JPH11335743A - Slow cooling method for wire rod - Google Patents

Slow cooling method for wire rod

Info

Publication number
JPH11335743A
JPH11335743A JP26501098A JP26501098A JPH11335743A JP H11335743 A JPH11335743 A JP H11335743A JP 26501098 A JP26501098 A JP 26501098A JP 26501098 A JP26501098 A JP 26501098A JP H11335743 A JPH11335743 A JP H11335743A
Authority
JP
Japan
Prior art keywords
wire
cooling
slow cooling
conveyor
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26501098A
Other languages
Japanese (ja)
Inventor
Michiharu Hannoki
道春 播木
Yoichi Haraguchi
洋一 原口
Takayuki Ueda
孝行 上田
Naoki Suetomi
直紀 末富
Yutaka Neishi
豊 根石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26501098A priority Critical patent/JPH11335743A/en
Publication of JPH11335743A publication Critical patent/JPH11335743A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for applying slow cooling to a wire rod after hot rolling uniformly in a width direction. SOLUTION: In a method of slow cooling for wire rod where slow cooling is applied to a wire rod after hot finish rolling on a Stelmor type conveyor, the coiling density of the wire rod is regulated to (30 to 50)turns/m to apply air-blast cooling to the transverse end until the starting of slow cooling, and, in the course of slow cooling, the coiling density of the wire rod is made to (80 to 150)turns/m within a heat insulating cover 6 and at least either of the application of air-blast cooling to the transverse end and the application of heating to the central part is performed. It is further desirable to evacuate the upper part within the heat insulating cover.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は線材製造工程におけ
る線材の冷却方法に関し、特にステルモアタイプのコン
ベア上で鋼線材を均一に徐冷する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a wire in a wire manufacturing process, and more particularly to a method for uniformly cooling a steel wire on a stealmore type conveyor.

【0002】[0002]

【従来の技術】熱間線材の仕上げ圧延後の熱処理は、ス
テルモアタイプのコンベアを有する鋼線材圧延ラインで
は線材をレイングヘッドにて巻取り、その後方に設置さ
れたコンベア上に線材の巻き形状をほぐした束を連続的
に展開し、搬送しつつ冷却が行われる。
2. Description of the Related Art Heat treatment after finishing rolling of a hot wire is performed by winding a wire with a laying head in a steel wire rolling line having a stellmore type conveyor, and winding the wire on a conveyor installed behind the wire. The loosened bundle is continuously developed and cooled while being transported.

【0003】近年、熱間圧延線材を伸線加工する際、加
工前の焼鈍が不要な軟化線材が求められており、これを
得るためコンベア上部に保温カバーを設け、徐冷による
直接熱処理が行われている。
In recent years, when a hot-rolled wire is drawn, a softened wire that does not require annealing before working is required. To obtain this, a heat insulating cover is provided on the upper part of the conveyor, and direct heat treatment by slow cooling is performed. Have been done.

【0004】徐冷を行うと固溶組織がフェライト+パー
ライトの軟化組織になるが、冷却速度が大きすぎるとベ
イナイトが生成し、フェライト+パーライト+ベイナイ
ト組織になって硬化する。徐冷開始までに材料温度が低
くなりすぎると、ベーナイトが生成し硬化組織となるの
で、徐冷開始時点では所定温度以上を確保する必要があ
る。保温カバーを出るときの温度(徐冷終了温度)が高
すぎるとその後、急冷されるためやはり硬化組織とな
る。従って、徐冷開始温度、徐冷速度、徐冷終了温度が
主要な管理ポイントとなる。通常の軟化線材(線材径9
〜14mm)の徐冷開始温度は720〜630℃、徐冷
速度は0.15〜0.5℃/s、徐冷終了温度は600
〜540℃程度で管理され、個々の値は線材の化学組成
と線材径から上限値、下限値または上下限値が決定され
る。
When the cooling is performed, the solid solution structure becomes a softened structure of ferrite and pearlite. However, if the cooling rate is too high, bainite is formed and the structure becomes ferrite + pearlite + bainite structure and hardens. If the temperature of the material becomes too low before the slow cooling starts, bainite is formed to form a hardened structure. Therefore, it is necessary to secure a predetermined temperature or more at the time of starting the slow cooling. If the temperature at the time of exiting the heat retaining cover (slow cooling end temperature) is too high, it will be rapidly cooled thereafter, and will also have a hardened structure. Therefore, the slow cooling start temperature, slow cooling speed, and slow cooling end temperature are the main control points. Normal softened wire (wire diameter 9
~ 14 mm), the slow cooling start temperature is 720-630 ° C, the slow cooling rate is 0.15-0.5 ° C / s, and the slow cooling end temperature is 600.
The upper limit, the lower limit or the upper and lower limits are determined from the chemical composition of the wire and the wire diameter.

【0005】徐冷に関する技術は種々開示されている。
例えば、特公昭60−45252号公報には、線材の幅
方向に均一な徐冷対策として、コンベアを分割し、線材
が次のコンベアに乗り移る際に、段差を設けて線材をほ
ぐし、線材コイルの両側端部に空気を吹き付け、一方で
は過冷部を補償加熱する方法が開示されている。
Various techniques relating to slow cooling have been disclosed.
For example, Japanese Patent Publication No. 60-45252 discloses that as a uniform slow cooling measure in the width direction of a wire, a conveyor is divided, and when the wire is transferred to the next conveyor, a step is provided to loosen the wire, and a wire coil is formed. A method is disclosed in which air is blown to both side ends while compensating and heating the supercooled part.

【0006】特開平3−64420号公報には過冷却防
止対策として線材を650℃±10℃の温度に少なくと
も3分間保持すること、および前記条件を達成すべく線
材を加熱する方法が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 3-64420 discloses a method of keeping a wire at a temperature of 650 ° C. ± 10 ° C. for at least 3 minutes as a measure for preventing supercooling, and a method of heating the wire to achieve the above condition. I have.

【0007】[0007]

【発明が解決しようとする課題】前記特公昭60−45
252号公報に開示されている方法は、冷風を吹き付け
るときのほぐし方にばらつきがあったり、コンベアに乗
り移る際の通過時間の制約があるため、幅方向の冷却速
度にばらつきが生じるおそれがある。また、設備も大き
なものになり、操業も複雑になる等の問題がある。
SUMMARY OF THE INVENTION The aforementioned Japanese Patent Publication No. 60-45.
In the method disclosed in Japanese Patent Publication No. 252, there is a possibility that the cooling speed in the width direction varies due to variations in the loosening method when blowing the cool air and restrictions on the transit time when moving on the conveyor. In addition, there are problems that the equipment becomes large and the operation becomes complicated.

