JPH1133017A - Optical heterodyne method spectroscopic analyser - Google Patents

Optical heterodyne method spectroscopic analyser

Info

Publication number
JPH1133017A
JPH1133017A JP18860397A JP18860397A JPH1133017A JP H1133017 A JPH1133017 A JP H1133017A JP 18860397 A JP18860397 A JP 18860397A JP 18860397 A JP18860397 A JP 18860397A JP H1133017 A JPH1133017 A JP H1133017A
Authority
JP
Japan
Prior art keywords
light
signal
wavelength
modulated
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18860397A
Other languages
Japanese (ja)
Inventor
Takahisa Mitsui
隆久 三井
Koji Nakajima
浩二 中島
Tomonari Kamei
智成 亀井
Ken Naito
建 内藤
Yoshihide Naito
義英 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuken KK
Original Assignee
Suzuken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuken KK filed Critical Suzuken KK
Priority to JP18860397A priority Critical patent/JPH1133017A/en
Publication of JPH1133017A publication Critical patent/JPH1133017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely analyze a light absorption characteristic of an object to be measured by photoelectrically converting modulation signal light and modulation reference light at a plurality of wavelengths so as to provide an optical heterodyne beat electric signal and analyzing a light absorption characteristic of the object to be measured on the basis of the optical heterodyne beat electric signal, which is obtained by differential computing, at each wavelength. SOLUTION: Signal light laser beams emitted from a first and second light sources 1, 12 are modulated by means of acousto-optical modulators 5, 15, while reference light beams are modulated by means of acousto-optical modulators 7, 16. Differential computing for optical heterodyne beat electric signals outputted from photoelectric converters 31, 32 are carried out by means of a differential computing circuit 33 and an amplitude fluctuation constituent is eliminated, the optical heterodyne beat electric signals are separated by means of bandpass filters 34, 35 so as to be converted into direct current signals by means of rectifiers 36, 37, and ratio computing for these direct current signals are carried out by means of a ratio computing circuit 38. On the basis of the ratio between the direct current signals, an analyzer 39 connected to an output terminal of the ratio computing circuit 38 measures an optical absorption rate of the object to be measured in a body to be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ヘテロダイン法
により被測定体、例えば生体の多重散乱体の光吸収特性
を分析し被測定体中の被測定物の濃度を測定するための
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for analyzing the light absorption characteristics of an object to be measured, for example, a multiple scatterer of a living body, and measuring the concentration of the object in the object by an optical heterodyne method.

【0002】[0002]

【従来の技術】従来、生体等の多重散乱体から成る被測
定体の光吸収特性等を測定する手段として、例えば特開
平5−176917号公報に記載された「光学的血糖値
非破壊測定方法および装置」がある。この発明は、波長
0.78〜1.32μmから選択される近赤外光を人体
に入射させ、その透過光の強度を検出し、その検出結果
に基づいて人体内のグルコ−ス濃度等を求めるものであ
る。
2. Description of the Related Art Conventionally, as a means for measuring the light absorption characteristics and the like of an object to be measured composed of multiple scatterers such as a living body, for example, an optical blood sugar level nondestructive measuring method described in Japanese Patent Application Laid-Open No. 5-176917 has been proposed. And equipment. " According to the present invention, near-infrared light selected from a wavelength of 0.78 to 1.32 μm is incident on a human body, the intensity of the transmitted light is detected, and glucose concentration and the like in the human body are determined based on the detection result. Is what you want.

【0003】[0003]

【発明が解決しようとする課題】上記特開平5−176
917号公報に記載された「光学的血糖値非破壊測定方
法および装置」によれば、波長0.78〜1.32μm
から選択される近赤外光を人体に入射させ、その透過光
の強度を検出し、その検出結果に基づいて人体内のグル
コ−ス濃度等を求めるものであるが、光源から照射され
る近赤外光には時間的に変化する振幅変動成分が含まれ
ているためグルコ−ス濃度を正確に測定することができ
ないという問題がある。また、その透過光の強度は、人
体内のグルコ−スによる吸収のみでなく、遠方を迂回し
て戻ってくる散乱光も含まれるため被測定体の形状に大
きく依存するという問題がある。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 5-176 is disclosed.
According to “Optical blood sugar level non-destructive measuring method and apparatus” described in JP-A-917, wavelength 0.78 to 1.32 μm
The near-infrared light selected from above is incident on the human body, the intensity of the transmitted light is detected, and the glucose concentration or the like in the human body is determined based on the detection result. Since infrared light contains a time-varying amplitude fluctuation component, there is a problem that glucose concentration cannot be measured accurately. Further, the intensity of the transmitted light includes not only the absorption by glucose in the human body but also the scattered light that returns by circumventing a distant place, so that the intensity of the transmitted light greatly depends on the shape of the measured object.

