1中の被検試料は、導入排出口5よりサンプルセル2内に導入される。一時収容容器1をさらに上昇させ、一時収容容器1内の被検試料の液面が光路よりも高くなると、被検試料の光学特性を計測することが可能になる。ここで、配管7の一時収容容器1側の開口部7aは、サンプルセル2に被検試料を導入する前後において、ともに一時収容容器1中の被検試料の液面より下位に位置するように配される。すなわち、図に示すように、一時収容容器1の側面の最下端に配してもよいし、底面または条件を満たす限り側面の下端から離れた箇所に配してもよい。
サンプルセル2内に被検試料が導入されると、サンプルセル2内の空気は、通気口6より排出される。特に、円筒状空間部の軸に傾きをもたせ、サンプルセル2の最下端より被検試料を導入すると、被検試料はより円滑にサンプルセル2に供給される。これにより、さらにサンプルセル2内の被検試料に泡が混入しにくくなる。
【0013】
サンプルセル2内の被検試料を排出するときは、一時収容容器1を降下させ、サンプルセル2中の被検試料を導入排出口5より一時収容容器1に戻す。このとき、通気口6よりサンプルセル2内に空気が流入する。
サンプルセル2内を洗浄するときは、一時収容容器1に水または洗浄液を入れ、これを上記と同様にサンプルセル2に導入し、排出すればよい。
サンプルセル2内の被検試料を交換する場合、被検試料が十分量あるときは、一時収容容器1に新たな被検試料を入れ、上記と同様にサンプルセル2へ移動させ、サンプルセル2内の先の被検試料を通気口6より排出させ、こうして被検試料を置換するようにしてもよい。洗浄する場合も同様である。
【0014】
以上の構成により、光学系にあらかじめ設置されたサンプルセルに泡を混入させることなく被検試料を導入することができる。また、サンプルセルからの被検試料の排出や被検試料の交換、さらにはセルの洗浄においても、光学系からのセルの取り外しを必要としない。したがって、高精度の光学特性の測定が可能になるとともに、作業性が大幅に向上する。
【0015】
《実施例
本実施例の輸液装置の概略を図2に示す。
本実施例に用いたサンプルセル2は、参考例1で用いたものと同様のものである。ただし、導入排出口5に接続された配管17の他端は、三方活栓10の端部cに接続されている。また、三方活栓10の端部bは、シリンジ9に接続されており、端部aは、配管18を通じてロート11に接続されている。
まず、被検試料は、ロート11へ投入される。尿検査装置として使用する場合は、ロート11に直接排尿してもよい。次に、三方活栓10のab間を通じさせ、シリンジ9内に被検試料を吸入する。
【0016】
ここで、シリンジ9に被検試料を吸入する際、シリンジ9内の被検試料に泡が発生した場合、この泡が上部へ移動し停止するまで待機する。停止した時点で、三方活栓10のbc間を通じさせ、さらにシリンジ9を駆動して被検試料をサンプルセル2へ導入する。液面が光路4より高くなるまで被検試料を導入したのち、測定を行う。特に、シリンジ9を、プランジャ部を上方にして配することにより、シリンジ9に被検試料の泡を捕集したまま、被検試料をサンプルセル2に導入することができる。これにより、サンプルセル2に導入する被検試料中に泡が混入することを防止することができる。
被検試料をサンプルセル2より排出する際は、三方活栓10のbc間を通じさせてサンプルセル2内の被検試料をシリンジ9に吸引し、次にab間を通じさせてロート11へ排出する。サンプルセル2を洗浄するときは、ロート11に水または洗浄液入れた後、これを上記と同様にサンプルセルへ移動させ、洗浄後これを排出する。また、参考例1と同様に、被検試料を収容したサンプルセルに新たな被検試料または洗浄液を送り込んで先の被検試料または洗浄液と置換してもよい。
【0017】
なお、ロート11にかえて、参考例1の一時収容容器1を用いてもよい。
また、たとえば、配管18にゴム製のチューブを用い、被検試料を収容したボウルにその開口端を浸漬させてもよい。
また、三方活栓10を用いなくても、シリンジ9と配管17との結合を適宜切りはなし、シリンジ9で被検試料または水等の洗浄液を直接採取し、またはこれらをサンプルセル2より排出すれば、上記と同様な効果が得られる。
以上のように、本実施例の輸液装置では、参考例1の輸液装置における一時収容容器1と昇降機8の機能を実質的にシリンジ9が果たしている。
【0018】
参考
参考例の輸液装置を、図3に示す。
参考例の輸液装置においても、参考例1で用いたものと同様のサンプルセル2を用いる。ただし、通気口6にかえて直径2.5mmの吸引口12が形成されている。
また、本参考例の輸液装置は、実施例で用いたものと同様のシリンジ9、三方活栓10およびロート11を用いる。サンプルセル2の吸引口12は、三方活栓10の端部aと配管14で接続されている。三方活栓10の端部bはシリンジ9と接続されている。サンプルセル2の導入排出口5は、ロート11と配管13により接続されている。
【0019】
被検試料は、ロート11に供給される。また、尿検装置に使用する場合は、ロート11に直接排尿してもよい。
三方活栓10のab間を通じさせ、シリンジ9で吸引させることによって、ロート11の被検試料をサンプルセル2内に導入する。サンプルセル2内の被検試料の液面を光路より高くしてから測定を行う。
以上の構成により、被検試料をロート11に流し込む際に配管13を通過する際に発生した泡がサンプルセル2に混入しても、さらにシリンジ9で吸引することによって、泡をシリンジ9内へ移動させることができる。シリンジ9に吸引した泡が被検試料の上面に達して停止した後に、被検試料をサンプルセルへ再度導入することで、サンプルセル2への泡の混入を防ぐことができる。
【0020】
被検試料をサンプルセル2より排出する際は、三方活栓10のab間を通じさせたまま、一旦シリンジ9で、サンプルセル2内の被検試料を吸引した後、三方活栓10のbc間を通じさせ、端部cよりシリンジ9内の被検試料を排出する。ここで、1回の動作で排出しきれない場合は、上記の動作を繰り返せばよい。
サンプルセル2内を洗浄するときは、ロート11に水または洗浄液を注入した後、これを被検試料の場合と同様にサンプルセル2へ供給し、洗浄後、排出する。また、三方活栓10のbc間を通じさせて、水または洗浄液を三方活栓10の端部cよりシリンジ9に導入した後、三方活栓10のab間を通じさせて、シリンジ9よりサンプルセル2内に導入しても良い。
三方活栓10は必ずしも必要ではなく、たとえばシリンジ9を駆動してサンプルセル2内の被検試料をロート11の側へ排出しても良い。
【0021】
参考
参考例では、参考の輸液装置を旋光計の試料供給用に用いた場合について説明する。
参考例の旋光計の構成を図4に示す。
半導体レーザ投射モジュール15は、波長が780nmのレーザ光を長軸約4mm、短軸約2mmの楕円形の略平行光にして投射する。また、半導体レーザ投射モジュール15は、内蔵された半導体レーザの駆動回路により投射する半導体レーザを連続発振させる。