【0008】前記特開平3−64420号公報に開示さ
れている方法は、過冷却防止対策として加熱手段が示さ
れているが、線材束の幅方向の均一徐冷手段について
は、何ら具体的なものが明らかにされていない。
In the method disclosed in JP-A-3-64420, a heating means is shown as a countermeasure for supercooling. Things have not been revealed.

【0009】本発明の課題は、線材の圧延後の熱処理に
おいて、特にステルモアタイプのコンベア上で所定の徐
冷開始温度および徐冷終了温度を確保し、必要な徐冷速
度を確保し、かつ線材の重なりの幅方向および高さ方向
の均一に冷却する手段を提供することにある。
[0009] An object of the present invention is to secure a predetermined slow cooling start temperature and a slow cooling end temperature, particularly on a steermore type conveyor, in a heat treatment after rolling of a wire rod, to secure a required slow cooling rate, and It is an object of the present invention to provide a means for uniformly cooling wires in a width direction and a height direction.

【0010】[0010]

【課題を解決するための手段】発明者らは、線材束を幅
方向(以下単に幅方向ともいう)に均一に徐冷する方法
について検討し、種々の試験をした結果、線材の幅方向
の巻き密度と冷却速度との関係を定量的に明らかにし、
徐冷前および徐冷中の線材の巻き密度と冷却方法を変え
ることにより、幅端部と幅中央部の各々に最適な冷却条
件を見出した。さらに、幅端部を送風により冷却しよう
とすると、冷風の上流側に比べて下流側の冷却が不十分
となる事がわかった。これらの検討から下記知見を得
た。
Means for Solving the Problems The present inventors have studied a method of uniformly cooling a bundle of wires in the width direction (hereinafter, also simply referred to as the width direction), and have conducted various tests. Quantitatively clarify the relationship between winding density and cooling rate,
By changing the winding density and the cooling method of the wire before and during the slow cooling, optimum cooling conditions were found for each of the width end and the width center. Furthermore, when it tried to cool the width end part by blowing, it turned out that the cooling of the downstream side becomes inadequate compared with the upstream side of cold air. The following findings were obtained from these studies.

【0011】(a) 徐冷開始までは、能率を上げ、コンベ
アの長さを短くするため、できるだけ早く徐冷開始温度
まで下げる。そのため巻き密度を粗くし、強制冷却す
る。強制冷却は主に冷却速度の遅い幅端部に行って、徐
冷開始時の幅方向の温度分布を均一化し、かつ前記の徐
冷開始温度の下限値以上を確保する。幅端部の強制冷却
のもとで、冷却速度が高く、幅方向に均一な温度分布を
得やすい適切な巻き密度がある。
(A) Until the slow cooling is started, the temperature is lowered to the slow cooling start temperature as soon as possible in order to increase the efficiency and shorten the length of the conveyor. Therefore, the winding density is reduced and forced cooling is performed. The forced cooling is mainly performed at the width end portion where the cooling rate is slow, so that the temperature distribution in the width direction at the start of slow cooling is made uniform, and the lower limit of the slow cooling start temperature is secured. Under forced cooling at the width end, there is an appropriate winding density at which the cooling rate is high and a uniform temperature distribution is easily obtained in the width direction.

【0012】(b) 徐冷中は前記の徐冷速度の上限値以下
の徐冷速度としなければならない。そのため、保温カバ
ーで覆い、巻き密度を高くして熱放散面積を小さくす
る。ただし、能率を上げ、コンベアの長さを短くするた
めには徐冷速度の上限を超えない範囲で強制冷却をす
る。強制冷却は冷却速度の遅い幅端部に対して行う。ま
た、保温カバーで覆ってもなお徐冷速度が規定より大き
くなる場合には加熱が必要になる。加熱は冷却速度の大
きい幅中央部に行う。徐冷終了時(保温カバーを出たと
き)には、線材の温度は前記の徐冷終了温度の上限以下
でなければならず、これを上回ると後面コンベアで急冷
され、軟化組織が得られない。徐冷中は幅端部冷却のも
とで適切な徐冷速度が得られ、かつ幅方向の均一温度分
布を得られやすい適切な巻き密度がある。
(B) During slow cooling, the slow cooling rate must be lower than the upper limit of the slow cooling rate. Therefore, it is covered with a heat insulating cover to increase the winding density and reduce the heat dissipation area. However, in order to increase efficiency and shorten the length of the conveyor, forced cooling is performed within a range not exceeding the upper limit of the slow cooling rate. The forced cooling is performed on the width end where the cooling rate is slow. In addition, if the slow cooling rate becomes higher than the specified value even after covering with the heat retaining cover, heating is required. Heating is performed at the center of the width where the cooling rate is high. At the end of the slow cooling (when the thermal insulation cover is removed), the temperature of the wire must be lower than or equal to the upper limit of the above-mentioned slow cooling end temperature, and if it exceeds this, the wire is rapidly cooled by the rear conveyor, and a softened structure cannot be obtained. . During slow cooling, there is an appropriate winding density at which an appropriate slow cooling rate can be obtained under the width edge cooling and a uniform temperature distribution in the width direction can be easily obtained.

【0013】(c) しかし、(b) 項の対応では重なった線
材の高さ方向に均一に冷却するのが困難な場合がある。
これは線材の下面から吹き付けられた冷風は重なった線
材束の隙間を通って上方へ通過する際、最上部まで到達
せずに、一部が線材の幅方向に逃げてしまうことによ
り、冷却速度のばらつきが生じるためである。
(C) However, it may be difficult to uniformly cool the overlapped wires in the height direction in the case of item (b).
This is because when the cool air blown from the lower surface of the wire passes upward through the gap of the overlapped wire bundle, it does not reach the uppermost part but escapes partly in the width direction of the wire. This is due to the variation of

【0014】(d) その対策としては、徐冷カバー内の線
材束の幅端部の上方に排気口を設け、雰囲気を強制排気
することにより、高さ方向に均一な冷却速度を確保でき
る。
(D) As a countermeasure, by providing an exhaust port above the width end of the wire bundle in the slow cooling cover and forcibly exhausting the atmosphere, a uniform cooling rate in the height direction can be secured.

【0015】(e) 保温カバーを出た後は、特段の熱処理
は不要である。コンベアの長さを短縮するため、または
巻取り後のハンドリングを容易にするため、線材を強制
冷却してもよい。
(E) No special heat treatment is required after leaving the heat insulating cover. The wire may be forcibly cooled to reduce the length of the conveyor or to facilitate handling after winding.