【0004】そこで本発明では、複数の光源からの時間
的に変化する振幅変動成分を除去するとともに被測定体
の形状に依存せずに非散乱光(直進光、弾道光子)のみ
を選択的に検出し、被測定体の光吸収特性を正確に分析
し、被測定体中の被測定物の濃度を測定することが可能
な光ヘテロダイン法分光分析装置を提供することを課題
とする。
Accordingly, in the present invention, amplitude-varying components that change with time from a plurality of light sources are removed, and only non-scattered light (straight light, ballistic photons) is selectively obtained without depending on the shape of the measured object. An object of the present invention is to provide an optical heterodyne spectroscopic analyzer capable of detecting and accurately analyzing light absorption characteristics of an object to be measured and measuring the concentration of the object in the object to be measured.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、被測
定体中の被測定物により吸収され易い第1の波長の光を
発光させる第1の光源と、前記被測定体中の被測定物に
より吸収され難い第2の波長の光を発光させる第2の光
源と、前記第1の光源及び第2の光源から発光されたそ
れぞれの光を前記被測定体を通過させる信号光と前記被
測定体を通過させない参照光とに分割する手段と、前記
第1の波長と前記第2の波長それぞれの信号光及び参照
光を所要の周波数で変調し第1の波長と第2の波長の変
調信号光及び変調参照光を生成する手段と、前記第1の
波長と第2の波長の変調信号光及び変調参照光を合波し
たうえ所定の比で分割送光する手段と、前記分割送光さ
れた前記第1の波長と第2の波長の変調信号光及び変調
参照光を光電変換することにより前記各波長の変調信号
光及び変調参照光の変調周波数の差に対応した光ヘテロ
ダインビ−ト電気信号を得る手段と、前記各波長の光ヘ
テロダインビ−ト電気信号を差動演算する手段と、差動
演算された光ヘテロダインビ−ト電気信号に基づいて前
記被測定体の光吸収特性を分析し前記被測定物の濃度を
測定する手段とを備えることである。
According to a first aspect of the present invention, there is provided a first light source for emitting light having a first wavelength which is easily absorbed by an object to be measured in the object to be measured; A second light source that emits light of a second wavelength that is hardly absorbed by the measurement object; a signal light that causes the respective light emitted from the first light source and the second light source to pass through the measurement object; and Means for splitting the signal light into reference light that does not pass through the object to be measured, and signal light and reference light of the first wavelength and the second wavelength, respectively, which are modulated at required frequencies to obtain a first wavelength and a second wavelength. Means for generating a modulated signal light and a modulated reference light, means for multiplexing the modulated signal light and the modulated reference light of the first wavelength and the second wavelength, and for dividing and transmitting the divided light at a predetermined ratio; Photoelectrically converting the illuminated modulated signal light and modulated reference light of the first wavelength and the second wavelength. Means for obtaining an optical heterodyne beat electric signal corresponding to the difference between the modulation frequencies of the modulated signal light and the modulated reference light of each wavelength, and differentially operates the optical heterodyne beat electric signal of each wavelength. Means for analyzing the optical absorption characteristics of the object to be measured based on the differentially calculated optical heterodyne beat electric signal and measuring the concentration of the object to be measured.

【0006】請求項2の発明は、請求項1の光ヘテロダ
イン法分光分析装置において、前記第1の光源から波長
の異なる複数の光を発光させ、それぞれの波長の光を信
号光と参照光とに分割して変調することにより各波長の
光ヘテロダインビ−ト電気信号を得ることである。
According to a second aspect of the present invention, in the optical heterodyne spectroscopic analyzer of the first aspect, a plurality of lights having different wavelengths are emitted from the first light source, and the light of each wavelength is converted into a signal light and a reference light. In this case, an optical heterodyne beat electric signal of each wavelength is obtained by dividing and modulating.

【0007】請求項3の発明は、請求項1又は2の光ヘ
テロダイン法分光分析装置において、前記変調信号光及
び変調参照光を生成する手段は、超音波発振器で変調駆
動される音響光学変調器を用いることである。
According to a third aspect of the present invention, in the optical heterodyne spectroscopic analyzer of the first or second aspect, the means for generating the modulated signal light and the modulated reference light is an acousto-optic modulator that is modulated and driven by an ultrasonic oscillator. Is used.

