JPH11331085A - Angle correction device for optical communication equipment - Google Patents

Angle correction device for optical communication equipment

Info

Publication number
JPH11331085A
JPH11331085A JP10135152A JP13515298A JPH11331085A JP H11331085 A JPH11331085 A JP H11331085A JP 10135152 A JP10135152 A JP 10135152A JP 13515298 A JP13515298 A JP 13515298A JP H11331085 A JPH11331085 A JP H11331085A
Authority
JP
Japan
Prior art keywords
optical communication
angle
communication device
spacecraft
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10135152A
Other languages
Japanese (ja)
Inventor
Seiji Kanda
成治 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10135152A priority Critical patent/JPH11331085A/en
Publication of JPH11331085A publication Critical patent/JPH11331085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize angle correction with high precision so as to contribute to high precision directivity control of the optical communication equipment. SOLUTION: A device mount base 12 on which the optical communication equipment 14 is mounted is provided to a device mount platform 11 interposing vibration attenuation mechanism 13. A star sensor 16 for sensing an angle is mounted to the device mount base 12. The star sensor 16 senses a tilt angle of the device mount base 12 and applies drive control to a vibration attenuation mechanism 13 based on tilt angle information so as to correct a tilt angle of the device mount base 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば人工衛
星、宇宙ステーション、宇宙往還機等の宇宙航行体間に
おいて、空間伝搬を利用して光通信を行うのに用いる光
通信システムに係り、特に、その光通信機器の角度を補
正するのに用いる角度補正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication system used for performing optical communication using space propagation between space vehicles such as satellites, space stations, space shuttles, and the like. The present invention relates to an angle correction device used to correct the angle of the optical communication device.

【0002】[0002]

【従来の技術】周知のように、光通信システムにおいて
は、通信局間を光ファイバケーブルでケーブル接続し
て、この光ファイバケーブルを伝送路として、相互間で
光通信を行う光ファイバ方式が採用されている。このよ
うな光通信システムにあっては、在来からのRF通信に
比して通信容量を飛躍的に増大することが可能となる。
2. Description of the Related Art As is well known, an optical communication system employs an optical fiber system in which communication stations are connected by an optical fiber cable, and the optical fiber cable is used as a transmission line to perform optical communication between the communication stations. Have been. In such an optical communication system, it is possible to dramatically increase the communication capacity as compared with conventional RF communication.

【0003】ところで、最近の宇宙開発の分野において
は、衛星間通信等の通信の多様化が図られており、通信
容量の増大が要請されている。そこで、宇宙開発の分野
にあっては、宇宙航行体間に光通信システムを構築し
て、通信容量の大容量化を図る構想がある。
[0003] In the field of recent space development, diversification of communication such as inter-satellite communication has been attempted, and an increase in communication capacity has been demanded. Therefore, in the field of space development, there is a plan to build an optical communication system between spacecraft to increase the communication capacity.

【0004】このような光通信システムとしては、光フ
ァイバケーブルを敷設することなく,空間伝搬を利用し
て、通信光を通信相手局に送信して光通信を行う方式が
考えられ、研究されている。このような光通信システム
としては、空間を伝搬した光を、光アンテナを用いて送
受して、光信号処理系に導かれる。この際、光アンテナ
は、通信方向に高精度に指向制御される。
[0004] As such an optical communication system, a method of performing optical communication by transmitting communication light to a communication partner station using space propagation without laying an optical fiber cable has been considered and studied. I have. In such an optical communication system, light that has propagated in space is transmitted and received using an optical antenna and guided to an optical signal processing system. At this time, the pointing of the optical antenna is controlled with high accuracy in the communication direction.

【0005】上記光通信システムにおいては、図4に示
すようにを構成する光通信機器1を、例えば宇宙航行体
2に設けられる機器塔載プラットホーム3に配設されて
通信相手局に指向制御されて空間伝搬を利用した光通信
が行われる。このような光通信機器を機器搭載プラット
ホーム3に搭載する手段としては、振動減衰手段4及び
機器取付台5を介して搭載する方法が考えられている。
In the above-mentioned optical communication system, an optical communication device 1 having a structure as shown in FIG. 4 is disposed on an equipment tower 3 provided in a spacecraft 2, for example, and is directed to a communication partner station. Optical communication using space propagation is performed. As a method of mounting such an optical communication device on the device mounting platform 3, a method of mounting the optical communication device via the vibration damping unit 4 and the device mounting base 5 is considered.