【0016】前記の知見にもとづいて完成した本発明の
要旨は以下の(1) および(2) にある。 (1) 熱間仕上げ圧延後の線材をステルモアタイプのコン
ベア上で徐冷処理を行う線材の徐冷方法において、徐冷
開始までは、線材の巻き密度を30〜50本/mとして
線材の幅端部を衝風冷却し、徐冷中は保温カバー内で線
材の巻き密度を80〜150本/mとし、線材の幅端部
の衝風冷却および/または中央部の加熱を行うことを特
徴とする線材の徐冷方法。
The gist of the present invention completed on the basis of the above findings is as follows (1) and (2). (1) In the method of gradually cooling a wire after hot finish rolling on a stellmore type conveyor, the winding density of the wire is set to 30 to 50 / m until the slow cooling is started. The width end is subjected to blast cooling, and during slow cooling, the winding density of the wire is set to 80 to 150 turns / m in the heat retaining cover, and the blast cooling of the width end of the wire and / or the heating of the central portion are performed. Method for slowly cooling wire.

【0017】(2) 徐冷中の線材の幅端部の衝風冷却方法
をコンベア下面より冷風を吹き付ける方法とし、保温カ
バー内の線材の幅端部の上方に設けた排気口から強制排
気することを特徴とする前記(1) 項に記載の線材の徐冷
方法。
(2) The method of blast cooling of the width end of the wire during slow cooling is a method of blowing cold air from the lower surface of the conveyor, and forcibly exhausting air from an exhaust port provided above the width end of the wire in the heat retention cover. The method for slowly cooling a wire according to the above (1), which is characterized in that:

【0018】ここで、線材の幅端部とはコンベア上にほ
ぐし重ねて展開された線材束の幅の中心から0.7〜
1.1R(Rは巻き半径)の部分、線材の中央部とは線
材束の幅の中心から0.5R以内の部分をいう。また、
衝風冷却とは、ブロア等を用いて強制的に風を吹き付け
る冷却方法をいう。
Here, the width end of the wire is 0.7 to 0.7 mm from the center of the width of the wire bundle unfolded and spread on the conveyor.
The portion of 1.1R (R is the winding radius), and the center of the wire is a portion within 0.5R from the center of the width of the wire bundle. Also,
The impingement cooling refers to a cooling method of forcibly blowing air using a blower or the like.

【0019】[0019]

【発明の実施の形態】図1は線材の幅方向部位別の冷却
速度のグラフである。同図は線材径9.0mm、巻き径
D(半径Rの2倍)を1250mmとし、巻き密度30
〜180本/mで変えて、650℃から600℃まで自
然冷却(放冷)したときの冷却速度を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a graph of a cooling rate for each part of a wire in a width direction. The figure shows a wire diameter of 9.0 mm, a winding diameter D (twice the radius R) of 1250 mm, and a winding density of 30 mm.
The cooling rate at the time of spontaneous cooling (cooling) from 650 ° C. to 600 ° C. while changing at 180180 / m is shown.

【0020】前記のように、本発明の目的は幅方向の均
一冷却であり、線材束の幅端部および中央部の品質を均
一にするには、徐冷開始温度を均一にすることと、徐冷
速度を均一にすることが必要である。
As described above, the object of the present invention is to provide uniform cooling in the width direction. In order to make the quality of the width end and the center of the wire bundle uniform, it is necessary to make the annealing temperature uniform. It is necessary to make the slow cooling rate uniform.

【0021】図1に示すように、自然放冷では線材の幅
端部は冷却速度が小さいため、これを均一にするには幅
端部を冷却するか、中央部を加熱することが考えられ
る。
As shown in FIG. 1, since the cooling speed is small at the width end of the wire in natural cooling, it is conceivable to cool the width end or heat the center in order to make this uniform. .

【0022】徐冷開始前は冷却速度は大きくてもよいか
ら、巻き密度を小さくし、幅端部を冷却して、均一な冷
却速度を得る。このとき必要に応じて、中央部を衝風冷
却してもよい。この段階での巻き密度は幅端部の冷却速
度を高め、幅方向に均一な温度分布を得やすい条件から
決まってくる。
Before the start of slow cooling, the cooling rate may be high, so that the winding density is reduced and the width end is cooled to obtain a uniform cooling rate. At this time, if necessary, the central portion may be subjected to blast cooling. The winding density at this stage is determined by conditions that increase the cooling rate at the width end and easily obtain a uniform temperature distribution in the width direction.

【0023】徐冷中は中央部の冷却速度が前記の冷却速
度の上限以下になるよう、巻き密度を高くし、一方、中
央部に比べて冷却速度の小さい幅端部は強制冷却して、
冷却速度を均一化する必要がある。巻き密度を高くして
も中央部の徐冷速度が大きすぎるときは中央部を加熱す
るのが望ましい。この段階の巻き密度は中央部の冷却速
度を前記冷却速度の上限以下にし、かつ、強制冷却によ
って幅方向に均一な温度分布を得やすい巻き密度の条件
から決まってくる。
During the slow cooling, the winding density is increased so that the cooling rate in the central portion is equal to or lower than the upper limit of the cooling rate, while the width end portion having a lower cooling rate than the central portion is forcibly cooled.
It is necessary to make the cooling rate uniform. If the slow cooling rate at the center is too high even if the winding density is increased, it is desirable to heat the center. The winding density at this stage is determined by the condition of the winding density at which the cooling rate in the central portion is equal to or lower than the upper limit of the cooling rate and a uniform temperature distribution is easily obtained in the width direction by forced cooling.

【0024】図2は本発明の方法を実施する線材の徐冷
装置を示す側面概要図である。図2において、線材1は
レイングヘッド2によって前面コンベア3上にリング状
になって吐き出され、冷却される。前面コンベア3の出
口には保温カバー6に覆われた徐冷コンベア4が設置さ
れている。線材1は徐冷コンベア4上で徐冷された後、
後面コンベア5に移送され、さらに後面コンベア5上で
冷却された後、巻取り用タブ10に落とされて製品とな
る。線材は前面コンベア3では冷風ダクト15を介して
前面ブロア7により、徐冷コンベア4では冷風ダクト1
6を介して徐冷ブロア8により、後面コンベア5では冷
風ダクト17を介して後面ブロア9によりそれぞれ冷却
される。
FIG. 2 is a schematic side view showing an apparatus for gradually cooling a wire rod for carrying out the method of the present invention. In FIG. 2, a wire 1 is discharged by a laying head 2 into a ring shape on a front conveyor 3 and cooled. At the exit of the front conveyor 3, a slow cooling conveyor 4 covered with a heat insulating cover 6 is installed. After the wire 1 is gradually cooled on the slow cooling conveyor 4,
After being transferred to the rear conveyor 5 and further cooled on the rear conveyor 5, it is dropped on the winding tab 10 to be a product. The wire is supplied by the front blower 7 through the cool air duct 15 in the front conveyor 3 and the cold air duct 1 in the slow cooling conveyor 4.
The cooling air is cooled by a slow cooling blower 8 through a cooling air duct 6 and a rear blower 9 through a cooling air duct 17 in the rear conveyor 5.