【0008】請求項1の発明によれば、第1の光源及び
第2の光源から発光された第1の波長及び第2の波長そ
れぞれの光が分割された信号光及び参照光を所要の周波
数で変調し、第1の波長と第2の波長それぞれの変調信
号光及び変調参照光を生成するとともに、第1の波長と
第2の波長の変調信号光及び変調参照光を合波したうえ
所定の比で分割送光された各波長の変調信号光及び変調
参照光を光電変換することにより得られた光ヘテロダイ
ンビ−ト電気信号を差動演算することにより第1の光源
及び第2の光源からの時間的に変化する振幅変動成分を
除去できる。そのため、第1の光源及び第2の光源から
の光の振幅が時間的に変動しても光ヘテロダインビ−ト
電気信号の差に基づいて被測定体の光吸収特性を正確に
分析し被測定物の濃度を測定することができる。また、
非散乱光による測定のため被測定体の形状に依存せずに
被測定体の光吸収特性を正確に分析し被測定物の濃度を
測定することができる。
According to the first aspect of the present invention, the signal light and the reference light obtained by dividing the light of the first wavelength and the light of the second wavelength emitted from the first light source and the second light source, respectively, are converted into the required frequency. To generate a modulated signal light and a modulated reference light of the first wavelength and the second wavelength, respectively, and multiplex the modulated signal light and the modulated reference light of the first wavelength and the second wavelength, and The first light source and the second light source are obtained by performing a differential operation on the optical heterodyne beat electrical signal obtained by photoelectrically converting the modulated signal light and the modulated reference light of each wavelength divided and transmitted at the ratio of , A time-varying amplitude fluctuation component can be removed. Therefore, even if the amplitudes of the light from the first light source and the second light source fluctuate with time, the light absorption characteristics of the device under test are accurately analyzed based on the difference between the optical heterodyne beat electrical signals, and the device under test is measured. The concentration of an object can be measured. Also,
Since the measurement is based on the non-scattered light, the light absorption characteristics of the object can be accurately analyzed without depending on the shape of the object, and the concentration of the object can be measured.

【0009】請求項2の発明によれば、第1の光源から
発光された複数波長それぞれの変調信号光及び変調参照
光の変調周波数の差に対応した光ヘテロダインビ−ト電
気信号から被測定物と吸収波長が近い他の成分の吸収特
性を区別して測定できるため被測定体のより正確な光吸
収特性の測定ができる。
According to a second aspect of the present invention, an object to be measured is obtained from an optical heterodyne beat electric signal corresponding to the difference between the modulation frequencies of the modulation signal light and the modulation reference light of each of a plurality of wavelengths emitted from the first light source. Since the measurement can be performed while distinguishing the absorption characteristics of other components having absorption wavelengths close to that of the object, more accurate light absorption characteristics of the measured object can be measured.

【0010】請求項3の発明によれば、変調信号光及び
変調参照光を生成するため音響光学変調器を用いるた
め、光ヘテロダインビ−ト電気信号を得るために必要な
光の変調が容易にできる。
According to the third aspect of the present invention, since the acousto-optic modulator is used to generate the modulated signal light and the modulated reference light, the light necessary for obtaining the optical heterodyne beat electric signal can be easily modulated. it can.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。図1は、実施の形態の光ヘテロダイン法分
光分析装置の全体的な構成を示したブロック図である。
以下、この光ヘテロダイン法分光分析装置の構成を作用
とともに説明する。図1に示すように、レ−ザダイオ−
ドから成る第1の光源1から発せられた光PAは、1/
2波長板2を介してノンポラライゼ−ションタイプのビ
−ムスプリッタ4に入射される。尚、上記光PAは、後
述する被測定体Sを透過する際、被測定体S中の被測定
物、例えばグルコ−スによる吸収率の高い波長、780
nmの波長を有するものである。
Next, an embodiment of the present invention will be described. FIG. 1 is a block diagram illustrating an overall configuration of an optical heterodyne spectroscopic analyzer according to an embodiment.
Hereinafter, the configuration of the optical heterodyne spectrometer will be described together with its operation. As shown in FIG.
The light PA emitted from the first light source 1 is 1 /
The light enters a non-polarization type beam splitter 4 via a two-wavelength plate 2. Note that, when the light PA passes through the object S to be described later, the wavelength of the light having a high absorption rate by the object in the object S, for example, glucose, such as 780,
It has a wavelength of nm.

【0012】ビ−ムスプリッタ4に入射された光PA
は、直進する光PA1と、反射される光PA2とに50
対50に分割される。尚、上記光PA1は後述の被測定
体Sを通過する信号光となる一方、光PA2は被測定体
Sを通過しない参照光となる。信号光PA1は音響光学
変調器(AOM1)5に入射され、参照光PA2は音響
光学変調器(AOM2)7に入射される。音響光学変調
器5に入射された参照光PA1は、音響光学変調器5に
おいて超音波発振器6から発振された80.000MH
zの超音波で変調される。従って音響光学変調器5を通
過した光は、80.000MHzの周波数で変調された
変調信号光PA3となる。
The light PA incident on the beam splitter 4
Is 50 to the light PA1 going straight and the light PA2 reflected
It is split into pairs 50. The light PA1 is signal light that passes through the object S to be described later, while the light PA2 is reference light that does not pass through the object S. The signal light PA1 enters the acousto-optic modulator (AOM1) 5, and the reference light PA2 enters the acousto-optic modulator (AOM2) 7. The reference light PA1 incident on the acousto-optic modulator 5 is 80.000 MH oscillated from the ultrasonic oscillator 6 in the acousto-optic modulator 5.
It is modulated by the ultrasonic wave of z. Therefore, the light that has passed through the acousto-optic modulator 5 becomes a modulated signal light PA3 modulated at a frequency of 80.000 MHz.