偏光子23は、半導体レーザ投射モジュール15より投射された光のうち、特定方向の偏光成分、例えば紙面に平行な偏光成分の光のみを透過する。
サンプルセル2は、半導体レーザ投射モジュール15より投射され、さらに偏光子23を透過した光を受光し、内部を伝搬させる。
検光子24は、サンプルセル2を透過した光のうち、特定方向の偏光成分を透過する。ここで、検光子24は、偏光子23と直交ニコルの状態をなしている。すなわち、偏光子23が紙面に平行な偏光成分の光のみを透過する場合、検光子24は紙面に垂直な偏光成分の光のみを透過するように配置される。光センサ25は、検光子24を透過した光を検知する。
【0022】
コンピュータ20は、電流源19に指令信号を発し、コイル3に流す電流を−5〜5Aの範囲で掃引させる。一方、信号発生器21は、1.3kHzの振動変調信号を電流源19に供給する。電流源19は、信号発生器21からの振動変調信号を振幅0.02Aの振動変調電流信号に変換し、さらにコンピュータ20から指令された掃引電流に重畳した後、これをコイル3に供給する。
ロックインアンプ22は、信号発生器21の振動変調信号を参照信号として、光センサ25の出力信号を位相敏感検波する。このロックインアンプ22の出力信号は、光センサ25の出力信号の角周波数成分に相当することから、ロックインアンプ22の出力信号がゼロになる時が消光点である。
コンピュータ20は、ロックインアンプ22の出力信号を記録解析する。
【0023】
実際に、上記旋光計を用いて、温度が20℃で、純水および濃度が250mg/dlのショ糖水溶液の旋光度を測定した。
コイル3に流す電流を−1.5〜1.5Aの範囲で掃引したときのロックインアンプ22の出力信号を図5に示す。図5において、横軸はコイル3に流す電流Jで、縦軸はロックインアンプ22の出力信号(任意値)である。
図中、実線は、旋光性を示さない純水の測定結果を示す。Jがゼロの時が消光点である。これは、被検試料である純水に磁場が印加されず光ファラデー効果による偏光方向の回転が起こらない状態である。
一方、図中、点線は、ショ糖水溶液の測定結果である。この場合、Jが1.21Aの時が消光点である。即ち、実線を+1.21A幅平行移動した直線になっている。この消光点のずれ幅が被検試料の旋光度に相当する。
【0024】
更に、上記の旋光計を用いて、温度20℃で、濃度が50、100、150および250mg/dlのショ糖水溶液を、順に測定した。
まず、濃度50mg/dlのショ糖水溶液をロート11へ流し込み、シリンジ9で吸引してサンプルセル2へ導入したのち、旋光度を測定した。測定が終了すると、サンプルセル2内のショ糖水溶液をシリンジ9に吸入し、三方活栓10の端部cより排出した。次にロート11に水を流し込みこの水をサンプルセル2内に導入してサンプルセル2内を洗浄した。この水を排出したのち、濃度100mg/dlのショ糖水溶液をロート11へ流し込み、同様にサンプルセル2内に導入して旋光度を測定した。
この結果を図6に示す。図中、横軸は濃度、縦軸は消光点になる電流Jである。図から明らかなように、濃度と測定値は一次式で近似されることが確認された。これより、本実施例の旋光計によると、サンプルセルへの泡の混入を防ぐことができ、精度の高い測定が可能になる。また、セル内の洗浄を行うことによって、効率的に多数の被検試料を計測することができる。
以上のように本参考例の旋光計はグルコース濃度を高精度で測定することができる。グルコースと同様に旋光性を示すアルブミンについても同様に高精度の測定が可能である。すなわち、尿検査に用いることにより、尿糖値や尿中アルブミン濃度を正確に把握することが可能になる。また、被検試料の交換や、セルの洗浄が容易なことから、使用者の作業負担を大幅に低減することができる。
なお、被検試料を移動させる手段としては、上記実施例において用いた昇降機やシリンジのほか、ポンプを用いてもよい。
【0018】
【発明の効果】
本発明によれば、低価格で作業性が高い光学測定装置用の輸液装置を提供することができる。また、この輸液装置はサンプルセルへの被検試料の導入の際の泡の混入を避けることができるため、これを用いることにより、小型で使い勝手に優れた旋光計および尿検査装置を安価で提供することが可能になる。
【図面の簡単な説明】
【図1】 本発明の一参考例の輸液装置の構成を示す概略図である。
【図2】 本発明の実施例の輸液装置の構成を示す概略図である。
【図3】 本発明の他参考例の輸液装置の構成を示す概略図である。
【図4】 本発明の一参考例の旋光計の構成を示す概略図である。
【図5】 同旋光計を用いて得られた純水およびショ糖水溶液におけるコイルに流した電流Jとロックインアンプの出力信号の関係を示す特性図である。
【図6】 ショ糖水溶液の濃度と同旋光計で消光点の現れた電流値Jの関係を示す特性図である。
【符号の説明】
1 一時収容容器
2 サンプルセル
3 コイル
4 ガラス板
5 導入排出口
6 通気口
7 配管
8 昇降機
9 シリンジ
10 三方活栓
a、b、c 端部
11 ロート
13、17、18 配管
15 半導体レーザ投射モジュール
17、18 配管
19 電流源
20 コンピュータ
21 信号発生器
22 ロックインアンプ
23 偏光子
24 検光子
25 光センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical property measuring apparatus used for purity test of a liquid sample, identification of its solute, determination of concentration, etc., in particular, a polarimeter applicable to a urinalysis apparatus. The present invention relates to an infusion device and an infusion method for introduction into a sample cell.
[0002]
[Prior art]
In general, the optical characteristics of the test sample, such as absorbance and optical rotation, are obtained by transmitting light to the test sample held in the sample cell and analyzing the light propagated in the test sample. As the sample cell, a container having a pair of transparent transmission surfaces for transmitting light is used which is a box shape mainly made of glass or the like.
