JPH11333207A - Gas discharging in swirling flow type bubble removing device - Google Patents

Gas discharging in swirling flow type bubble removing device

Info

Publication number
JPH11333207A
JPH11333207A JP14984098A JP14984098A JPH11333207A JP H11333207 A JPH11333207 A JP H11333207A JP 14984098 A JP14984098 A JP 14984098A JP 14984098 A JP14984098 A JP 14984098A JP H11333207 A JPH11333207 A JP H11333207A
Authority
JP
Japan
Prior art keywords
gas
inner cylinder
cylinder
bubbles
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14984098A
Other languages
Japanese (ja)
Inventor
Shinsuke Matsuno
伸介 松野
Toshiharu Oka
利春 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP14984098A priority Critical patent/JPH11333207A/en
Publication of JPH11333207A publication Critical patent/JPH11333207A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of gas removal by opening a gas outlet, which is constituted so as to be openable/closable, from an inner cylinder to the outside when bubbles gather and grow around the inner cylinder. SOLUTION: This method is constituted so that a cylindrical body 1 to transport a liquid is formed, a pipe 5 for supplying the liquid is eccentrically connected with the side of the cylindrical body 1, an inner cylinder 2 is formed with a gas liquid separation membrane 7 which permeates only a gas on the shaft center part of the cylindrical body 1, and a gas permeated through the inner cylinder 2 is discharged to the outside of the cylindrical body 1. In this case, a gas outlet 10 is constituted so as to be openable/closable, and is opened when bubbles gather and grow around the inner cylinder 2. Thereby, the bubbles grow and form a bubble mass A to accelerate the absorption of the gas to the gas liquid separation membrane 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体に気泡として
含まれるガスを除去する旋回流式気泡除去装置のガス排
出方法に係り、特に、ガス除去効率を高める旋回流式気
泡除去装置のガス排出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas discharging method for a swirling type bubble removing apparatus for removing gas contained in a liquid as bubbles, and more particularly to a gas discharging method for a swirling type bubble removing apparatus for improving gas removing efficiency. It is about the method.

【0002】[0002]

【従来の技術】宇宙機器等の設備に冷却水等の液体を移
送する配管が敷設されているような場合に、液体中にガ
スが発生するか又は入り込むと、気泡が形成され、この
ような気泡がポンプに詰まってしまい、ポンプの働きを
阻害することがある。通常の重力空間においては配管に
ガス溜りを設けるなどしてガスを捕集することができる
が、無重力空間においては気泡が分散してしまうので、
容易に捕集することができない。
2. Description of the Related Art In the case where piping for transferring a liquid such as cooling water is laid in equipment such as space equipment or the like, when gas is generated or enters the liquid, bubbles are formed. Bubbles can clog the pump and hinder the operation of the pump. In a normal gravitational space, gas can be collected by providing a gas reservoir in a pipe, but in a non-gravitational space, bubbles are dispersed,
It cannot be collected easily.

【0003】そこで、本出願人は、先に、液体を移送す
る筒体内で旋回流を発生させ、遠心力により液体よりも
比重の軽い気泡を軸心部に移動させ、軸心部に設けた気
液分離膜からなる内筒を介してガスを排出する図3のよ
うな旋回流式気泡除去装置を提案した(特願平5−81
70号)。
[0003] Therefore, the present applicant first generates a swirling flow in a cylinder for transferring a liquid, moves bubbles having a specific gravity lower than that of the liquid to the axis by centrifugal force, and provides the bubbles at the axis. A swirling flow type bubble removing device as shown in FIG. 3 for discharging gas through an inner cylinder formed of a gas-liquid separation membrane has been proposed (Japanese Patent Application No. 5-81).
No. 70).