【0013】一方、音響光学変調器7に入射された参照
光PA2は音響光学変調器7において超音波発振器8の
出力信号により80.455MHzの超音波で変調され
る。従って音響光学変調器7を通過した光は、80.4
55MHzの超音波で変調された変調参照光PA4とな
る。そして、音響光学変調器5を通過した変調信号光P
A3はミラ−9で90度反射されたあと、合波器11に
入射される。
On the other hand, the reference light PA2 input to the acousto-optic modulator 7 is modulated by the acousto-optic modulator 7 with an ultrasonic signal of 80.455 MHz by the output signal of the ultrasonic oscillator 8. Therefore, the light passing through the acousto-optic modulator 7 is 80.4
The modulated reference light PA4 is modulated by the 55 MHz ultrasonic wave. The modulated signal light P that has passed through the acousto-optic modulator 5
A3 is reflected by the mirror 9 at 90 degrees, and then enters the multiplexer 11.

【0014】レ−ザ光を発する第2の光源12から発せ
られた光PBは、ノンポラライゼ−ションタイプのビ−
ムスプリッタ14に入射され、直進する光PB1と、反
射される光PB2とに50対50に分割される。尚、上
記光PB1は被測定体Sを通過する信号光となる一方、
光PB2は被測定体Sを通過しない参照光となる。信号
光PB1は音響光学変調器(AOM)15に入射され、
参照光PB2は音響光学変調器(AOM)16に入射さ
れる。尚、光PBは、被測定体Sを透過する際、被測定
体S中の被測定物、例えばグルコ−スによる吸収率の低
い波長、850nmの波長を有するものである。
The light PB emitted from the second light source 12 that emits laser light is a non-polarization type beam.
The light PB1 incident on the splitter 14 and traveling straight is split into 50:50 light PB1 and reflected light PB2. The light PB1 becomes signal light passing through the measured object S,
The light PB2 is a reference light that does not pass through the measured object S. The signal light PB1 is incident on an acousto-optic modulator (AOM) 15,
The reference light PB2 is incident on an acousto-optic modulator (AOM) 16. Note that the light PB has a wavelength of 850 nm, which has a low absorption rate by an object to be measured, for example, glucose when transmitted through the object to be measured S, for example, glucose.

【0015】音響光学変調器15に入射された信号光P
B1は、音響光学変調器15において超音波発振器17
から発振された79.800MHzの超音波で変調され
る。従って音響光学変調器15を通過した光は、79.
800MHzの周波数で変調された変調信号光PB3と
なる。そして、音響光学変調器15を通過した変調信号
光PB3はミラ−19で90度反射されたあと前記合波
器11に入射される。
The signal light P incident on the acousto-optic modulator 15
B1 is an ultrasonic oscillator 17 in the acousto-optic modulator 15.
Is modulated by the 79.800 MHz ultrasonic wave oscillated from. Therefore, the light passing through the acousto-optic modulator 15 is 79.
The modulated signal light PB3 is modulated at a frequency of 800 MHz. Then, the modulated signal light PB3 that has passed through the acousto-optic modulator 15 is reflected by the mirror 19 at 90 degrees and then enters the multiplexer 11.

【0016】一方、音響光学変調器16に入射された参
照光PB2は音響光学変調器16において超音波発振器
18から発振された80.550MHzの超音波で変調
される。従って音響光学変調器16を通過した光は、8
0.550MHzの超音波で変調された参照光PB4と
なる。
On the other hand, the reference light PB2 incident on the acousto-optic modulator 16 is modulated by the acousto-optic modulator 16 with 80.550 MHz ultrasonic waves oscillated from the ultrasonic oscillator 18. Therefore, the light passing through the acousto-optic modulator 16 is 8
The reference light PB4 is modulated by an ultrasonic wave of 0.550 MHz.

【0017】合波器11で合波された変調信号光PA3
及び変調信号光PB3は、被測定体S(例えば人の指)
を透過し、合波信号光P1となってノンポラライゼ−シ
ョンタイプのビ−ムスプリッタ21に入射される。
The modulated signal light PA3 multiplexed by the multiplexer 11
And the modulated signal light PB3 is the measured object S (for example, a human finger)
, And becomes a multiplexed signal light P1 to be incident on a beam splitter 21 of a non-polarization type.