【0025】前面コンベア3の搬送速度は徐冷コンベア
に比べて大きくなるように設定されており、線材1は巻
き密度の小さい(薄巻き)状態で冷却される。徐冷コン
ベア4の搬送速度は前面コンベア3より小さく、徐冷コ
ンベア4上では線材は巻き密度が大きい(厚巻き)状態
になる。後面コンベア5の搬送速度は徐冷コンベア4よ
り大きく設定されているため、巻き密度は再び薄巻きに
なって冷却が促進される。
The conveying speed of the front conveyor 3 is set to be higher than that of the slow cooling conveyor, and the wire 1 is cooled in a state where the winding density is small (thin winding). The conveying speed of the slow cooling conveyor 4 is lower than that of the front conveyor 3, and the wire material has a high winding density (thick winding) on the slow cooling conveyor 4. Since the conveying speed of the rear conveyor 5 is set to be higher than that of the slow cooling conveyor 4, the winding density becomes thin again and cooling is promoted.

【0026】図3は、図2のAA断面図である。同図に
おいて、前面ブロア7で供給される冷風は、前面コンベ
ア3の近くに設置されたダンパー11a〜11c、およ
び幅方向に3区分された冷風ダクト15を経て、薄巻き
状態の線材1に吹き付けられる。同図に示すように、本
発明方法の場合、中央部に対するダンパー11bは全閉
〜半開とし、幅端部に対するダンパー11a、11cは
全開にする。線材1の中央部は放冷されるが、幅端部は
衝風冷却される。幅端部は中央部より嵩密度が大きいた
め、前面コンベア3の出口では幅端部と中央部間の温度
差は可及的に少なくなる。
FIG. 3 is a sectional view taken along the line AA of FIG. In the figure, the cool air supplied by the front blower 7 is blown onto the thinly wound wire 1 through dampers 11a to 11c installed near the front conveyor 3 and a cool air duct 15 divided into three in the width direction. Can be As shown in the figure, in the case of the method of the present invention, the damper 11b for the central portion is fully closed to half open, and the dampers 11a and 11c for the width end are fully open. The central portion of the wire 1 is allowed to cool, while the width end portion is subjected to blast cooling. Since the bulk end has a higher bulk density than the center, the temperature difference between the width end and the center at the outlet of the front conveyor 3 is as small as possible.

【0027】図4は、図2のBB断面図である。図4に
おいて、徐冷ブロア8(図2参照)によって供給される
冷風は、徐冷コンベア4の近くに設置されたダンパー1
2a〜12cおよび幅方向に3区分された冷風ダクト1
6を経て、厚巻き状態の線材1に吹き付けられる。同図
に示すように、本発明方法の場合、中央部に対するダン
パー12bは全閉とし、幅端部に対するダンパー12
a、12cは全開ないし必要な風量が得られるように開
度調整する。中央部の巻き密度は幅端部より小さく、冷
却速度が大きくなる傾向があるが、厚巻き状態であれば
保温カバー6による保温で十分緩やかな冷却速度が得ら
れる。ただし、操業開始直後など、保温カバー6の内部
雰囲気温度が低い場合、線材径が細い場合、あるいは幅
端部に吹き付けた冷風が回り込んで線材中央部が過冷却
されるのを防止したい場合などには、徐冷コンベア4の
ロール間に中央部のみを加熱するヒーター14を設置す
るのが望ましい。これらの装置に適切な冷却/加熱条件
を与えることにより、線材幅方向の徐冷速度をほぼ等し
くできる。
FIG. 4 is a sectional view taken along the line BB of FIG. 4, the cool air supplied by the slow cooling blower 8 (see FIG. 2) is supplied to the damper 1 installed near the slow cooling conveyor 4.
Cold air duct 1 divided into 3 in 2a to 12c and width direction
After passing through 6, the wire 1 is sprayed on the thickly wound wire 1. As shown in the figure, in the case of the method of the present invention, the damper 12b for the center portion is fully closed, and the damper 12b for the width end portion.
The openings a and 12c are fully opened or the opening is adjusted so that a required air volume can be obtained. The winding density at the center is smaller than that at the width end, and the cooling rate tends to be higher. However, in a thick winding state, a sufficiently slow cooling rate can be obtained by keeping the heat by the heat retaining cover 6. However, when the internal temperature of the heat retaining cover 6 is low, such as immediately after the start of operation, when the diameter of the wire is small, or when it is desired to prevent the cool air blown to the width end from wrapping around and prevent the center of the wire from being overcooled. It is desirable to provide a heater 14 for heating only the central portion between the rolls of the slow cooling conveyor 4. By providing appropriate cooling / heating conditions to these devices, the rate of slow cooling in the wire width direction can be made substantially equal.

【0028】図5は、図2のCC断面図である。図5に
おいて、後面ブロア9(図2参照)によって供給される
冷風は、後面コンベア5の近くに設置されたダンパー1
3a〜13c、および幅方向に3区分された冷風ダクト
17を経て、薄巻き状態の線材1に吹き付けられ、常温
近くまで冷却される。後面コンベア5の冷却段階では幅
方向の冷却速度を制御する必要はないため、同図に示す
ように、ダンパー13a〜13cをすべて開放して冷却
してもよいし、冷却しにくい幅端部に優先的に風量を配
分してもよい。
FIG. 5 is a sectional view taken along the line CC in FIG. In FIG. 5, the cold air supplied by the rear blower 9 (see FIG. 2) is supplied to the damper 1 installed near the rear conveyor 5.
Through the cold air duct 17 divided into three sections 3a to 13c and in the width direction, the wire 1 is blown onto the thinly wound wire 1 and cooled to near room temperature. In the cooling stage of the rear conveyor 5, it is not necessary to control the cooling speed in the width direction. Therefore, as shown in the figure, all the dampers 13a to 13c may be opened for cooling, and The air volume may be preferentially distributed.

【0029】以上の方法により、前面コンベア3と徐冷
コンベア4の出口での幅方向の温度差は小さくなり、幅
方向の均一徐冷が実現できる。
By the above method, the temperature difference in the width direction at the outlet of the front conveyor 3 and the slow cooling conveyor 4 is reduced, and uniform slow cooling in the width direction can be realized.