【0006】ところが、上記宇宙航行体2に設けられる
機器搭載プラットホーム3にあっては、宇宙開発の分野
における宇宙構造物と同様に柔軟構造で形成されるため
に、例えば人間の駐在する宇宙航行体2に適用した場
合、宇宙航行体側で発生した振動が機器搭載プラットフ
ォーム側に伝達されて該機器搭載プラットホーム3を振
動させて光通信機器1による高精度な光通信に悪影響を
及ぼすという問題を有する。
However, the platform 3 provided on the spacecraft 2 has a flexible structure similar to a space structure in the field of space development. In the case of application to 2, the vibration generated on the spacecraft side is transmitted to the equipment mounting platform side to vibrate the equipment mounting platform 3 and adversely affect high-precision optical communication by the optical communication equipment 1.

【0007】係る問題は、今後の宇宙開発において、宇
宙空間に人間が駐在して、各種の実験を含む研究を行う
宇宙ステーション等の宇宙航行体2に光通信システムを
構築する場合の重要な課題の一つとなっている。
[0007] This problem is an important issue in the future space development in the case where a human being is stationed in outer space to construct an optical communication system in a space navigation vehicle 2 such as a space station for conducting research including various experiments. It has become one of.

【0008】[0008]

【発明が解決しようとする課題】以上述べたように、光
通信機器を宇宙航行体に搭載する場合、宇宙航行体側か
らの振動が加わって高精度な指向制御が困難となるとい
う問題を有する。この発明は、上記の事情に鑑みてなさ
れたもので、光通信機器の高精度な指向制御に寄与し得
るように、 高精度な角度補正を実現した光通信機器の角
度補正装置を提供することを目的とする。
As described above, when an optical communication device is mounted on a spacecraft, there is a problem that high-precision pointing control becomes difficult due to vibration from the spacecraft. The present invention has been made in view of the above circumstances, and provides an angle correction device for an optical communication device that achieves high-precision angle correction so as to contribute to highly accurate pointing control of the optical communication device. With the goal.

【0009】[0009]

【課題を解決するための手段】この発明は、機器搭載プ
ラットホームの設けられた宇宙航行体を姿勢制御する姿
勢制御部と、前記機器搭載プラットホーム上に配設され
る振動減衰機構と、この振動減衰機構上に設置され、通
信相手局と光の空間伝搬を利用して光通信を行う光通信
機器と、この光通信機器の前記宇宙航行体に対する角度
誤差を検出する角度検出センサと、この角度検出センサ
の検出に応動して前記振動減衰機構を駆動制御し、前記
光通信機器の前記宇宙航行体に対する角度誤差を補正す
る振動制御手段とを備えて光通信機器の角度補正装置を
構成したものである。
SUMMARY OF THE INVENTION The present invention provides an attitude control unit for controlling the attitude of a spacecraft provided with an equipment mounting platform, a vibration damping mechanism provided on the equipment mounting platform, and a vibration damping mechanism. An optical communication device that is installed on a mechanism and performs optical communication using a spatial propagation of light with a communication partner station; an angle detection sensor that detects an angle error of the optical communication device with respect to the spacecraft; A vibration control means for controlling the drive of the vibration damping mechanism in response to the detection of the sensor, and correcting an angle error of the optical communication device with respect to the spacecraft, to constitute an angle correction device for the optical communication device. is there.

【0010】上記構成によれば、角度検出センサが、機
器搭載プラットホームに設置された光通信機器の宇宙航
行体に対する角度誤差を検出し、この角度誤差に基づい
て振動制御手段が振動減衰機構を駆動制御して光通信機
器の宇宙航行体に対する角度を補正する。これにより、
光通信機器に加わる機器搭載プラットホームの振動残留
誤差分が取除かれて、光通信機器の高精度な指向制御が
可能となる。
According to the above configuration, the angle detection sensor detects an angle error of the optical communication device installed on the device mounting platform with respect to the spacecraft, and the vibration control means drives the vibration damping mechanism based on the angle error. Control to correct the angle of the optical communication device with respect to the spacecraft. This allows
The residual vibration error of the device mounting platform added to the optical communication device is removed, and highly accurate pointing control of the optical communication device becomes possible.