【0018】前記音響光学変調器7を通過した前記変調
参照光PA4はミラ−22で90度反射されたあと前記
合波器24に入射される。また、前記音響光学変調器1
6を通過した前記変調参照光PB4はミラ−25で90
度反射されたあと前記合波器24に入射される。上記合
波器24は、変調参照光PA4と変調参照光PB4とを
合波したうえ、合波参照光P2として前記ビ−ムスプリ
ッタ21に入射する。
The modulated reference light PA4 that has passed through the acousto-optic modulator 7 is reflected by the mirror 22 at 90 degrees, and then enters the multiplexer 24. The acousto-optic modulator 1
The modulated reference light PB4 that has passed through No. 6 is 90
After being reflected by the light, the light is incident on the multiplexer 24. The multiplexer 24 multiplexes the modulated reference light PA4 and the modulated reference light PB4, and then enters the beam splitter 21 as a multiplexed reference light P2.

【0019】ビ−ムスプリッタ21は、被測定体Sを透
過した合波信号光P1と上記合波参照光P2とを合波し
たうえ、50対50に分割して光電変換器31,32に
入射させる。フォトダイオ−ドから成る光電変換器3
1,32から出力される光電変換信号は光ヘテロダイン
検波されたものである。即ち、第1の光源1から発光さ
れた波長780nmのレ−ザ光は信号光が音響光学変調
器5で80.000MHzで変調されるとともに参照光
が音響光学変調器7で80.455MHzで変調される
ため、光電変換器31,32から出力される光電変換信
号は信号光と参照光の変調周波数の差455KHzの光
ヘテロダインビ−ト電気信号となり、第2の光源12か
ら発光された波長が850nmのレ−ザ光は信号光が音
響光学変調器15で79.800MHzで変調されると
ともに参照光が音響光学変調器16で80.550MH
zで変調されるため、光電変換器31,32から出力さ
れる光電変換信号はその変調周波数の差750KHzの
光ヘテロダインビ−ト電気信号となる。
The beam splitter 21 multiplexes the multiplexed signal light P1 and the multiplexed reference light P2 that have passed through the measured object S, divides the multiplexed signal light P1 into 50:50, and divides the multiplexed reference light P2 into photoelectric converters 31, 32. Make it incident. Photoelectric converter 3 composed of a photodiode
The photoelectric conversion signals output from 1, 32 have been subjected to optical heterodyne detection. That is, in the laser light having a wavelength of 780 nm emitted from the first light source 1, the signal light is modulated at 80.000 MHz by the acousto-optic modulator 5 and the reference light is modulated at 80.455 MHz by the acousto-optic modulator 7. Therefore, the photoelectric conversion signals output from the photoelectric converters 31 and 32 become optical heterodyne beat electric signals having a difference of 455 KHz between the modulation frequencies of the signal light and the reference light, and the wavelength emitted from the second light source 12 is In the 850 nm laser light, the signal light is modulated at 79.800 MHz by the acousto-optic modulator 15 and the reference light is 80.550 MH by the acousto-optic modulator 16.
Since the signal is modulated by z, the photoelectric conversion signal output from the photoelectric converters 31 and 32 becomes an optical heterodyne beat electric signal having a difference of 750 KHz in the modulation frequency.

【0020】光電変換器31,32から出力された45
5KHzの光ヘテロダインビ−ト電気信号と750KH
zの光ヘテロダインビ−ト電気信号は差動演算回路33
で差動演算される。そのため、前記第1の光源1、第2
の光源12からの時間的に変化する振幅変動成分に対し
ても、差動演算回路33から出力される455KHzの
光ヘテロダインビ−ト電気信号と750KHzの光ヘテ
ロダインビ−ト電気信号の振幅変動成分は除去される。
The 45 output from the photoelectric converters 31 and 32
5 KHz optical heterodyne beat electrical signal and 750 KH
The z optical heterodyne beat electric signal is supplied to the differential operation circuit 33.
Is differentially calculated. Therefore, the first light source 1, the second light source 1,
The amplitude fluctuation component of the 455 KHz optical heterodyne beat electric signal and the 750 KHz optical heterodyne beat electric signal output from the differential operation circuit 33 also corresponds to the time-varying amplitude fluctuation component from the light source 12. Is removed.

【0021】差動演算回路33の出力端子には455K
Hzのバンドパスフィルタ34と750KHzのバンド
パスフィルタ35とが接続されており、差動演算回路3
3から出力された455KHzの光ヘテロダインビ−ト
電気信号、750KHzの光ヘテロダインビ−ト電気信
号は、バンドパスフィルタ34,35を通過することに
より分離される。
The output terminal of the differential operation circuit 33 has 455K
Hz band-pass filter 34 and a 750 KHz band-pass filter 35 are connected.
The 455 KHz optical heterodyne beat electric signal and the 750 KHz optical heterodyne beat electric signal output from 3 are separated by passing through band-pass filters 34 and 35.