【0030】衝風冷却または中央部加熱における、幅端
部および中央部の位置を以下に説明する。前記の図1に
おいて、グラフの形状は、中心から0.5R(Rは巻き
半径)までの比較的高い冷却速度の部分、0.8〜1.
0Rの低い冷却速度の部分、およびそれをつなぐ傾斜部
分がある。従って、線材を衝風で冷却するときは、幅端
部の0.8〜1.0Rの範囲を冷却し、保温するときは
中心〜0.5Rの範囲を加熱すればよい。コンベア上で
線材が若干左右にばらつくことを考慮すれば、幅端部に
ついては0.7〜1.1Rの範囲(図1の点線で示した
範囲)を冷却するのがよい。
The position of the width end and the center in the blast cooling or the center heating will be described below. In FIG. 1 described above, the shape of the graph is a portion having a relatively high cooling rate from the center to 0.5R (R is a winding radius), 0.8 to 1.
There is a part with a low cooling rate of 0R and a slope part connecting it. Therefore, when the wire is cooled by the blast, the range of 0.8 to 1.0 R at the width end may be cooled, and when keeping the temperature, the range of the center to 0.5 R may be heated. Considering that the wire material slightly varies from side to side on the conveyor, it is preferable to cool the width end portion in the range of 0.7 to 1.1R (the range indicated by the dotted line in FIG. 1).

【0031】図3〜4に示す冷風ダクト15および冷風
ダクト16の幅方向の3分割幅のうち、幅端部のダクト
の位置は前記のように、0.7R〜1.1Rの範囲とす
るのがよい。また、図4において、ヒーター14の幅は
±0.5R程度の範囲とするのがよい。
Of the three divided widths of the cool air duct 15 and the cool air duct 16 shown in FIGS. 3 and 4, the position of the duct at the width end is in the range of 0.7R to 1.1R as described above. Is good. In FIG. 4, the width of the heater 14 is preferably in the range of about ± 0.5R.

【0032】徐冷前の前面コンベア上での巻き密度は3
0〜50(本/m)とする。この範囲の巻き密度では、
通常の軟化線材の圧延終了温度(800〜750℃程
度)、徐冷開始温度(前記の720〜630℃程度)お
よび通常の冷却時間(50〜80s程度で前面コンベア
長さ/コンベア速度で決まる)で、幅端部を衝風冷却す
るという条件のもと、均一な温度分布が得やすく、所定
の徐冷開始前の上下限の温度確保が可能なためである。
The winding density on the front conveyor before slow cooling is 3
0 to 50 (lines / m). For winding densities in this range,
Normal softening wire rolling end temperature (about 800 to 750 ° C), slow cooling start temperature (about 720 to 630 ° C) and normal cooling time (determined by front conveyor length / conveyor speed in about 50 to 80 s) This is because it is easy to obtain a uniform temperature distribution under the condition that the width end is subjected to blast cooling, and it is possible to secure the upper and lower limits of the temperature before the start of the predetermined slow cooling.

【0033】前面コンベア上での巻き密度が50(本/
m)を超えると、幅端部の徐冷開始温度が目標の徐冷開
始温度より高温になり、徐冷コンベア内で衝風冷却して
も前記徐冷終了温度の上限以下にまで冷却できない。そ
の結果、徐冷コンベアを出てから後面コンベアで急冷さ
れ、ベイナイト組織が生成するためである。
The winding density on the front conveyor is 50 (books /
If m) is exceeded, the slow cooling start temperature at the width end becomes higher than the target slow cooling start temperature, and even if it is subjected to blast cooling in the slow cooling conveyor, it cannot be cooled below the upper limit of the slow cooling end temperature. As a result, after leaving the slow cooling conveyor, it is quenched by the rear conveyor and a bainite structure is generated.

【0034】巻き密度が30(本/m)未満になると、
徐冷前の中央部の線材温度が前記徐冷開始温度の下限よ
りも低くなり、やはりベイナイトが生成し、その後徐冷
してもベイナイトが消えないおそれがある。また、設備
的にも、巻き密度をこれより小さくすると、コンベア長
さが長大になるためでもある。より好ましくは35〜4
5(本/m)である。
When the winding density is less than 30 (lines / m),
The temperature of the wire at the central portion before the slow cooling becomes lower than the lower limit of the slow cooling start temperature, and bainite is also generated. Also, in terms of equipment, if the winding density is smaller than this, the conveyor length becomes longer. More preferably, 35-4
5 (books / m).

【0035】徐冷中の巻き密度は80〜150(本/
m)とする。この範囲の巻き密度であれば、保温カバー
の中で前記徐冷開始温度から徐冷終了温度までを、所定
の冷却速度で徐冷する際、幅端部の衝風冷却(必要に応
じて幅中央部の加熱も行なう)するという条件のもと
で、幅方向の均一な温度が得やすい。
The winding density during slow cooling is 80 to 150 (book /
m). When the winding density is within this range, when gradually cooling at a predetermined cooling rate from the slow cooling start temperature to the slow cooling end temperature in the heat insulating cover, the blast cooling of the width end portion (the width if necessary) is performed. It is easy to obtain a uniform temperature in the width direction under the condition that the central part is also heated).

【0036】徐冷コンベア内での巻き密度が150(本
/m)を超えるると、幅端部が徐冷コンベア内で前記徐
冷終了温度の上限まで冷却されず、徐冷コンベアを出た
後、後面コンベアで急冷されてベイナイト組織が生成す
る。巻き密度が80(本/m)未満になると、線材の中
央部の冷却速度が上限値よりも大きくなって、やはりベ
イナイト組織が生成する。より好ましくは90〜140
(本/m)である。
When the winding density in the slow cooling conveyor exceeds 150 (lines / m), the width end portion is not cooled to the upper limit of the slow cooling end temperature in the slow cooling conveyor, and exits the slow cooling conveyor. After that, it is quenched by a rear conveyor to form a bainite structure. When the winding density is less than 80 (lines / m), the cooling rate at the center of the wire becomes larger than the upper limit, and a bainite structure is also generated. More preferably 90 to 140
(Book / m).

【0037】線材の巻き密度を調整するにはコンベアの
速度を変えればよい。仕上圧延の速度をV(m/s)、
巻き密度をn(本/m)、線材の巻き直径をD(m、D
=2R)、コンベアの速度をv(m/s)とすると、n
=V/(π・D・v)で与えられるので、必要な巻き密
度に応じてコンベアの速度vを調整すればよい。
The winding speed of the wire can be adjusted by changing the speed of the conveyor. V (m / s) of finishing rolling speed,
The winding density is n (lines / m), and the winding diameter of the wire is D (m, D
= 2R), and assuming that the speed of the conveyor is v (m / s), n
= V / (π · D · v), the conveyor speed v may be adjusted according to the required winding density.