【0011】[0011]

【発明の実施の形態】以下、の発明の実施の形態につい
て、図面を参照して詳細に説明する。図1は、この発明
の一実施の形態に係る光通信機器の角度補正装置を示す
もので、宇宙航行体10には、例えば柔軟構造の機器搭
載プラットホーム11が設けられる。そして、この機器
搭載プラットホーム11には、機器取付台12が振動減
衰機構13を介して配設され、この機器取付台12に
は、光通信システムを構成する光通信機器14が指向調
整機構部15を介して搭載される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an angle correcting device for an optical communication device according to an embodiment of the present invention. A spacecraft 10 is provided with, for example, a device mounting platform 11 having a flexible structure. An equipment mounting base 12 is provided on the equipment mounting platform 11 via a vibration damping mechanism 13. The equipment mounting base 12 is provided with an optical communication device 14 constituting an optical communication system and a pointing adjustment mechanism 15. Mounted via

【0012】上記振動減衰機構13は、例えば図2に示
すように3個の伸縮駆動部131〜133で構成され、
この伸縮駆動部131〜133が機器搭載プラットホー
ム11と機器取付台12間に所定の間隔を有して配置さ
れる。そして、この3個の伸縮駆動部131〜133
は、選択的に伸縮駆動されて機器取付台12を機器搭載
プラットホーム11に対して角度調整して、光通信機器
14の設置角度を宇宙航行体10に対応するように補正
する。なお、伸縮駆動部131〜133としては、例え
ば電磁機構等で構成される。
The vibration damping mechanism 13 comprises, for example, three telescopic drive units 131 to 133 as shown in FIG.
The telescopic drive units 131 to 133 are arranged at a predetermined interval between the device mounting platform 11 and the device mounting base 12. Then, the three expansion / contraction drive units 131 to 133
Is selectively expanded and contracted to adjust the angle of the device mounting table 12 with respect to the device mounting platform 11, and correct the installation angle of the optical communication device 14 so as to correspond to the spacecraft 10. The expansion / contraction driving units 131 to 133 are configured by, for example, an electromagnetic mechanism.

【0013】また、機器取付台12には、その三軸回り
の角度を検出する、例えば周知の2個のスターセンサ1
6が搭載される。このスターセンサ16の出力端には、
図3に示すように角度制御部17が接続され、所定の恒
星を検出して角度情報を角度制御部17に出力する。
The equipment mounting base 12 has two star sensors 1 for detecting angles around its three axes.
6 is mounted. The output end of the star sensor 16 includes:
As shown in FIG. 3, the angle control unit 17 is connected, detects a predetermined star, and outputs angle information to the angle control unit 17.

【0014】角度制御部17は、スターセンサ16から
の角度情報に基づいて駆動信号を生成して上記振動減衰
機構13の伸縮駆動部131〜133を駆動制御して、
機器取付台12の三軸回りの角度を制御し、光通信機器
14の設置角度を宇宙航行体10に対応するように補正
する。この場合、スターセンサ16は、少なくとも2個
を備えることにより、機器取付台12の三軸回りの角度
の検出が可能となる。
The angle control unit 17 generates a drive signal based on the angle information from the star sensor 16 and controls the drive of the telescopic drive units 131 to 133 of the vibration damping mechanism 13,
The angle around the three axes of the equipment mount 12 is controlled, and the installation angle of the optical communication equipment 14 is corrected so as to correspond to the spacecraft 10. In this case, by providing at least two star sensors 16, it is possible to detect angles around the three axes of the device mounting base 12.

【0015】宇宙航行体10には、図3に示すように姿
勢制御部18が設けられる。姿勢制御部18は、宇宙航
行体10の姿勢擾乱情報が図示しない検出センサを介し
て入力され、この姿勢擾乱情報にに基づいて図示しない
アクチュエータを駆動制御して宇宙航行体10の姿勢を
制御する。
The spacecraft 10 is provided with an attitude control unit 18 as shown in FIG. The attitude control unit 18 receives the attitude disturbance information of the spacecraft 10 via a detection sensor (not shown), and drives and controls an actuator (not shown) based on the attitude disturbance information to control the attitude of the spacecraft 10. .