【0022】バンドパスフィルタ34を通過した455
KHz信号は整流器36で直流信号に変換され、バンド
パスフィルタ35を通過した750KHz信号は整流器
37で直流信号に変換される。そして、整流器36から
出力された直流信号と整流器37から出力された直流信
号は比率演算回路38で比率演算される。
455 passed through the band-pass filter 34
The KHz signal is converted to a DC signal by the rectifier 36, and the 750 KHz signal passed through the band-pass filter 35 is converted to a DC signal by the rectifier 37. Then, the DC signal output from the rectifier 36 and the DC signal output from the rectifier 37 are ratio-calculated by the ratio calculation circuit 38.

【0023】比率演算回路38から出力される信号は、
455KHz信号に対応した直流信号の値と750KH
z信号に対応した直流信号の値の比となる。比率演算回
路38の出力端子に接続された分析装置39は、上記直
流信号の比に基づいて前記被測定体S中の被測定物(グ
ルコ−ス)の光吸収率を測定する。即ち、455KHz
信号に対応した直流信号は被測定体S中のグルコ−スに
より吸収される波長の光が被測定体Sを非散乱光として
透過したあとの光強度に対応し、750KHz信号に対
応した直流信号は被測定体S中のグルコ−スにより吸収
されない波長の光が被測定体Sを非散乱光として透過し
たあとの光強度に対応するため、分析装置39は両直流
信号の比に基づいて被測定体Sの光吸収率からグルコ−
スの濃度を測定することができる。
The signal output from the ratio calculation circuit 38 is
DC signal value corresponding to 455KHz signal and 750KH
It is the ratio of the value of the DC signal corresponding to the z signal. The analyzer 39 connected to the output terminal of the ratio calculation circuit 38 measures the light absorptivity of the test object (glucose) in the test object S based on the DC signal ratio. That is, 455 KHz
The DC signal corresponding to the signal corresponds to the light intensity after light having a wavelength absorbed by glucose in the measurement target S has passed through the measurement target S as non-scattered light, and corresponds to a 750 KHz signal. Corresponds to the light intensity after light of a wavelength not absorbed by glucose in the measurement object S has passed through the measurement object S as non-scattered light, so that the analyzer 39 detects the light intensity based on the ratio of both DC signals. From the light absorption rate of the measurement object S, gluco-
The concentration of the solution can be measured.

【0024】尚、上記のように分析装置39が両直流信
号の比に基づいて被測定体Sの光吸収率を分析し被測定
体S中のグルコ−スの濃度を測定する際、初期調整とし
て前記合波器11で合波された変調信号光PA3及び変
調信号光PB3を被測定体Sを透過させずに直接前記ビ
−ムスプリッタ21に入射させて比率演算回路38から
出力される信号が等しくなるように前記第1の光源から
の発光強度と第2の光源からの発光強度を調整し、その
あと被測定体Sを光路にセットする。
When the analyzer 39 analyzes the light absorptance of the test object S based on the ratio of the two DC signals and measures the glucose concentration in the test object S as described above, the initial adjustment is performed. The signal output from the ratio calculating circuit 38 when the modulated signal light PA3 and the modulated signal light PB3 multiplexed by the multiplexer 11 are directly incident on the beam splitter 21 without passing through the measured object S. The luminous intensity from the first light source and the luminous intensity from the second light source are adjusted so as to be equal to each other, and then the object to be measured S is set in the optical path.

【0025】尚、上記実施の形態では、第1の光源1と
第2の光源12はそれぞれ1個の発光体を用いたが、第
1の光源として被測定体S中の被測定物により吸収され
易い波長の近傍の波長の光を複数光発光させるために複
数の発光体を用いてもよい。この場合、それぞれの発光
体から発光された光を信号光と参照光とに分割したうえ
音響光学変調器で変調し、それぞれの波長の変調信号光
と変調参照光の変調周波数の差に対応した複数の光ヘテ
ロダインビ−ト電気信号が得られ、被測定体S中の被測
定物とは別の成分の光吸収特性を区別して測定できるこ
とから被測定体S中の被測定物の濃度をより正確に測定
することができる。
In the above embodiment, one light source is used for each of the first light source 1 and the second light source 12, but the first light source 1 and the second light source 12 are absorbed by the object in the object S as the first light source. A plurality of light emitters may be used to emit a plurality of lights having wavelengths in the vicinity of the wavelength at which light is easily emitted. In this case, the light emitted from each light emitter is divided into signal light and reference light, and then modulated by an acousto-optic modulator to correspond to the difference between the modulation frequencies of the modulated signal light and the modulated reference light of each wavelength. Since a plurality of optical heterodyne beat electrical signals are obtained and the optical absorption characteristics of components different from the object in the object S can be measured separately, the concentration of the object in the object S can be increased. It can be measured accurately.