【0004】テフロン等からなる気液分離膜は、親気性
かつ撥水性を有するもので、液体は透過させずに気体の
みを透過させることができる。筒体内の圧力が内筒内よ
り高ければ、気液分離膜を透過したガスが内筒内に出て
くる。内筒内のガスを排出することによりガス除去が達
成される。
A gas-liquid separation membrane made of Teflon or the like is air-philic and water-repellent, and can transmit only gas but not liquid. If the pressure in the cylinder is higher than in the inner cylinder, the gas that has passed through the gas-liquid separation membrane will flow out into the inner cylinder. Gas removal is achieved by discharging gas from the inner cylinder.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記の旋回
流式気泡除去装置にあっては、内筒の周囲(即ち、気液
分離膜の表面近傍)に気泡が集まっても、その気泡が小
さいと表面張力のために気体が気液分離膜の表面に密着
できず、気液分離膜に吸収されないことがある。図4に
示されるように、直径1mm以下の気泡は、気液分離膜
の表面に接しても気液分離膜に吸収されない。このよう
な小さい気泡が残留することにより、液体からのガス除
去の効率が低下することになる。
By the way, in the above-mentioned swirling flow type bubble removing apparatus, even if bubbles gather around the inner cylinder (that is, near the surface of the gas-liquid separation membrane), the bubbles are small. In some cases, the gas cannot adhere to the surface of the gas-liquid separation membrane due to surface tension and is not absorbed by the gas-liquid separation membrane. As shown in FIG. 4, air bubbles having a diameter of 1 mm or less are not absorbed by the gas-liquid separation membrane even when they come into contact with the surface of the gas-liquid separation membrane. When such small bubbles remain, the efficiency of gas removal from the liquid decreases.

【0006】そこで、本発明の目的は、上記課題を解決
し、ガス除去効率を高める旋回流式気泡除去装置のガス
排出方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a gas discharge method of a swirling flow type bubble removing device which enhances gas removing efficiency.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、液体を移送するための筒体を形成し、その
筒体の側部に液体供給用の配管を偏心させて接続し、上
記筒体の軸心部に気体のみを透過させる気液分離膜で内
筒を形成し、この内筒へ透過してきたガスを上記筒体の
外部に排出するようにした旋回流式気泡除去装置のガス
排出方法において、上記内筒から外部への気体出口を開
閉可能に構成し、上記内筒の周囲に集合した気泡が成長
したときに上記気体出口を開放するようにしたものであ
る。
SUMMARY OF THE INVENTION In order to achieve the above object, according to the present invention, a cylinder for transferring a liquid is formed, and a liquid supply pipe is eccentrically connected to a side portion of the cylinder. A swirl-flow type bubble eliminator in which an inner cylinder is formed of a gas-liquid separation membrane that allows only gas to permeate the axis of the cylinder, and the gas permeating the inner cylinder is discharged to the outside of the cylinder. In the gas discharging method of the apparatus, a gas outlet from the inner cylinder to the outside is configured to be openable and closable, and the gas outlet is opened when bubbles gathered around the inner cylinder grow.

【0008】上記筒体の少なくとも一部を透明に構成し
上記内筒の周囲が透視できるようにしてもよい。
[0008] At least a part of the cylinder may be made transparent so that the periphery of the inner cylinder can be seen through.

【0009】上記気体出口に弁を接続し、この弁を操作
して上記気体出口を開放するようにしてもよい。
A valve may be connected to the gas outlet, and the valve may be operated to open the gas outlet.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて詳述する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0011】図1に示されるように、旋回流式気泡除去
装置は、宇宙機器等の設備に冷却水等の液体を移送する
配管の途中に挿入して設置される。旋回流式気泡除去装
置は、筒体1と、その筒体1の軸心部に設けられた内筒
2とを有する。筒体1は、略円筒状の側部1aと閉じら
れた両端1b,1cとからなり、軸方向に液体を移送す
ることができる。筒体1の側部1aの上流端側にはリン
グ状の部材3が嵌装され、この部材3を貫通して筒体1
内に通じる液体入口4が筒体外周の接線方向に向けて形
成され、この液体入口4に配管5が接続されている。従
って、この配管5は筒体1に対して偏心させて接続され
ていることになる。一方、液体出口6は、筒体の下流端
1bに軸方向に向けて形成され、この液体出口6が配管
5に接続されている。この構成により、筒体1の側部1
aより偏心させて流入される液体が旋回流となって軸方
向に移送されることになる。
As shown in FIG. 1, the swirling type air bubble removing device is inserted and installed in a pipe for transferring a liquid such as cooling water to equipment such as space equipment. The swirling flow type bubble removing device includes a cylinder 1 and an inner cylinder 2 provided at an axial center of the cylinder 1. The cylindrical body 1 includes a substantially cylindrical side part 1a and closed both ends 1b and 1c, and can transfer the liquid in the axial direction. A ring-shaped member 3 is fitted on the upstream end side of the side portion 1a of the cylindrical body 1, and the cylindrical body 1
A liquid inlet 4 communicating with the inside is formed toward the tangential direction of the outer periphery of the cylindrical body, and a pipe 5 is connected to the liquid inlet 4. Therefore, this pipe 5 is connected eccentrically to the cylinder 1. On the other hand, the liquid outlet 6 is formed in the downstream end 1 b of the cylindrical body in the axial direction, and the liquid outlet 6 is connected to the pipe 5. With this configuration, the side 1 of the cylinder 1
The liquid flowing eccentrically from the position a is transported in the axial direction as a swirling flow.