【0016】上記構成において、姿勢制御部18は、姿
勢擾乱情報に基づいて上記アクチュエータ(図示せず)
を駆動して宇宙航行体10の姿勢を制御する。この宇宙
航行体10の姿勢制御状態において、柔軟構造の機器搭
載プラットホーム11に振動残留誤差が存在する。する
と、スターセンサ16は、宇宙航行体10に対する機器
取付台12の三軸回りの傾き角を検出して角度制御部1
7に出力する。
In the above configuration, the attitude control unit 18 controls the actuator (not shown) based on the attitude disturbance information.
To control the attitude of the spacecraft 10. In the attitude control state of the spacecraft 10, there is a residual vibration error in the flexible-structured equipment mounting platform 11. Then, the star sensor 16 detects the inclination angles of the equipment mounting base 12 around the three axes with respect to the spacecraft 10 and detects the inclination angle of the angle control unit 1.
7 is output.

【0017】角度制御部17は、角度情報に基づいて振
動減衰機構13の伸縮駆動部131〜133を駆動して
機器取付台12の角度を制御して、機器搭載プラットホ
ーム11に存在する振動残留誤差分を補正する。ここ
で、機器取付台12上の光通信機器14は、機器搭載プ
ラットホーム11に存在する振動残留誤差分が取除かれ
て、設置角度誤差が補正され、その指向調整機構部15
を介して高精度な指向調整が可能となる。
The angle control unit 17 drives the telescopic drive units 131 to 133 of the vibration damping mechanism 13 on the basis of the angle information to control the angle of the equipment mounting base 12, and the residual vibration error existing in the equipment mounting platform 11. Correct the minute. Here, the optical communication device 14 on the device mounting base 12 is removed from the vibration residual error existing in the device mounting platform 11, the installation angle error is corrected, and the pointing adjustment mechanism 15
, High-precision pointing adjustment becomes possible.

【0018】このように、上記光通信機器の角度補正装
置は、光通信機器14の設置される機器取付台12を、
機器搭載プラットホーム11に振動減衰機構13を介在
して配設すると共に、角度検出用のスターセンサ16を
機器取付台12に配設し、このスターセンサ16で機器
取付台12の傾き角を検出して、この傾き角情報に基づ
いて振動減衰機構13を駆動制御して機器取付台12の
傾き角を補正するように構成した。
As described above, the angle correction device for an optical communication device is capable of mounting the device mounting base 12 on which the optical communication device 14 is installed,
A vibration damping mechanism 13 is interposed on the equipment mounting platform 11, and a star sensor 16 for angle detection is provided on the equipment mounting base 12, and the inclination angle of the equipment mounting base 12 is detected by the star sensor 16. The vibration damping mechanism 13 is driven and controlled based on the tilt angle information to correct the tilt angle of the device mounting base 12.

【0019】これによれば、機器搭載プラットホーム1
1に設置された機器取付台12の宇宙航行体10に対す
る角度誤差を検出し、この角度誤差に基づいて角度制御
部17が振動減衰機構13を駆動制御して機器取付台1
2の宇宙航行体10に対する角度を補正していることに
より、機器搭載プラットホーム11の振動残留誤差分が
取除かれて、その指向調整機構部15による光通信機器
14の高精度な指向制御が実現される。
According to this, the device mounting platform 1
1 detects an angle error of the equipment mount 12 with respect to the spacecraft 10, and based on the angle error, the angle control unit 17 controls the drive of the vibration damping mechanism 13 to control the equipment mount 1.
2 corrects the angle with respect to the spacecraft 10, the residual vibration error of the equipment-mounted platform 11 is removed, and highly accurate pointing control of the optical communication device 14 by the pointing adjustment mechanism 15 is realized. Is done.

【0020】なお、上記実施の形態では、機器取付台1
2の角度を検出するのにスターセンサ16を用いて構成
した場合で説明したが、これに限ることなく、例えば太
陽センサや加速度センサを用いて構成したり、あるいは
太陽センサ、スターセンサ、加速度センサ組合せ使用す
るように構成したり、その他の各種の検出センサを用い
て構成することが可能である。
In the above embodiment, the device mounting base 1
Although the case where the star sensor 16 is used to detect the angle of 2 has been described, the present invention is not limited to this. For example, the sun sensor and the acceleration sensor may be used, or the sun sensor, the star sensor, and the acceleration sensor may be used. It can be configured to be used in combination, or can be configured using other various detection sensors.