【0026】[0026]

【発明の効果】請求項1の発明によれば、第1、第2の
各光源の光の振幅が時間的に変動しても被測定体の光吸
収特性を正確に分析し、被測定体中の被測定物の濃度を
測定することができる。また、被測定体の形状に依存せ
ずに被測定体中の被測定物の濃度を測定することができ
る。
According to the first aspect of the present invention, even if the light amplitude of each of the first and second light sources fluctuates with time, the light absorption characteristics of the object to be measured are accurately analyzed, and the object to be measured is analyzed. It is possible to measure the concentration of the measured object therein. Further, the concentration of the measured object in the measured object can be measured without depending on the shape of the measured object.

【0027】請求項2の発明によれば、第1の光源から
発光された複数波長それぞれの変調信号光及び変調参照
光の変調周波数の差に対応した光ヘテロダインビ−ト電
気信号から被測定体中の被測定物とは別の成分の光吸収
特性を区別して測定できるため、被測定体のより正確な
光吸収特性の測定ができる。
According to the second aspect of the present invention, the measured object is obtained from the optical heterodyne beat electric signal corresponding to the difference between the modulation frequency of the modulation signal light and the modulation frequency of the modulation reference light emitted from the first light source. Since the light absorption characteristic of another component different from that of the object to be measured can be measured, the light absorption characteristic of the object to be measured can be measured more accurately.

【0028】請求項3の発明によれば、光ヘテロダイン
ビ−ト電気信号を得るために必要な光の変調が容易にで
きる。
According to the third aspect of the present invention, it is possible to easily modulate light necessary for obtaining an optical heterodyne beat electric signal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の全体的な構成を示したブ
ロック図である。
FIG. 1 is a block diagram showing an overall configuration of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 第1の光源 4,14 ビ−ムスプリッタ 5,7,15,16 音響光学変調器 6,8,17,18 超音波発振器 12 第2の光源 21 合波器 31,32 光電変換器 33 差動演算回路 34,35 バンドパスフィ
ルタ 36,37 整流器 38 比率演算回路 39 分析装置 S 被測定体
REFERENCE SIGNS LIST 1 first light source 4, 14 beam splitter 5, 7, 15, 16 acousto-optic modulator 6, 8, 17, 18 ultrasonic oscillator 12 second light source 21 multiplexer 31, 32 photoelectric converter 33 difference Dynamic operation circuit 34, 35 Band-pass filter 36, 37 Rectifier 38 Ratio operation circuit 39 Analyzer S Measurement object

───────────────────────────────────────────────────── フロントページの続き (72)発明者 亀井 智成 愛知県名古屋市東区東片端町8番地 株式 会社スズケン内 (72)発明者 内藤 建 愛知県名古屋市東区東片端町8番地 株式 会社スズケン内 (72)発明者 内藤 義英 愛知県名古屋市瑞穂区片坂町1の52 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tomonari Kamei 8 Suzuken, Higashi-Katabata-cho, Higashi-ku, Nagoya-shi, Aichi Prefecture (72) Inventor Takeshi Naito 8-Shift, Higashi-Katabata-cho, Higashi-ku, Nagoya-shi, Aichi ( 72) Inventor Yoshihide Naito 52-1 Katasaka-cho, Mizuho-ku, Nagoya-shi, Aichi