【0012】内筒2は、筒体1の上流端1cから下流端
1bに向けて軸方向に適宜な長さ延出されている。内筒
2の表面は気液分離膜7からなり、内筒2の内部には気
液分離膜7を支持して内筒を円筒形状に保つための骨格
部材(図2参照)が設けられている。骨格部材8は、複
数の長方形の板9をそれぞれの短辺が内筒2の径に沿い
長辺が内筒2の中心及び外周に沿うように配置したもの
である。筒体1の上流端には軸方向に向けた気体出口1
0が形成されており、骨格部材8の一部が気体出口10
に挿入されている。気液分離膜7は、液体をシールする
ために気体出口10の周囲に密に接合されている。
The inner cylinder 2 extends in the axial direction from the upstream end 1c of the cylindrical body 1 toward the downstream end 1b by an appropriate length. The surface of the inner cylinder 2 is made of a gas-liquid separation membrane 7, and a skeletal member (see FIG. 2) for supporting the gas-liquid separation membrane 7 and keeping the inner cylinder in a cylindrical shape is provided inside the inner cylinder 2. I have. The skeletal member 8 has a plurality of rectangular plates 9 arranged such that the short sides are along the diameter of the inner cylinder 2 and the long sides are along the center and outer periphery of the inner cylinder 2. At the upstream end of the cylinder 1 is a gas outlet 1 directed in the axial direction.
0 is formed, and a part of the skeleton member 8 is
Has been inserted. The gas-liquid separation membrane 7 is tightly joined around the gas outlet 10 to seal the liquid.

【0013】気体出口10は筒体1の外側で開閉可能に
構成されている。具体的には、図1に示されるように、
気体出口10には弁11が接続されており、この弁11
を操作することにより気体出口10を開放/閉止するこ
とができる。弁11の出口は、大気(宇宙機器内雰囲
気)に開放するか、負圧の空気配管に接続されている。
The gas outlet 10 is configured to be openable and closable outside the cylinder 1. Specifically, as shown in FIG.
A valve 11 is connected to the gas outlet 10.
, The gas outlet 10 can be opened / closed. The outlet of the valve 11 is opened to the atmosphere (atmosphere in space equipment) or connected to a negative pressure air pipe.

【0014】図1の旋回流式気泡除去装置において、筒
体の側部1aは一部又は全体がアクリル等の樹脂又はガ
ラスなどの透明な部材で構成されている。これは、内筒
2及びその周囲を筒体1の外側から透視できるようにし
たものである。従って、例えば監視カメラ、光量セン
サ、光波長センサ等の光学装置を筒体外部に設置して気
泡の成長状態を観測又は検出することができる。
In the swirling flow type bubble removing apparatus shown in FIG. 1, the side portion 1a of the cylindrical body is partially or entirely made of a transparent material such as resin such as acrylic or glass. This allows the inner cylinder 2 and its surroundings to be seen through from the outside of the cylinder 1. Therefore, for example, an optical device such as a monitoring camera, a light amount sensor, and an optical wavelength sensor can be installed outside the cylinder to observe or detect the growth state of bubbles.

【0015】以下に、旋回流式気泡除去装置の運転の様
子を説明する。
The operation of the swirling type bubble removing apparatus will be described below.

【0016】筒体の側部1aより偏心させて流入される
水は筒体1内で旋回流を形成する。配管5より液体入口
4に流入される水には気泡の形で空気が含まれることが
ある。この空気による気泡は、旋回流に作用する遠心力
のため、軸心部、即ち内筒の周囲に集まることになる
(図3参照)。
Water eccentrically flowing in from the side portion 1a of the cylindrical body forms a swirling flow in the cylindrical body 1. The water flowing into the liquid inlet 4 from the pipe 5 may include air in the form of bubbles. The air bubbles collect around the axial center, that is, around the inner cylinder due to the centrifugal force acting on the swirling flow (see FIG. 3).