Conventionally, these optical characteristics have been measured by injecting a sample sample into the sample cell from the opened upper portion with a dropper, pipetter, syringe, etc., and then setting the sample cell in the optical system. That is, the introduction and discharge of the test sample and the cleaning of the sample cell have to be performed once the sample cell is removed from the optical system. As described above, the measurement of these optical characteristics is inferior in workability and takes much time. In addition, when bubbles exist in the optical path in the sample cell, the measured values are likely to vary.
[0003]
In recent years, a urine test method using a polarimeter has been proposed. Glucose and protein, ie albumin, show optical rotation. Therefore, the concentration of urine is determined by measuring the optical rotation of urine. According to this method, low concentrations of glucose and protein can be obtained without using consumables such as test paper as in the conventional urinalysis method in which a reagent is immersed in urine and the color reaction is observed with a spectrophotometer or the like. It is possible to detect.
[0004]
[Problems to be solved by the invention]
The present invention is to solve the problems of measure conventional optical properties as described above, the introduction emissions and the test sample, washing the sample cell is easy, the foam is mixed into the test sample in the sample cell and to provide a transportation solution how optical characteristic measuring the Ken試fees to enable highly accurate measurement without interfering with the optical path Te.
[0005]
[Means for Solving the Problems]
The present invention is a container for temporarily housing the test sample liquid for measuring the optical properties, the holding test sample, the sample cell for transmitting the projected light in the test sample, prior to A portion of the container that is immersed in the sample and a conduit that connects the sample cell, a three-way stopcock disposed in the route of the conduit, and a syringe that is connected to one end of the three-way stopcock, The container is connected to the other end through a part of the conduit, the sample cell is connected to the remaining end of the three-way cock through the other part of the conduit, and the syringe is a plunger part. Using an optical property measuring device arranged with the
Injecting a test sample or washing liquid into the container;
Introducing the test sample or the cleaning liquid injected into the container into the syringe through the conduit by sucking using the syringe ; and
Waiting until the movement of bubbles in the test sample or cleaning liquid introduced into the syringe stops;
And a step of introducing the test sample or the cleaning liquid introduced into the syringe into the sample cell through the pipe line by the syringe .