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定体中の被測定物により吸収され易
い第1の波長の光を発光させる第1の光源と、前記被測
定体中の被測定物により吸収され難い第2の波長の光を
発光させる第2の光源と、前記第1の光源及び第2の光
源から発光されたそれぞれの光を前記被測定体を通過さ
せる信号光と前記被測定体を通過させない参照光とに分
割する手段と、前記第1の波長と前記第2の波長それぞ
れの信号光及び参照光を所要の周波数で変調し第1の波
長と第2の波長の変調信号光及び変調参照光を生成する
手段と、前記第1の波長と第2の波長の変調信号光及び
変調参照光を合波したうえ所定の比で分割送光する手段
と、前記分割送光された前記第1の波長と第2の波長の
変調信号光及び変調参照光を光電変換することにより前
記各波長の変調信号光及び変調参照光の変調周波数の差
に対応した光ヘテロダインビ−ト電気信号を得る手段
と、前記光ヘテロダインビ−ト電気信号を差動演算する
手段と、差動演算された光ヘテロダインビ−ト電気信号
に基づいて前記被測定体の光吸収特性を分析し前記被測
定物の濃度を測定する手段とを備えた光ヘテロダイン法
分光分析装置。
1. A first light source that emits light having a first wavelength that is easily absorbed by an object in a measurement object, and a second light source that emits light of a second wavelength that is hardly absorbed by the measurement object in the measurement object. A second light source that emits light, and splits each light emitted from the first light source and the second light source into a signal light that passes through the object to be measured and a reference light that does not pass through the object to be measured. Means for modulating the signal light and the reference light at the first wavelength and the second wavelength at required frequencies to generate modulated signal light and modulated reference light at the first and second wavelengths, respectively. Means for multiplexing the modulated signal light and the modulated reference light having the first wavelength and the second wavelength and transmitting the divided light at a predetermined ratio; The modulation signal of each wavelength is obtained by photoelectrically converting the modulation signal light and the modulation reference light of the wavelength. Means for obtaining an optical heterodyne beat electric signal corresponding to the difference between the modulation frequencies of the light and the modulated reference light; means for differentially operating the optical heterodyne beat electric signal; and differentially operated optical heterodyne beat Means for analyzing light absorption characteristics of the object to be measured based on the electrical signal and measuring the concentration of the object to be measured.
【請求項2】 前記第1の光源から波長の異なる複数の
光を発光させ、それぞれの波長の光を信号光と参照光と
に分割して変調することにより各波長の光ヘテロダイン
ビ−ト電気信号を得る請求項1に記載の光ヘテロダイン
法分光分析装置。
2. A light heterodyne beat electrical system of each wavelength by emitting a plurality of lights having different wavelengths from the first light source, dividing the light of each wavelength into signal light and reference light, and modulating the light. The optical heterodyne spectroscopic analyzer according to claim 1, wherein a signal is obtained.
【請求項3】 前記変調信号光及び変調参照光を生成す
る手段は、超音波発振器で変調駆動される音響光学変調
器を用いた請求項1又は2に記載の光ヘテロダイン法分
光分析装置。
3. The optical heterodyne spectroscopic analyzer according to claim 1, wherein the means for generating the modulated signal light and the modulated reference light uses an acousto-optic modulator modulated and driven by an ultrasonic oscillator.
JP18860397A 1997-07-14 1997-07-14 Optical heterodyne method spectroscopic analyser Pending JPH1133017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18860397A JPH1133017A (en) 1997-07-14 1997-07-14 Optical heterodyne method spectroscopic analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18860397A JPH1133017A (en) 1997-07-14 1997-07-14 Optical heterodyne method spectroscopic analyser

Publications (1)

Publication Number Publication Date
JPH1133017A true JPH1133017A (en) 1999-02-09

Family

ID=16226566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18860397A Pending JPH1133017A (en) 1997-07-14 1997-07-14 Optical heterodyne method spectroscopic analyser

Country Status (1)

Country Link
JP (1) JPH1133017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389906B1 (en) * 2001-05-09 2003-07-04 삼성전자주식회사 Apparatus and method for measuring concentration of component in target material
JP2007333518A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Differential absorption lidar device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389906B1 (en) * 2001-05-09 2003-07-04 삼성전자주식회사 Apparatus and method for measuring concentration of component in target material
JP2007333518A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Differential absorption lidar device

Similar Documents

Publication Publication Date Title
US5349952A (en) Photoplethysmographics using phase-division multiplexing
US6542246B1 (en) Blood vessel imaging system
US20120019815A1 (en) Multichannel photometric measurement apparatus
WO1998053733A1 (en) Inspection apparatus using optical interferometer
JP4963482B2 (en) Component concentration measuring apparatus and component concentration measuring method
JPH02164341A (en) Hemoglobin concentration measuring device
US20100193703A1 (en) Fret detection method and device
JPH09133654A (en) Photo-acoustic analyzer
CN110196237A (en) A kind of SF6Decomposition product multi-analyte immunoassay system and method
JP2973639B2 (en) Equipment for measuring characteristics of sheet-like objects
JPH1133017A (en) Optical heterodyne method spectroscopic analyser
JP2006326224A (en) Apparatus and method for measuring bio-component concentration
JP5370248B2 (en) Gas analyzer
WO2004074867A1 (en) Laser radar
JP2001066250A (en) Gas detection apparatus
JP2002340676A (en) Multi-channel modulation spectrometric method and multi-channel modulation spectrometric device
JP2004020539A (en) Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method
JPH11118709A (en) Optical heterodyne method spectrophotometer
JP4040224B2 (en) Blood vessel imaging device and pulse wave signal spatial distribution measuring method and device
JP2820659B2 (en) Ultra-high sensitivity optical rotation measurement device
JPH11295159A (en) Stress measuring device
JP2829966B2 (en) Laser Doppler speedometer
JPH09197019A (en) Electrical signal measuring device
JPH08252246A (en) Living body measuring instrument
JP6254543B2 (en) Dielectric spectrometer