【0017】複数の気泡Bが気泡群を形成し、気泡群に
おいて個々の気泡Bが次々に融合して大きな気泡Bとな
る。同時に、融合しない小さな気泡Bも多数存在する。
これらの気泡Bが気液分離膜7からなる内筒2表面に触
れると、その気泡Bの空気は、気液分離膜7を透過して
内筒2内に移動する。即ち、水中の気泡Bが気液分離膜
7に吸収される。しかし、前述のように気泡Bが小さい
ときには吸収されないことがあり、このような小さい気
泡Bが残留することにより、空気除去の効率が低下す
る。そこで、本発明では、気泡Bが成長するまで、空気
の排出を停止する。例えば、オペレータが弁11を操作
して気体出口10を閉止する。これにより内筒2から外
部への空気の排出がなくなるため、筒体1内の水の圧力
と内筒2内の空気の圧力とがバランスし、気泡Bが気液
分離膜7を透過することがなくなる。従って、時間の経
過とともに、内筒2の周囲に集合する気泡Bの個数が増
大し、複数の気泡Bが互いに融合する機会が多くなると
共に、融合した気泡Bが一層大きくなる。このようにし
て気泡Bが成長することにより、図1に示されるよう
に、内筒2の周囲を覆う気泡塊Aが形成される。
A plurality of bubbles B form a bubble group, and the individual bubbles B in the bubble group are successively fused to form a large bubble B. At the same time, there are many small bubbles B that do not fuse.
When these bubbles B touch the surface of the inner cylinder 2 made of the gas-liquid separation film 7, the air of the bubbles B passes through the gas-liquid separation film 7 and moves into the inner cylinder 2. That is, the bubbles B in the water are absorbed by the gas-liquid separation membrane 7. However, as described above, when the bubbles B are small, they may not be absorbed. When such small bubbles B remain, the efficiency of air removal is reduced. Therefore, in the present invention, the discharge of air is stopped until the bubble B grows. For example, the operator operates the valve 11 to close the gas outlet 10. This eliminates the discharge of air from the inner cylinder 2 to the outside, so that the pressure of the water in the cylinder 1 and the pressure of the air in the inner cylinder 2 are balanced, and the bubbles B pass through the gas-liquid separation membrane 7. Disappears. Therefore, as time passes, the number of bubbles B gathering around the inner cylinder 2 increases, so that the chances of a plurality of bubbles B being fused with each other increase, and the fused bubbles B further increase. By growing the bubbles B in this manner, a bubble mass A covering the periphery of the inner cylinder 2 is formed as shown in FIG.

【0018】オペレータは、筒体1の透明部分より内筒
2の周囲を観測し、気泡塊Aの形成(気泡Bの成長)が
確認されたら弁11を操作して気体出口10を開放す
る。このとき内筒2内の空気の圧力は、大気圧(宇宙機
器内雰囲気の気圧)又は空気配管の負圧よりも高いの
で、内筒2内の空気は気体出口10を介して外部に排出
されることになる。このようにして内筒2内の空気の圧
力が低下すると、筒体1内の水の圧力により、気泡塊A
の空気が気液分離膜7を透過するようになる。このと
き、空気は小さな気泡Bの形では存在しないので、その
ような小さな気泡Bが残留することがない。従って、内
筒2の周囲を覆う気泡塊Aの空気は、速やかに気液分離
膜7に吸収され、気体出口10を介して外部に排出され
る。
The operator observes the periphery of the inner cylinder 2 from the transparent portion of the cylinder 1 and operates the valve 11 to open the gas outlet 10 when the formation of the bubble lump A (the growth of the bubble B) is confirmed. At this time, since the pressure of the air in the inner cylinder 2 is higher than the atmospheric pressure (the pressure of the atmosphere in the space equipment) or the negative pressure of the air pipe, the air in the inner cylinder 2 is discharged to the outside through the gas outlet 10. Will be. When the pressure of the air in the inner cylinder 2 decreases in this way, the pressure of the water in the cylinder 1 causes the bubble mass A
Is transmitted through the gas-liquid separation membrane 7. At this time, since the air does not exist in the form of the small bubbles B, such small bubbles B do not remain. Therefore, the air of the bubble lump A covering the periphery of the inner cylinder 2 is quickly absorbed by the gas-liquid separation membrane 7 and discharged to the outside via the gas outlet 10.