Also, the above the sample cell in a state in which the test sample remained, introducing further said other liquid test sample or washing liquid for measuring an optical characteristic to the sample cell by the steps, remaining on the sample cell It is preferable that the test sample or cleaning liquid is discharged from the sample cell and replaced with the other liquid test sample or cleaning liquid.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The infusion method for a test sample for optical property measurement according to the present invention includes a container for temporarily storing a liquid sample for measuring optical properties, a test sample, and a projection light on the test sample. A step of injecting a sample or cleaning liquid into a container using a sample cell for permeation, and an optical property measuring apparatus comprising a pipe line connecting the sample cell and a portion in contact with the sample of the container; A step of introducing the test sample or the cleaning liquid injected into the container into the sample cell through a pipe line by suction from the arranged opening.
The test sample in the sample cell is discharged from the sample cell by suction from the opening.
In addition, with the test sample remaining in the sample cell, another liquid test sample or cleaning liquid for measuring optical characteristics is further introduced into the sample cell in each step, and the test sample or cleaning liquid remaining in the sample cell is introduced. Can be discharged from the sample cell and replaced with another liquid test sample or cleaning solution.
[0007]
The infusion device for a test sample for optical property measurement of the present invention is connected to a three-way stopcock for connecting one end to a sample cell holding a liquid test sample for optical property measurement, and to the other end of the three-way stopcock. Equipped with a syringe. For example, a sample container is connected to the other end of the three-way cock.
The infusion apparatus for a test sample for optical property measurement according to the present invention includes a syringe for discharging a sample for connection to a sample cell holding a liquid sample for optical property measurement. Moreover, the sample in a sample cell can be discharged | emitted outside from the open | released end of a three-way cock by connecting between a syringe and a sample cell via a three-way cock.
[0008]
The above infusion device can be applied to, for example, a polarimeter that measures the concentration of fructose, sucrose, glucose and the like in an aqueous solution.
In particular, a monochromatic light source that projects substantially parallel light, a polarizer that transmits only the polarized light component in a specific direction of the substantially parallel light, and a liquid test that is disposed so that substantially parallel light that has passed through the polarizer is transmitted. A sample cell for holding the sample, a coil for applying a magnetic field in the propagation direction of substantially parallel light that passes through the test sample in the sample cell, a current source for passing a current through the coil, and a current for flowing through the coil Magnetic field sweeping means for sweeping, magnetic field modulation means for modulating the current flowing through the coil, an analyzer that transmits only a polarized component in a specific direction out of the light that has passed through the test sample, and light that has passed through the analyzer is detected An optical sensor, a lock-in amplifier for phase-sensitive detection of the output signal of the optical sensor using the vibration modulation signal of the magnetic field modulation means as a reference signal, a test test based on the magnetic field sweep signal of the magnetic field sweep means and the output signal of the lock-in amplifier By using a polarimeter comprising a calculating unit for calculating the optical rotation, easy polarimeter measurement of optical rotation is obtained.
In particular, the concentration of glucose and albumin in urine can be determined easily and with high precision by measuring the optical rotation of urine using this polarimeter. Therefore, it is possible to provide an excellent urinalysis apparatus.
[0009]
【Example】
The infusion device of the present invention can be applied to optical property measuring devices for various liquid samples.
In the following Reference Examples and Examples, a polarimeter is used as an example of an optical property measuring apparatus, and in particular, a magnetic field is applied to light propagating in a sample, and optical rotation by the optically rotatory substance in the sample is compensated by application of the magnetic field. A magnetic field application type polarimeter that determines the concentration of a substance will be described.
[0010]
<< Reference Example 1 >>
The infusion device of this reference example will be described with reference to FIG.
The temporary storage container 1 stores the collected liquid test sample. The sample cell 2 holds the test sample supplied from the temporary storage container 1. With respect to the test sample accommodated in the sample cell 2, light is transmitted in the direction of the arrow in the figure, and the optical characteristics are measured. The sample cell 2 has an optical path length of 50 mm and can hold a test sample of about 5.7 cc.
[0011]
The sample cell 2 is obtained by processing as follows.
First, the side surface in the major axis direction (55 mm in length) of a rectangular parallelepiped aluminum block was machined into a cylindrical shape with a diameter of 17 mm by cutting out both sides leaving a length of 10 mm. Furthermore, a cylindrical space portion having a diameter of 12 mm was formed between the two surfaces in the major axis direction so as to be inclined by about 5.7 degrees (≈tan-1 (5/50)) with respect to the major axis. . Next, circular holes each having a depth of 2.5 mm and a diameter of 22 mm were formed in these surfaces, and a circular glass plate 4 having a thickness of 2.5 mm and a diameter of 22 mm was fitted therein.
A coil 3 for applying a magnetic field to a test sample accommodated in the sample cell 2 is wound around the cylindrical outer periphery of the sample cell 2 cut out. The coil 3 is formed by winding an enameled wire having a diameter of 0.7 mm for 600 revolutions.
The sample cell 2 is provided with a vent 6 having a diameter of 1.0 mm and an introduction / discharge port 5 having a diameter of 2.5 mm at the upper end and the lower end of the cylindrical space.