【0021】また、上記実施の形態では、機器取付台1
2の三軸回りの角度補正を行うように構成した場合で説
明したが、これに限ることなく、二軸回り、あるは一軸
回りの角度補正を行う場合においても適用可能である。
この場合には、その角度検出センサの配置及び振動減衰
機構の配置が、その角度補正の軸回りに対応して設置さ
れる。よって、この発明は、上記実施の形態に限ること
なく、その他、この発明の要旨を逸脱しない範囲で種々
の変形を実施し得ることは勿論のことである。
Further, in the above embodiment, the equipment mounting base 1
Although the description has been given of the case where the angle correction around the two axes is performed, the present invention is not limited to this, and is also applicable to the case where the angle correction around the two axes or around one axis is performed.
In this case, the arrangement of the angle detection sensor and the arrangement of the vibration damping mechanism are installed around the axis of the angle correction. Therefore, it is needless to say that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0022】[0022]

【発明の効果】以上詳述したように、この発明によれ
ば、光通信機器の高精度な指向制御に寄与し得るよう
に、 高精度な角度補正を実現した光通信機器の角度補正
装置を提供することができる。
As described above in detail, according to the present invention, an angle correcting device for an optical communication device which realizes highly accurate angle correction so as to contribute to highly accurate pointing control of the optical communication device. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施の形態に係る光通信機器の角
度補正装置の配置構成を示した図である。
FIG. 1 is a diagram showing an arrangement configuration of an angle correction device for an optical communication device according to an embodiment of the present invention.

【図2】図1の振動減衰機構の配置構成を示した図であ
る。
FIG. 2 is a diagram showing an arrangement configuration of a vibration damping mechanism of FIG. 1;

【図3】図1の制御系の構成を示した図である。FIG. 3 is a diagram showing a configuration of a control system of FIG. 1;

【図4】従来の問題点を説明するために示した図であ
る。
FIG. 4 is a diagram shown to explain a conventional problem.

【符号の説明】[Explanation of symbols]

10 … 宇宙航行体。 11 … 機器搭載プラットホーム。 12 … 機器取付台。 13 … 振動減衰機構。 131〜133 伸縮駆動部。 14 … 光通信機器。 15 … 指向調整機構部。 16 … スターセンサ。 17 … 角度制御部。 10 ... Spacecraft. 11 ... Platform for mounting equipment. 12 ... Equipment mounting base. 13 A vibration damping mechanism. 131-133 telescopic drive unit. 14 Optical communication equipment. 15 Pointing adjustment mechanism. 16 ... Star sensor. 17 ... Angle control unit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 機器搭載プラットホームの設けられた宇
宙航行体を姿勢制御する姿勢制御部と、 前記機器搭載プラットホーム上に配設される振動減衰機
構と、 この振動減衰機構上に設置され、通信相手局と光の空間
伝搬を利用して光通信を行う光通信機器と、 この光通信機器の前記宇宙航行体に対する角度誤差を検
出する角度検出センサと、 この角度検出センサの検出に応動して前記振動減衰機構
を駆動制御し、前記光通信機器の前記宇宙航行体に対す
る角度誤差を補正する振動制御手段とを具備した光通信
機器の角度補正装置。
An attitude control unit for controlling the attitude of a spacecraft provided with an equipment-mounted platform, a vibration damping mechanism provided on the equipment-mounted platform, and a communication partner installed on the vibration damping mechanism, An optical communication device that performs optical communication by utilizing spatial propagation of light with a station; an angle detection sensor that detects an angle error of the optical communication device with respect to the spacecraft; and in response to the detection of the angle detection sensor, An angle correction device for an optical communication device, comprising: a vibration control unit that drives and controls a vibration damping mechanism and corrects an angle error of the optical communication device with respect to the spacecraft.
【請求項2】 前記角度検出センサは、前記光通信機器
の三軸回りの角度誤差を検出してなることを特徴とする
請求項1記載の光通信機器の角度補正装置。
2. The angle correction device for an optical communication device according to claim 1, wherein the angle detection sensor detects an angle error around three axes of the optical communication device.
【請求項3】 前記角度検出センサは、スターセンサで
形成することを特徴とする請求項1又は2に記載の光通
信機器の角度補正装置。
3. The angle correction device according to claim 1, wherein the angle detection sensor is formed by a star sensor.
【請求項4】 振動減衰機構は、伸縮調整自在な伸縮機
構を少なくとも3個配設して前記光通信機器を三次元的
に角度制御することを特徴とする請求項1、2、3のい
ずれか記載の光通信機器の角度補正装置。
4. The vibration damping mechanism according to claim 1, wherein at least three telescopic mechanisms that can be adjusted to expand and contract are disposed to control the angle of the optical communication device three-dimensionally. The angle correction device for an optical communication device according to the above.
【請求項5】 前記光通信機器は、前記振動減衰機構上
に機器取付台を介して設置されることを特徴とする特徴
とする請求項1、2、3、4のいずれか記載の光通信機
器の角度補正装置。
5. The optical communication device according to claim 1, wherein the optical communication device is installed on the vibration damping mechanism via a device mount. Equipment angle correction device.
JP10135152A 1998-05-18 1998-05-18 Angle correction device for optical communication equipment Pending JPH11331085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10135152A JPH11331085A (en) 1998-05-18 1998-05-18 Angle correction device for optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10135152A JPH11331085A (en) 1998-05-18 1998-05-18 Angle correction device for optical communication equipment