【0019】本発明の方法によれば、気泡Bが成長する
までは気体出口10を閉止し、気泡Bが成長してから気
体出口10を開放してバッチ処理的に空気を吸収するの
で、気泡Bが成長するまでは除去が行われないが、バッ
チ処理時の吸収速度が非常に高いので、常時気体出口1
0を開放している従来の方法に比べて除去効率が高くな
る。このことは実験的に確認されている。
According to the method of the present invention, the gas outlet 10 is closed until the bubble B grows, and the gas outlet 10 is opened after the bubble B grows to absorb air in a batch process. Removal is not performed until B grows, but since the absorption rate during batch processing is very high, the gas outlet 1
The removal efficiency is higher than in the conventional method in which 0 is opened. This has been confirmed experimentally.

【0020】なお、気泡Bの成長確認及び弁11の操作
をオペレータが行うようにしたが、無人でおこなうこと
も可能である。例えば、光学装置により気泡塊Aの存在
を検出して、弁11を開放操作するとよい。また、筒体
1が透明に構成できない場合や光学装置を省略したい場
合、予め気泡Bの成長時間を計測することにより適正な
開閉制御時間を設定しておき、その設定に従って弁11
の開放/閉止操作を時間制御するようにしてもよい。
Although the operator confirms the growth of the bubble B and operates the valve 11, it is also possible to perform the operation unattended. For example, the presence of the bubble mass A may be detected by an optical device, and the valve 11 may be opened. When the cylindrical body 1 cannot be made transparent or when it is desired to omit the optical device, an appropriate opening / closing control time is set in advance by measuring the growth time of the bubble B, and the valve 11 is set in accordance with the setting.
The opening / closing operation may be time-controlled.

【0021】[0021]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0022】(1)気泡が成長してから気体出口を開放
するようにしたので、小さい気泡の残留がなくなり、そ
の結果として、ガス除去効率を高くすることができる。
(1) Since the gas outlet is opened after the growth of bubbles, small bubbles do not remain, and as a result, gas removal efficiency can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す旋回流式気泡除去装
置の側面図である。
FIG. 1 is a side view of a swirling flow type bubble removing apparatus showing an embodiment of the present invention.

【図2】図1の旋回流式気泡除去装置の内筒の構造図で
ある。
FIG. 2 is a structural view of an inner cylinder of the swirling flow type bubble removing device of FIG.

【図3】従来の旋回流式気泡除去装置の側断面図であ
る。
FIG. 3 is a side sectional view of a conventional swirling type bubble removing device.

【図4】気液分離膜の表面及び気泡の拡大図である。FIG. 4 is an enlarged view of the surface of a gas-liquid separation membrane and bubbles.

【符号の説明】[Explanation of symbols]

1 筒体 2 内筒 4 液体入口 5 配管 6 液体出口 7 気液分離膜 10 気体出口 11 弁 DESCRIPTION OF SYMBOLS 1 Cylindrical body 2 Inner cylinder 4 Liquid inlet 5 Piping 6 Liquid outlet 7 Gas-liquid separation membrane 10 Gas outlet 11 Valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液体を移送するための筒体を形成し、そ
の筒体の側部に液体供給用の配管を偏心させて接続し、
上記筒体の軸心部に気体のみを透過させる気液分離膜で
内筒を形成し、この内筒へ透過してきたガスを上記筒体
の外部に排出するようにした旋回流式気泡除去装置のガ
ス排出方法において、上記内筒から外部への気体出口を
開閉可能に構成し、上記内筒の周囲に集合した気泡が成
長したときに上記気体出口を開放するようにしたことを
特徴とする旋回流式気泡除去装置のガス排出方法。
1. A cylinder for transferring a liquid is formed, and a liquid supply pipe is eccentrically connected to a side of the cylinder, and
A swirling air bubble removing device in which an inner cylinder is formed of a gas-liquid separation membrane that allows only gas to permeate the axis of the cylinder, and the gas permeating the inner cylinder is discharged to the outside of the cylinder. Wherein the gas outlet from the inner cylinder to the outside is configured to be openable and closable, and the gas outlet is opened when bubbles gathered around the inner cylinder grow. A gas discharge method of a swirling type bubble removing device.
【請求項2】 上記筒体の少なくとも一部を透明に構成
し上記内筒の周囲が透視できるようにしたことを特徴と
する請求項1記載の旋回流式気泡除去装置のガス排出方
法。
2. The gas discharging method for a swirling type bubble removing apparatus according to claim 1, wherein at least a part of said cylindrical body is made transparent so that the periphery of said inner cylinder can be seen through.
【請求項3】 上記気体出口に弁を接続し、この弁を操
作して上記気体出口を開放するようにしたことを特徴と
する請求項1又は2記載の旋回流式気泡除去装置のガス
排出方法。
3. The gas discharge of a swirling type bubble removing apparatus according to claim 1, wherein a valve is connected to the gas outlet, and the valve is operated to open the gas outlet. Method.
JP14984098A 1998-05-29 1998-05-29 Gas discharging in swirling flow type bubble removing device Pending JPH11333207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14984098A JPH11333207A (en) 1998-05-29 1998-05-29 Gas discharging in swirling flow type bubble removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14984098A JPH11333207A (en) 1998-05-29 1998-05-29 Gas discharging in swirling flow type bubble removing device