The introduction / discharge port 5 is connected to the temporary storage container 1 through a pipe 7 having a diameter of 2.5 mm. The temporary container 1 is held by an elevator 8.
[0012]
Hereinafter, the operation method of this infusion apparatus is demonstrated.
First, a test sample is supplied to the temporary storage container 1 from a beaker or the like. When used for monkey supply of a urine test apparatus, urination may be performed directly in the temporary storage container 1.
Here, when the temporary storage container 1 is supplied, the height of the temporary storage container 1 is increased by the elevator 8 so that the liquid level of the supplied test sample is lower than the introduction / discharge port 5 of the sample cell 2. Adjusted. Here, when bubbles are generated in the test sample when the test sample is supplied, it is preferable to wait until the bubbles finish moving upward.
When the rising of the bubbles is completed, the temporary storage container 1 is raised by the elevator 8. At this time, the sample cell 2 is fixed. When the liquid level of the test sample in the temporary storage container 1 becomes higher than the introduction / discharge port 5, the test sample in the temporary storage container 1 is introduced into the sample cell 2 from the introduction / discharge port 5. When the temporary storage container 1 is further raised and the liquid level of the test sample in the temporary storage container 1 becomes higher than the optical path, the optical characteristics of the test sample can be measured. Here, the opening 7a on the temporary storage container 1 side of the pipe 7 is positioned below the liquid level of the test sample in the temporary storage container 1 before and after the test sample is introduced into the sample cell 2. Arranged. That is, as shown to a figure, you may distribute | arrange to the lowest end of the side surface of the temporary storage container 1, and may distribute | arrange to the location away from the lower end of the side surface as long as the bottom surface or the conditions are satisfy | filled.
When the test sample is introduced into the sample cell 2, the air in the sample cell 2 is discharged from the vent 6. In particular, when the test sample is introduced from the lowermost end of the sample cell 2 by giving an inclination to the axis of the cylindrical space portion, the test sample is supplied to the sample cell 2 more smoothly. This further prevents bubbles from being mixed into the test sample in the sample cell 2.
[0013]
When the test sample in the sample cell 2 is discharged, the temporary storage container 1 is lowered, and the test sample in the sample cell 2 is returned to the temporary storage container 1 from the introduction / discharge port 5. At this time, air flows into the sample cell 2 from the vent 6.
When the inside of the sample cell 2 is cleaned, water or a cleaning liquid may be put into the temporary storage container 1 and introduced into the sample cell 2 and discharged in the same manner as described above.
When exchanging the test sample in the sample cell 2, if there is a sufficient amount of the test sample, a new test sample is put in the temporary container 1 and moved to the sample cell 2 in the same manner as described above. The previous test sample in the inside may be discharged from the vent 6 and thus the test sample may be replaced. The same applies to the cleaning.
[0014]
With the above configuration, the test sample can be introduced without mixing bubbles in a sample cell previously installed in the optical system. Also, it is not necessary to remove the cell from the optical system when discharging the test sample from the sample cell, replacing the test sample, or cleaning the cell. Therefore, highly accurate optical characteristics can be measured, and workability is greatly improved.
[0015]
Example 1
The outline of the infusion apparatus of a present Example is shown in FIG.
The sample cell 2 used in this example is the same as that used in Reference Example 1. However, the other end of the pipe 17 connected to the introduction / discharge port 5 is connected to the end c of the three-way cock 10. Further, the end b of the three-way cock 10 is connected to the syringe 9, and the end a is connected to the funnel 11 through the pipe 18.
First, the test sample is put into the funnel 11. When used as a urine test apparatus, urination may be performed directly in the funnel 11. Next, the test sample is sucked into the syringe 9 through the ab of the three-way stopcock 10.
[0016]
Here, when the test sample is inhaled into the syringe 9, if bubbles are generated in the test sample in the syringe 9, the process waits until the bubbles move upward and stop. When stopped, the three-way cock 10 is passed through bc, and the syringe 9 is further driven to introduce the test sample into the sample cell 2. After introducing the test sample until the liquid level becomes higher than the optical path 4, the measurement is performed. In particular, by arranging the syringe 9 with the plunger portion facing upward, the test sample can be introduced into the sample cell 2 while collecting the bubbles of the test sample in the syringe 9. Thereby, it can prevent that a bubble mixes in the test sample introduce | transduced into the sample cell 2. FIG.
When the test sample is discharged from the sample cell 2, the test sample in the sample cell 2 is sucked into the syringe 9 through the bc of the three-way cock 10, and then is discharged through the ab into the funnel 11. When the sample cell 2 is cleaned, water or a cleaning liquid is put into the funnel 11 and then moved to the sample cell in the same manner as described above, and is discharged after cleaning. Similarly to Reference Example 1, a new test sample or cleaning liquid may be sent to a sample cell containing the test sample and replaced with the previous test sample or cleaning liquid.
[0017]
Note that the temporary storage container 1 of Reference Example 1 may be used instead of the funnel 11.
Further, for example, a rubber tube may be used for the pipe 18 and the opening end may be immersed in a bowl containing the test sample.