【0038】上記の対応を行っても、線材幅端部の重な
りの高さ位置によって、品質のばらつきが大きくなる場
合がある。徐冷コンベアでは、下面から冷風を吹き付け
るため、例えば線材径が太く、比較的厚巻きの場合は冷
風の通気抵抗が大きく、冷風の速度が低下したり、冷風
が線材の幅方向に逃げてしまうためである。
Even if the above measures are taken, there may be a case where the quality varies greatly depending on the position of the overlapping height of the wire rod end. In the slow cooling conveyor, since the cool air is blown from the lower surface, for example, the wire diameter is large, and in the case of relatively thick winding, the ventilation resistance of the cool air is large, the speed of the cool air is reduced, or the cool air escapes in the width direction of the wire. That's why.

【0039】このような場合は、徐冷コンベアで、幅端
部付近の雰囲気を強制的に排気するのがよい。強制排気
によって、保温カバーの上下方向の圧力差が大きくなっ
て、冷風が幅端部の上部にも十分供給され、高さ位置に
よる品質のばらつきが小さくなる。
In such a case, it is preferable to forcibly evacuate the atmosphere near the width end by the slow cooling conveyor. Due to the forced exhaust, the pressure difference in the vertical direction of the heat retaining cover increases, and the cool air is sufficiently supplied also to the upper portion of the width end portion, and the variation in quality depending on the height position is reduced.

【0040】図6は本発明の徐冷カバー内を強制排気す
る方法を実施する徐冷装置を示す側面概要図である。同
図において、符号18は排気ブロア、19は排気ダクト
である。
FIG. 6 is a schematic side view showing a slow cooling device for implementing the method of forcibly exhausting the inside of the slow cooling cover according to the present invention. In the figure, reference numeral 18 denotes an exhaust blower, and 19 denotes an exhaust duct.

【0041】図7は図6のDD断面図である。同図にお
いて図4、図6と同一部品は同一符号で示す。
FIG. 7 is a sectional view taken along the line DD in FIG. 4, the same parts as those in FIGS. 4 and 6 are denoted by the same reference numerals.

【0042】図7において、徐冷コンベア4の下面の冷
風ダクト16、ダンパー12a〜12cの構成およびダ
ンパー開度の設定方法は図4に述べたとおりである。線
材1の幅端部の上方には排気口20a、20bが設けら
れており、ダンパー21a、21b、および排気ダクト
19を介して排気ブロア18で線材1の幅端部の雰囲気
を吸引する。
In FIG. 7, the structure of the cool air duct 16 and the dampers 12a to 12c on the lower surface of the slow cooling conveyor 4 and the method of setting the damper opening are as described in FIG. Exhaust ports 20 a and 20 b are provided above the width end of the wire 1, and the atmosphere at the width end of the wire 1 is sucked by the exhaust blower 18 through the dampers 21 a and 21 b and the exhaust duct 19.

【0043】排気口20a、20bの幅は下面の冷風ダ
クトの幅とほぼ対応するようにするのがよい。即ち、線
材の巻き半径Rに対して、0.7〜1.1Rの範囲の位
置で排気するのがよい。下面からの冷風を効率的に吸引
するためには排気口20a、20bと線材1の間隔は狭
いほどよい。しかし、線材径および巻き密度によって、
高さが変化するのに応じて、排気口の高さを変化させる
ことができればなお望ましい。排気口の20a、20b
の高さを固定して用いる場合は、何らかの原因で線材が
跳ね上がったり、盛り上がることを考慮して、線材の重
なり最大高さ+50mm程度とするのがよい。排気口2
0a、20bt線材の間隔が300mmを超えると、排
気効果が著しく低下するので避けるべきである。
It is preferable that the width of the exhaust ports 20a, 20b substantially correspond to the width of the cold air duct on the lower surface. That is, it is preferable to exhaust air at a position in the range of 0.7 to 1.1R with respect to the winding radius R of the wire. In order to efficiently suck the cool air from the lower surface, it is better that the distance between the exhaust ports 20a and 20b and the wire 1 is narrower. However, depending on the wire diameter and winding density,
It would be even more desirable if the height of the exhaust port could be changed as the height changed. Exhaust port 20a, 20b
When the height of the wire is fixed, it is preferable that the maximum height of the overlap of the wire is about +50 mm in consideration of the fact that the wire jumps or swells for some reason. Exhaust port 2
If the distance between the 0a and 20 bt wires exceeds 300 mm, the exhaust effect is significantly reduced and should be avoided.

【0044】[0044]

【実施例】(実施例1)本実施例では図2に示す装置を
使用した。線材径9mmのSCM435の軟化処理を行
うため、800℃でレイングヘッドで線材を巻き取り、
ステルモアタイプの前面コンベア上で、薄巻き状態で冷
却し、徐冷開始温度650℃以上720℃以下を目標に
冷却し、その後厚巻き状態に変えて保温カバー内で徐冷
し、徐冷終了目標温度を600℃以下とした。その後上
部開放のコンベアで、下面を強制冷却し、常温近くまで
冷却した。
(Embodiment 1) In this embodiment, an apparatus shown in FIG. 2 was used. To perform a softening treatment of SCM435 having a wire diameter of 9 mm, wind the wire with a laying head at 800 ° C.
On a stealmore type front conveyor, cool in a thin wound state, cool to a target temperature of 650 ° C or more and 720 ° C or less, gradually change to a thick winding state, gradually cool in a heat insulation cover, and finish cooling. The target temperature was set to 600 ° C. or less. Thereafter, the lower surface was forcibly cooled by a conveyor having an open top, and cooled to near normal temperature.

【0045】本発明の方法および本発明範囲と異なる条
件で比較試験を実施した。結果を表1に示す。
Comparative tests were carried out under conditions different from the method of the present invention and the scope of the present invention. Table 1 shows the results.

【0046】[0046]

【表1】 [Table 1]

【0047】試験No. 1〜2の本発明例では、徐冷開
始前と徐冷後の中央部とエッジ部の温度は所定の条件を
満足し、製品の組織はフェライト+パーライトの良好な
組織が得られた。
In the examples of the present invention of Test Nos. 1 and 2, the temperatures of the central part and the edge part before the start of the slow cooling and after the slow cooling satisfy predetermined conditions, and the structure of the product is a good structure of ferrite + pearlite. was gotten.

【0048】以下の試験は比較例である。試験No. 3
は徐冷前の巻き密度が本発明の下限未満であり、中央部
の徐冷開始温度が確保できず、ベイナイトが混在した組
織となって、軟化処理は失敗であった。
The following test is a comparative example. Test No. 3
The winding density before slow cooling was less than the lower limit of the present invention, the slow cooling start temperature at the center could not be secured, and a bainite-mixed structure was obtained, and the softening treatment failed.