Publications (1)

Publication Number Publication Date
JPH11333207A true JPH11333207A (en) 1999-12-07

Family

ID=15483812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14984098A Pending JPH11333207A (en) 1998-05-29 1998-05-29 Gas discharging in swirling flow type bubble removing device

Country Status (1)

Country Link
JP (1) JPH11333207A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439711C (en) * 2005-04-14 2008-12-03 精工爱普生株式会社 Pump
US7600987B2 (en) 2005-04-14 2009-10-13 Seiko Epson Corporation Pump
JP2011025163A (en) * 2009-07-27 2011-02-10 Ihi Corp Condensing apparatus for microgravity environment
KR101157168B1 (en) 2011-07-04 2012-06-20 동양특수콘크리트 (주) Bubble rremoving apparatus for watet
CN109019399A (en) * 2018-10-10 2018-12-18 南安市劲沣工业设计有限公司 A kind of anti-alveolitoid car jack that protrusion-dispelling skip turns
CN113209912A (en) * 2021-05-26 2021-08-06 中国石油化工股份有限公司 Up-flow fixed bed reactor and outlet collector thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439711C (en) * 2005-04-14 2008-12-03 精工爱普生株式会社 Pump
US7600987B2 (en) 2005-04-14 2009-10-13 Seiko Epson Corporation Pump
JP2011025163A (en) * 2009-07-27 2011-02-10 Ihi Corp Condensing apparatus for microgravity environment
KR101157168B1 (en) 2011-07-04 2012-06-20 동양특수콘크리트 (주) Bubble rremoving apparatus for watet
CN109019399A (en) * 2018-10-10 2018-12-18 南安市劲沣工业设计有限公司 A kind of anti-alveolitoid car jack that protrusion-dispelling skip turns
CN113209912A (en) * 2021-05-26 2021-08-06 中国石油化工股份有限公司 Up-flow fixed bed reactor and outlet collector thereof

Similar Documents

Publication Publication Date Title
JP4593719B2 (en) Shellless hollow fiber membrane fluid contactor
KR19990076450A (en) Separation device for liquid medium containing foreign substances
JPS62502452A (en) Variable volume filter or concentrator
FR2525488A1 (en) METHOD AND APPARATUS FOR FILTERING A SUSPENSION
JP2007533451A5 (en)
JP2003103136A (en) Integral hollow fiber membrane gas drier and filtration device
JPH01171618A (en) Air permeable device of module having no outer shell
JPH04326907A (en) Process and apparatus for condensing particulate suspension
JPH11333207A (en) Gas discharging in swirling flow type bubble removing device
JPH02126922A (en) Back washing method of separating membrane
JP4460609B2 (en) Separation of solid particles from a liquid in which solid particles are dispersed
CN108371836A (en) A kind of novel ecology imitating circulated filter system
TWI528994B (en) Systems and methods for conditioning a filter assembly
SE435400B (en) SILAN SYSTEM FOR DEDUCTION OF LIQUID FROM SUSPENSIONS IN MOVEMENT
KR940006207A (en) Chemical treatment device on the surface of the object
CN208436475U (en) A kind of novel ecology imitating circulated filter system
JP2001259381A (en) Membrane filter apparatus
JPH0910561A (en) Hollow fiber membrane element and its use method and filter
JPH09103606A (en) Gas separation membrane module
JP2749880B2 (en) Device for removing gas from liquid
JPH034906A (en) Device for removing gases from liquid
TWI426937B (en) Membrane-based compressed air breathing system
KR20060084425A (en) Manufacturing of hollow fiber membrane module and water purifying device using thereof
FR2665841A1 (en) Air purifier
RU2021847C1 (en) Scrubber