Further, even if the three-way stopcock 10 is not used, the connection between the syringe 9 and the pipe 17 is appropriately cut off, and a test liquid or a cleaning liquid such as water is directly collected by the syringe 9 or is discharged from the sample cell 2. The same effects as described above can be obtained.
As described above, in the infusion device of the present embodiment, the syringe 9 substantially fulfills the functions of the temporary container 1 and the elevator 8 in the infusion device of Reference Example 1.
[0018]
<< Reference Example 2 >>
The infusion device of this reference example is shown in FIG.
In the infusion device of this reference example, the same sample cell 2 as that used in Reference Example 1 is used. However, a suction port 12 having a diameter of 2.5 mm is formed instead of the ventilation port 6.
The infusion device of this reference example uses the same syringe 9, three-way cock 10 and funnel 11 as those used in Example 1 . The suction port 12 of the sample cell 2 is connected to the end a of the three-way cock 10 by a pipe 14. An end b of the three-way cock 10 is connected to the syringe 9. The introduction / discharge port 5 of the sample cell 2 is connected to the funnel 11 and the pipe 13.
[0019]
The test sample is supplied to the funnel 11. Moreover, when using it for a urinalysis apparatus, you may urinate directly to the funnel 11.
The test sample of the funnel 11 is introduced into the sample cell 2 by passing through the ab of the three-way cock 10 and sucking with the syringe 9. Measurement is performed after the liquid level of the test sample in the sample cell 2 is made higher than the optical path.
With the above configuration, even if bubbles generated when passing the pipe 13 when the test sample is poured into the funnel 11 are mixed into the sample cell 2, the bubbles are further sucked into the syringe 9 by being sucked by the syringe 9. Can be moved. After the bubbles sucked into the syringe 9 reach the upper surface of the test sample and stop, the test sample is reintroduced into the sample cell, so that the mixing of the bubbles into the sample cell 2 can be prevented.
[0020]
When the test sample is discharged from the sample cell 2, the test sample in the sample cell 2 is once sucked by the syringe 9 while passing through the ab of the three-way cock 10 and then passed between bc of the three-way cock 10 The test sample in the syringe 9 is discharged from the end c. Here, if the discharge cannot be completed in one operation, the above operation may be repeated.
When the inside of the sample cell 2 is cleaned, water or a cleaning solution is injected into the funnel 11 and then supplied to the sample cell 2 as in the case of the test sample, and after cleaning, it is discharged. In addition, water or cleaning liquid is introduced into the syringe 9 from the end c of the three-way cock 10 through the bc of the three-way cock 10, and then introduced into the sample cell 2 from the syringe 9 through the ab of the three-way cock 10. You may do it.
The three-way stopcock 10 is not necessarily required. For example, the syringe 9 may be driven to discharge the test sample in the sample cell 2 to the funnel 11 side.
[0021]
<< Reference Example 3 >>
This reference example demonstrates the case where the infusion apparatus of the reference example 2 is used for sample supply of a polarimeter.
The configuration of the polarimeter of this reference example is shown in FIG.
The semiconductor laser projection module 15 projects laser light having a wavelength of 780 nm as elliptical substantially parallel light having a major axis of about 4 mm and a minor axis of about 2 mm. The semiconductor laser projection module 15 continuously oscillates the semiconductor laser projected by the built-in semiconductor laser drive circuit.
Of the light projected from the semiconductor laser projection module 15, the polarizer 23 transmits only a polarized light component in a specific direction, for example, light having a polarized light component parallel to the paper surface.
The sample cell 2 receives the light projected from the semiconductor laser projection module 15 and transmitted through the polarizer 23, and propagates the light inside.
The analyzer 24 transmits a polarized light component in a specific direction out of the light transmitted through the sample cell 2. Here, the analyzer 24 is in a state of orthogonal Nicols with the polarizer 23. That is, when the polarizer 23 transmits only light having a polarization component parallel to the paper surface, the analyzer 24 is disposed so as to transmit only light having a polarization component perpendicular to the paper surface. The optical sensor 25 detects light transmitted through the analyzer 24.
[0022]
The computer 20 issues a command signal to the current source 19 to sweep the current flowing through the coil 3 in the range of -5 to 5A. On the other hand, the signal generator 21 supplies a 1.3 kHz vibration modulation signal to the current source 19. The current source 19 converts the vibration modulation signal from the signal generator 21 into a vibration modulation current signal having an amplitude of 0.02 A, and further superimposes the vibration modulation signal on the sweep current instructed by the computer 20, and then supplies this to the coil 3.
The lock-in amplifier 22 performs phase sensitive detection on the output signal of the optical sensor 25 using the vibration modulation signal of the signal generator 21 as a reference signal. Since the output signal of the lock-in amplifier 22 corresponds to the angular frequency component of the output signal of the optical sensor 25, the extinction point is when the output signal of the lock-in amplifier 22 becomes zero.
The computer 20 records and analyzes the output signal of the lock-in amplifier 22.
[0023]
Actually, the optical rotation of a sucrose aqueous solution having a temperature of 20 ° C., a pure water and a concentration of 250 mg / dl was measured using the polarimeter.