【0049】試験No. 4では徐冷前の巻き密度が本発
明の上限を超えており、徐冷開始温度が過大であった。
幅端部は強制冷却によって良好な組織を得られたが、中
央部は冷却が不十分なまま徐冷を終了し、後面コンベア
で急冷されたため、ベイナイト混在の組織となった。
In Test No. 4, the winding density before slow cooling exceeded the upper limit of the present invention, and the slow cooling start temperature was excessive.
Although a good structure was obtained at the width end by forced cooling, the center part was gradually cooled with insufficient cooling, and rapidly cooled by a rear conveyor, so that the structure was a mixture of bainite.

【0050】試験No. 5では徐冷中の巻き密度が本発
明の下限未満であり、徐冷中に加熱したものの、徐冷コ
ンベア上で急冷され、ベイナイト混在の組織となった。
In Test No. 5, the winding density during the slow cooling was less than the lower limit of the present invention, and although the material was heated during the slow cooling, it was rapidly cooled on the slow cooling conveyor to form a structure containing bainite.

【0051】試験No. 6では徐冷中の巻き密度が本発
明の上限を超えており、幅の中央部および幅端部とも徐
冷終了温度が高く、後面コンベアで急冷されたため、ベ
イナイト混在の組織となった。
In Test No. 6, the winding density during slow cooling exceeded the upper limit of the present invention, and the slow cooling end temperature was high at both the center and the end of the width, and the roll was rapidly cooled by the rear conveyor. became.

【0052】試験No. 7では徐冷前に幅端部を冷却し
なかった。その結果、徐冷開始温度が高く、徐冷中に強
制冷却しても徐冷終了温度が高く、後面コンベアで急冷
されて、ベイナイト混在の組織となった。
In Test No. 7, the width end was not cooled before slow cooling. As a result, the slow cooling start temperature was high, the slow cooling end temperature was high even if the forced cooling was performed during slow cooling, and the structure was rapidly cooled by the rear conveyor to form a bainite-mixed structure.

【0053】試験No.8では徐冷中に幅端部を冷却し
なかった。その結果、徐冷終了温度が高く、後面コンベ
アで急冷されて、ベイナイト混在の組織となった。
Test No. In No. 8, the width end was not cooled during slow cooling. As a result, the temperature at the end of the slow cooling was high, and the structure was rapidly cooled by the rear conveyor, and the structure was mixed with bainite.

【0054】(実施例2)本実施例では図6に示す装置
を使用した。線材径の12mmのSCM435の軟化処
理を行った。800℃でレイングヘッドで線材を巻取
り、前面コンベアで冷却し、徐冷開始目標温度を650
〜720℃として、徐冷コンベアに投入した。徐冷終了
温度は600℃以下を目標とした。徐冷後、後面コンベ
アで常温近くまで冷却し、巻取り用タブに落として製品
とした。
Example 2 In this example, the apparatus shown in FIG. 6 was used. A softening treatment of SCM435 having a wire diameter of 12 mm was performed. The wire is wound up with a laying head at 800 ° C., cooled with a front conveyor, and the target temperature for slow cooling start is set at 650.
The temperature was set to about 720 ° C., and the mixture was put into a slow cooling conveyor. The slow cooling end temperature was targeted at 600 ° C. or lower. After gradual cooling, the product was cooled to near room temperature by a rear conveyor and dropped on a winding tab to obtain a product.

【0055】図6に示す装置において、本発明の第2発
明に係る徐冷カバー6の排気を行った場合(本発明例
A)と、本発明の第1発明の範囲の条件範囲内で、徐冷
カバー6の排気を行わない場合(本発明例B)とを比較
した。試験結果を表2に示す。
In the apparatus shown in FIG. 6, the case where the slow cooling cover 6 according to the second invention of the present invention is evacuated (Example A of the present invention) and the condition shown in FIG. The case where the exhaust of the slow cooling cover 6 is not performed (Example B of the present invention) was compared. Table 2 shows the test results.

【0056】[0056]

【表2】 [Table 2]

【0057】表2の試験No. 11、および12に示す
ように、幅端部の線材の重なりの上部で、徐冷カバーを
出たときの温度(徐冷終了温度)が600℃以上となる
部分があり、製品ではベイナイト混在の組織が見られ
た。
As shown in Test Nos. 11 and 12 in Table 2, the temperature when the slow cooling cover was exited (slow cooling end temperature) was 600 ° C. or higher above the overlap of the wires at the width end. There was a part, and the structure of bainite mixture was seen in the product.

【0058】これに対し、本発明の第2の発明に係る試
験No. 9および10では幅端部の雰囲気排気を行った
場合、幅端部の高さ位置による徐冷終了温度のばらつき
は少なく、フェライト+パーライトの良好な組織が得ら
れた。
On the other hand, in Test Nos. 9 and 10 according to the second invention of the present invention, when the atmosphere at the width end was exhausted, there was little variation in the slow cooling end temperature depending on the height position of the width end. And a good structure of ferrite and pearlite was obtained.

【0059】以上のように、徐冷コンベア下部からの線
材幅端部の衝風冷却に加え、線材上部排気を組み合わせ
ると、線材径の太い場合、巻き密度の高い場合にも対応
できることがわかった。
As described above, in addition to the blast cooling of the wire width end from the lower part of the slow cooling conveyer, it was found that the combination of the wire upper part exhaust and the case where the wire diameter is large and the case where the winding density is high can be handled. .

【0060】[0060]

【発明の効果】本発明によれば、徐冷開始温度、平均徐
冷速度および徐冷終了温度の幅方向および線材重なりの
上下方向の均一化が容易にできる。従って、大きな設備
改造、新設をすることなく、徐冷制御の精度を高め、軟
化線材の品質および歩留まりの向上に大きな効果を発揮
できる。
According to the present invention, it is easy to equalize the slow cooling start temperature, the average slow cooling rate and the slow cooling end temperature in the width direction and in the vertical direction of the wire overlap. Therefore, the precision of the slow cooling control can be improved without significantly modifying or newly installing the equipment, and a great effect can be exerted on the improvement of the quality and yield of the softened wire.

【図面の簡単な説明】[Brief description of the drawings]

【図1】線材の幅方向位置別の冷却速度のグラフであ
る。
FIG. 1 is a graph of a cooling rate for each position in a width direction of a wire.

【図2】本発明の方法を実施する線材の徐冷装置を示す
側面概要図である。
FIG. 2 is a schematic side view showing a wire rod slow-down device for implementing the method of the present invention.

【図3】図2のAA断面図である。FIG. 3 is a sectional view taken along the line AA of FIG. 2;

【図4】図2のBB断面図である。FIG. 4 is a sectional view taken along the line BB of FIG. 2;

【図5】図2のCC断面図である。FIG. 5 is a sectional view taken along the line CC in FIG. 2;

【図6】本発明の徐冷カバー内を強制排気する方法を実
施する徐冷装置を示す側面概要図である。
FIG. 6 is a schematic side view showing a slow cooling device for performing the method of forcibly exhausting the inside of the slow cooling cover according to the present invention.