Publications (1)

Publication Number Publication Date
JPH11331085A true JPH11331085A (en) 1999-11-30

Family

ID=15145041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10135152A Pending JPH11331085A (en) 1998-05-18 1998-05-18 Angle correction device for optical communication equipment

Country Status (1)

Country Link
JP (1) JPH11331085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299541A (en) * 2003-03-31 2004-10-28 Japan Space Forum Vibration/attitude control device of payload mounted in spacecraft
CN112896551A (en) * 2021-05-08 2021-06-04 成都飞机工业(集团)有限责任公司 Auxiliary calibration method for installation of aircraft avionics equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299541A (en) * 2003-03-31 2004-10-28 Japan Space Forum Vibration/attitude control device of payload mounted in spacecraft
CN112896551A (en) * 2021-05-08 2021-06-04 成都飞机工业(集团)有限责任公司 Auxiliary calibration method for installation of aircraft avionics equipment

Similar Documents

Publication Publication Date Title
US5155327A (en) Laser pointing system
US6454215B1 (en) Spacecraft architecture for disturbance-free payload
US6175451B1 (en) Optical axis correcting apparatus and method of correcting optical axis
US4315610A (en) Optical image stabilizing system
JP4581111B2 (en) Optical space communication device
US7227111B2 (en) Optical inertial reference unit for kilohertz bandwidth submicroradian optical pointing and jitter control
KR20010015038A (en) Ephemeris/attitude reference determination using communications links
JP3541586B2 (en) Vibration control mechanism for pointing control device
JPH11331085A (en) Angle correction device for optical communication equipment
JPH0457123B2 (en)
Last et al. Toward a wireless optical communication link between two small unmanned aerial vehicles
US5220456A (en) Mirror positioning assembly for stabilizing the line-of-sight in a two-axis line-of-sight pointing system
JP2004136439A (en) Swing part holding mechanism
JP2006087105A (en) Method of optical transmission, and spacecraft carring out the same
JPH01194009A (en) Apparatus for stabilizing inclination of orientable object and telescope mirror carried on vehicle equipped with apparatus of this type
JPH11352387A (en) Optical axis correcting device
Ortiz et al. Functional demonstration of accelerometer-assisted beacon tracking
US6897821B2 (en) Spacecraft off-gimbal IRU precision payload pointing and disturbance rejection system
JPH10253384A (en) Detector for alignment on orbit
JP4077710B2 (en) Space stabilization device
JP2586385B2 (en) Satellite communication antenna device
JPH10190582A (en) Optical tracking device for optical communication system between mobile objects
JP2000124726A (en) Radio system
JP4328401B2 (en) Optical communication device
US20040104308A1 (en) Attitude correction of disturbances relative to a spacecraft attitude sensor