FIG. 5 shows an output signal of the lock-in amplifier 22 when the current flowing through the coil 3 is swept in the range of −1.5 to 1.5 A. In FIG. 5, the horizontal axis is the current J flowing through the coil 3, and the vertical axis is the output signal (arbitrary value) of the lock-in amplifier 22.
In the figure, the solid line indicates the measurement result of pure water that does not show optical rotation. The extinction point is when J is zero. This is a state in which the magnetic field is not applied to the pure water as the test sample, and the polarization direction is not rotated by the optical Faraday effect.
On the other hand, the dotted line in the figure is the measurement result of the sucrose aqueous solution. In this case, the extinction point is when J is 1.21A. That is, it is a straight line obtained by translating the solid line by + 1.21A width. The deviation width of the extinction point corresponds to the optical rotation of the test sample.
[0024]
Furthermore, sucrose aqueous solutions having concentrations of 50, 100, 150 and 250 mg / dl were measured in order using the above polarimeter at a temperature of 20 ° C.
First, an aqueous sucrose solution having a concentration of 50 mg / dl was poured into the funnel 11, sucked with a syringe 9, introduced into the sample cell 2, and the optical rotation was measured. When the measurement was completed, the sucrose aqueous solution in the sample cell 2 was sucked into the syringe 9 and discharged from the end c of the three-way cock 10. Next, water was poured into the funnel 11 and this water was introduced into the sample cell 2 to clean the sample cell 2. After discharging this water, an aqueous sucrose solution having a concentration of 100 mg / dl was poured into the funnel 11 and similarly introduced into the sample cell 2 to measure the optical rotation.
The result is shown in FIG. In the figure, the horizontal axis is the concentration, and the vertical axis is the current J that becomes the extinction point. As is clear from the figure, it was confirmed that the concentration and the measured value were approximated by a linear equation. From this, according to the polarimeter of a present Example, mixing of the bubble to a sample cell can be prevented, and a highly accurate measurement is attained. In addition, a large number of test samples can be efficiently measured by cleaning the inside of the cell.
As described above, the polarimeter of this reference example can measure the glucose concentration with high accuracy. Similarly to glucose, albumin showing optical activity can be measured with high accuracy. That is, by using it for urinalysis, it is possible to accurately grasp the urine sugar value and the urinary albumin concentration. Further, since the test sample can be easily replaced and the cell can be easily cleaned, the work load on the user can be greatly reduced.
In addition, as a means to move a test sample, you may use a pump other than the elevator and syringe used in the said Example.
[0018]
【The invention's effect】
According to the present invention, it is possible to provide an infusion device for an optical measuring device that is inexpensive and has high workability. In addition, since this infusion device can avoid the introduction of bubbles during the introduction of the test sample into the sample cell, the use of this infusion device provides a compact and easy-to-use polarimeter and urinalysis device at low cost. It becomes possible to do.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a configuration of an infusion device according to a reference example of the present invention.
Is a schematic view showing the arrangement of the infusion device of one embodiment of the present invention; FIG.
FIG. 3 is a schematic view showing a configuration of an infusion device according to another reference example of the present invention.
FIG. 4 is a schematic diagram showing the configuration of a polarimeter of one reference example of the present invention.
FIG. 5 is a characteristic diagram showing a relationship between a current J flowing through a coil and an output signal of a lock-in amplifier in pure water and a sucrose aqueous solution obtained using the polarimeter.
FIG. 6 is a characteristic diagram showing the relationship between the concentration of an aqueous sucrose solution and the current value J at which the extinction point appears in the same polarimeter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Temporary storage container 2 Sample cell 3 Coil 4 Glass plate 5 Introduction discharge port 6 Ventilation port 7 Piping 8 Elevator 9 Syringe 10 Three-way stopcock a, b, c End part 11 Funnels 13, 17, 18 Piping 15 Semiconductor laser projection module 17, 18 piping 19 current source 20 computer 21 signal generator 22 lock-in amplifier 23 polarizer 24 analyzer 25 optical sensor

Claims (2)

光学特性を測定するための液状の被検試料を一時的に収容するための容器、前記被検試料を保持し、同被検試料に投射光を透過させるためのサンプルセル、記容器の前記試料に浸漬する箇所と前記サンプルセルを接続する管路、前記管路の経路に配された三方活栓、および前記三方活栓の一端と接続されたシリンジを具備し、前記三方活栓の他の一端に前記管路の一部を介して前記容器が接続され、前記三方活栓の残りの一端に前記管路の他の一部を介して前記サンプルセルが接続され、前記シリンジはプランジャ部を上方にして配置されている光学特性測定装置を用い、
被検試料または洗浄液を前記容器に注入するステップと、
前記シリンジを用いて吸引することにより、前記容器内に注入された前記被検試料または洗浄液を、前記管路を通じて前記シリンジに導入するステップと
前記シリンジ内に導入された前記被検試料または洗浄液内の泡の移動が停止するまで待機するステップと、
前記シリンジ内に導入された前記被検試料または洗浄液を、前記シリンジにより、前記管路を通じて前記サンプルセルに導入するステップと、を具備する光学特性測定用被検試料の輸液方法。
Container for temporarily housing the test sample liquid for measuring the optical properties, the holding test sample, the sample cell for transmitting the projected light in the test sample, wherein the pre-SL container A pipe connecting the sample cell and a place immersed in the sample, a three-way cock arranged in the path of the pipe, and a syringe connected to one end of the three-way cock, and at the other end of the three-way cock The container is connected through a part of the conduit, the sample cell is connected to the other end of the three-way cock through the other part of the conduit, and the syringe has a plunger portion upward. Using the arranged optical property measurement device,
Injecting a test sample or washing liquid into the container;
Introducing the test sample or the cleaning liquid injected into the container into the syringe through the conduit by sucking using the syringe ; and
Waiting until the movement of bubbles in the test sample or cleaning liquid introduced into the syringe stops;
Introducing the test sample or the cleaning liquid introduced into the syringe into the sample cell through the conduit with the syringe, and a method for injecting the test sample for optical property measurement.