【図7】図6のDD断面図である。FIG. 7 is a sectional view taken along the line DD in FIG. 6;

【符号の説明】[Explanation of symbols]

1 線材 2 レイングヘッド 3 前面コンベア 4 徐冷コンベア 5 後面コンベア 6 保温カバー 7 前面ブロア 8 徐冷ブロア 9 後面ブロア 10 巻取り用タブ 11a〜11c ダンパー 12a〜12c ダンパー 13a〜13c ダンパー 14 ヒーター 15 冷風ダクト 16 冷風ダクト 17 冷風ダクト 18 排気ブロア 19 排気ダクト 20a、20b 排気口 21a、21b ダンパー DESCRIPTION OF SYMBOLS 1 Wire rod 2 Raying head 3 Front conveyor 4 Slow cooling conveyor 5 Rear conveyor 6 Heat insulation cover 7 Front blower 8 Slow cooling blower 9 Rear blower 10 Winding tab 11a-11c Damper 12a-12c Damper 13a-13c Damper 14 Heater duct 16 Cold air duct 17 Cold air duct 18 Exhaust blower 19 Exhaust duct 20a, 20b Exhaust port 21a, 21b Damper

フロントページの続き (72)発明者 末富 直紀 北九州市小倉北区許斐町1番地 住友金属 工業株式会社小倉製鉄所内 (72)発明者 根石 豊 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内Continued on the front page (72) Inventor Naoki Suetomi 1 Konomi-cho, Kokurakita-ku, Kitakyushu-shi Sumitomo Metal Industries, Ltd. Inside the Kokura Works (72) Inventor Yutaka Neishi 4-5-33 Kitahama, Chuo-ku, Osaka-shi Sumitomo Metal Industries Inside the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱間仕上げ圧延後の線材をステルモアタ
イプのコンベア上で徐冷処理を行う線材の徐冷方法にお
いて、徐冷開始までは、線材の巻き密度を30〜50本
/mとして線材の幅端部を衝風冷却し、徐冷中は保温カ
バー内で線材の巻き密度を80〜150本/mとし、線
材の幅端部の衝風冷却および/または中央部の加熱を行
うことを特徴とする線材の徐冷方法。
1. A wire cooling method in which a wire after hot finish rolling is gradually cooled on a stellmore type conveyor, wherein the winding density of the wire is 30 to 50 wires / m until the slow cooling is started. The width end of the wire is subjected to blast cooling, and during slow cooling, the winding density of the wire is set to 80 to 150 windings / m in the heat retaining cover, and the blast cooling of the width end of the wire and / or the heating of the central portion are performed. Characteristic method of slowly cooling wire.
【請求項2】 徐冷中の線材の幅端部の衝風冷却方法を
コンベア下面より冷風を吹き付ける方法とし、保温カバ
ー内の線材の幅端部の上方に設けた排気口から強制排気
することを特徴とする請求項1に記載の線材の徐冷方
法。
2. The method of blast cooling the end of the width of the wire during slow cooling is a method of blowing cold air from the lower surface of the conveyor, and forcibly exhausting air from an exhaust port provided above the end of the width of the wire in the heat retaining cover. The method for gradually cooling a wire according to claim 1.
JP26501098A 1998-03-24 1998-09-18 Slow cooling method for wire rod Withdrawn JPH11335743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26501098A JPH11335743A (en) 1998-03-24 1998-09-18 Slow cooling method for wire rod

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7604998 1998-03-24
JP10-76049 1998-03-24
JP26501098A JPH11335743A (en) 1998-03-24 1998-09-18 Slow cooling method for wire rod

Publications (1)

Publication Number Publication Date
JPH11335743A true JPH11335743A (en) 1999-12-07

Family

ID=26417213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26501098A Withdrawn JPH11335743A (en) 1998-03-24 1998-09-18 Slow cooling method for wire rod

Country Status (1)

Country Link
JP (1) JPH11335743A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138181B1 (en) 2004-12-24 2012-04-25 재단법인 포항산업과학연구원 Method for reducing the difference of cooling rates between center portion and outer portion of hot-rolled wire rod
KR101271997B1 (en) * 2010-11-29 2013-06-05 주식회사 포스코 Apparatus and Method for Cooling Wire-rod Coil
CN108339859A (en) * 2018-01-11 2018-07-31 上海大学 The air-cooled line of stelmor and its bellows air nozzle structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138181B1 (en) 2004-12-24 2012-04-25 재단법인 포항산업과학연구원 Method for reducing the difference of cooling rates between center portion and outer portion of hot-rolled wire rod
KR101271997B1 (en) * 2010-11-29 2013-06-05 주식회사 포스코 Apparatus and Method for Cooling Wire-rod Coil
CN108339859A (en) * 2018-01-11 2018-07-31 上海大学 The air-cooled line of stelmor and its bellows air nozzle structure

Similar Documents

Publication Publication Date Title
GB2029456A (en) Process and apparatus for sepuentially forming and treating steel rod
JPH11335743A (en) Slow cooling method for wire rod
US4468262A (en) Method of cooling hot-rolled wire rods
US4270959A (en) Method for the heat treatment of metal strip
US4397449A (en) Apparatus for cooling hot-rolled wire rods
JPS6314050B2 (en)
US2205915A (en) Method and apparatus for annealing strip
EP0033194B1 (en) Steel rod rolling process, and apparatus
JP2002521562A (en) Manufacturing method and manufacturing equipment for duplex stainless steel
US4546957A (en) Apparatus for combined hot rolling and treating steel rod
KR101490600B1 (en) Method for manufacturing wire rod
JP5825486B2 (en) Steel plate coil annealing method and annealing equipment
US4491488A (en) Steel rod rolling process
JP5839177B2 (en) Finishing annealing equipment and finishing annealing method for grain-oriented electrical steel sheets
US4288258A (en) Method for cooling a metal strip during the process of heat treatment
KR100516517B1 (en) A method for manufacturing a high carbon wire having homogeneous tensile strength
JPS6246613B2 (en)
JP2640398B2 (en) Cooling control method of steel pipe in roller hearth heat treatment furnace
JPS6043808B2 (en) Cooling equipment for hot rolled wire rods
KR101259289B1 (en) Apparatus and Method for Cooling Wire-rod Coil
KR200302664Y1 (en) Wind speed control device of wire blower
JPH08127819A (en) Method and device for flattened annealing for grain oriented silicon steel sheet
KR100451823B1 (en) Slow Cooling Method For Hot Rolled Wire Rod
JPS6214608B2 (en)
JPS6045253B2 (en) Cooling control method for hot rolled wire rod

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110