前記サンプルセルに前記被検試料が残存した状態で、さらに前記各ステップにより前記サンプルセルに光学特性を測定するための他の液状被検試料または洗浄液を導入し、前記サンプルセルに残存した前記被検試料または洗浄液を前記サンプルセルより排出するとともに前記他の液状被検試料または洗浄液で置換する請求項1記載の光学特性測定用被検試料の輸液方法 In a state where the test sample remains in the sample cell, another liquid test sample or a cleaning solution for measuring optical characteristics is further introduced into the sample cell through the steps, and the test sample remaining in the sample cell is introduced. The method for injecting a test sample for optical property measurement according to claim 1, wherein the test sample or the cleaning liquid is discharged from the sample cell and replaced with the other liquid test sample or the cleaning liquid .
JP2002170419A 2002-06-11 2002-06-11 Infusion method of test sample for optical property measurement Expired - Fee Related JP3638573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170419A JP3638573B2 (en) 2002-06-11 2002-06-11 Infusion method of test sample for optical property measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170419A JP3638573B2 (en) 2002-06-11 2002-06-11 Infusion method of test sample for optical property measurement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25878797A Division JP3332149B2 (en) 1997-09-24 1997-09-24 Infusion method of test sample for measuring optical characteristics, infusion device, and polarimeter using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004319726A Division JP3751971B2 (en) 2004-11-02 2004-11-02 Infusion device for test sample for optical property measurement, polarimeter using the same, and infusion method for test sample for optical property measurement

Publications (2)

Publication Number Publication Date
JP2003042940A JP2003042940A (en) 2003-02-13
JP3638573B2 true JP3638573B2 (en) 2005-04-13

Family

ID=19195137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170419A Expired - Fee Related JP3638573B2 (en) 2002-06-11 2002-06-11 Infusion method of test sample for optical property measurement

Country Status (1)

Country Link
JP (1) JP3638573B2 (en)

Also Published As

Publication number Publication date
JP2003042940A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
JP4606543B2 (en) Method for confirming amount of solution to be measured and measuring system control method in optical property measuring apparatus
JP3332149B2 (en) Infusion method of test sample for measuring optical characteristics, infusion device, and polarimeter using the same
JP6009872B2 (en) Automatic analyzer
JP2006162592A (en) Analysis system of liquid, and cartridge
KR100300920B1 (en) Measurement method of sample cell, photometer and optical angle
JP3638573B2 (en) Infusion method of test sample for optical property measurement
JP3751971B2 (en) Infusion device for test sample for optical property measurement, polarimeter using the same, and infusion method for test sample for optical property measurement
JP2002286602A (en) Method and device for stirring solution, sample cell using the device, and solution consistency measuring instrument using the same
WO2003076913A1 (en) Method of judging homogenization/reaction completion and method of measuring solution concentration using the same
JP2005189245A (en) Method and instrument for measuring solution concentration
JP2006105610A (en) Measuring instrument and method using total reflection attenuation
JP2006098345A (en) Device and method of measuring fixed value of sensor
JP3694449B2 (en) Solution concentration measuring method and solution concentration measuring apparatus
CN113777062A (en) Micro-spectrophotometer
EP1359404A1 (en) SOLUTION DENSITY MEASURING METHOD&amp;comma; SAMPLE CELL USED FOR THE METHOD&amp;comma; AND SOLUTION DENSITY MEASURING DEVICE
JPH11337478A (en) Measuring method for optical characteristic and polarimeter used therefor
CN216284910U (en) Micro-spectrophotometer
JPH1194732A (en) Sample cell and polarimeter, urea-inspecting apparatus using the same
JP2001116685A (en) Sample cell, operation method of sample cell, solution concentration measuring device and urine inspection device using these
JP2002131221A (en) Flow cell device
JPH0226056Y2 (en)
JP2008185440A (en) Fluorescence measuring apparatus
JP2007263869A (en) Liquid container
JP2006105608A (en) Liquid feeder
JP2006098346A (en) Measuring device and method using total reflection attenuation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees