JPH11329883A - Manufacture of magnetoresistive effect film - Google Patents

Manufacture of magnetoresistive effect film

Info

Publication number
JPH11329883A
JPH11329883A JP13618298A JP13618298A JPH11329883A JP H11329883 A JPH11329883 A JP H11329883A JP 13618298 A JP13618298 A JP 13618298A JP 13618298 A JP13618298 A JP 13618298A JP H11329883 A JPH11329883 A JP H11329883A
Authority
JP
Japan
Prior art keywords
film
layer
magnetic field
magnetoresistive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13618298A
Other languages
Japanese (ja)
Inventor
Hidetoshi Hagiwara
英俊 萩原
Shigekazu Suwabe
繁和 諏訪部
Shin Noguchi
伸 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP13618298A priority Critical patent/JPH11329883A/en
Publication of JPH11329883A publication Critical patent/JPH11329883A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/28Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a magnetoresistive effect film where a large exchange coupling magnetic field can be obtained. SOLUTION: Ferromagnetic layers 2 and 4 are laminated on a board confronting each other through the intermediary of a non-magnetic layer 3, and an antiferromagnetic layer 5 is provided adjacent to the ferromagnetic layer 4 for the manufacture of a magnetoresistive effect film, wherein a sputtering operation is carried out on the board by the use of an Al or an Si target applying an AC voltage. Then, a magnetoresistive effect film 10 is formed on the board.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に設けられ
ており、Cu等の非磁性層を介して対向して積層されて
いる強磁性体層と、一方の強磁性体層に隣接して設けら
れている反強磁性体層とを有する磁気抵抗効果膜に関
し、特に交換結合磁界の大きい磁気抵抗効果膜の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic layer which is provided on a substrate and is stacked opposite to each other via a nonmagnetic layer of Cu or the like. More particularly, the present invention relates to a method for manufacturing a magnetoresistive film having a large exchange coupling magnetic field.

【0002】[0002]

【従来の技術】磁気記録分野における技術の革新には目
を見張るものがある。記録密度の高密度化を例に取って
みても、ここ十年あまりのあいだ、年率約60%の高い
成長が達成されてきた。さらに、今後ともこの成長率が
続くことが予想されている。磁気ヘッドは磁気記録密度
1Gbit/in2 前後を越える付近から異方性磁気抵
抗効果膜を検出素子に用いた録再分離型ヘッドであるM
Rヘッドが急速に適用されるようになってきた。しか
し、3〜4Gbit/in2 以上の高記録密度化が進む
と、このタイプのMRヘッドでは再生出力が不足してし
まうことが懸念され、新しい原理による磁気ヘッドの開
発が始められている。
2. Description of the Related Art Technological innovations in the field of magnetic recording are remarkable. Taking the recording density as an example, a high growth rate of about 60% per year has been achieved over the last decade or so. In addition, it is expected that this growth rate will continue. The magnetic head is a recording / reproducing separation type head using an anisotropic magnetoresistive film as a detecting element at a magnetic recording density exceeding about 1 Gbit / in 2.
R heads are rapidly being applied. However, as the recording density increases to 3 to 4 Gbit / in 2 or more, there is a concern that this type of MR head will have a shortage of reproduction output, and a magnetic head based on a new principle has been developed.

【0003】そのアプローチの一つとして、MRヘッド
の検出素子を形成する異方性磁気抵抗効果膜の高感度化
が最短の方法と考えられている。異方性磁気抵抗効果膜
の磁気抵抗の変化率は従来技術によると高々2〜3%で
あるが、この変化率を一挙に数倍に高めるには現状の材
料と構成では限界が見えてきた。また、新たな材料開発
を行うには多大な時間と労力を必要とするとみられてい
る。しかし、強磁性体と反強磁性体の薄膜を組み合わせ
ると、従来にない大きな磁気抵抗効果が得られることが
最近報告され、この方面の研究開発が活発化している。
現在もっとも注目されているのは、巨大磁気抵抗効果を
用いたスピンバルブ膜が有力視されているもので、次期
MRヘッドの検出素子としての実用化検討が始まってい
る。
As one of the approaches, increasing the sensitivity of the anisotropic magnetoresistive film forming the detecting element of the MR head is considered to be the shortest method. According to the prior art, the rate of change of the magnetoresistance of the anisotropic magnetoresistive film is at most 2 to 3%. However, the current material and composition have reached a limit in increasing the rate of change to several times at a stroke. . Also, it is expected that a great deal of time and effort will be required to develop new materials. However, it has recently been reported that a combination of a ferromagnetic and antiferromagnetic thin film can provide an unprecedented large magnetoresistance effect, and research and development in this area has been activated.
Currently, the most noticeable is the spin valve film using the giant magnetoresistance effect, which is considered to be the most promising.
Consideration for practical use as a detection element of an MR head has begun.

【0004】スピンバルブ膜は一般に、基板上に第一の
強磁性体層(自由層)、非磁性層、第二の強磁性体層
(固定層)、反強磁性体層の順に積層した基本構造を持
つものである。このような多層膜であるスピンバルブ膜
は、第一と第二の強磁性体層の間に非磁性層を介在さ
せ、強磁性体層のどちらか一方に反強磁性体層を密着さ
せるものである。この構成では、第二の強磁性体層に反
強磁性体層を密着させることにより、第一と第二の強磁
性体層間に巨大磁気抵抗効果を発現させている。この巨
大磁気抵抗効果は、非磁性層により分離された第一の強
磁性体層と第二の強磁性体層間の磁化の相対角度が、外
部印加磁界が加わることによりその外部磁界強さに応じ
て変化し、その結果電気抵抗が増減するものである。こ
のスピンバルブ膜が持つ電気抵抗の変化率、即ち感度は
NiFe膜による異方性磁気抵抗効果より高く、7〜8
%に達することが報告されている。そのうえ、第一の強
磁性体層(自由層)には軟磁気特性の優れたNiFe合
金やCo基合金を用いることによって、磁気記録媒体か
らの信号磁界が20〜30Oeの弱い磁界でも十分に大
きな磁気抵抗の変化率を得ることができるものである。
[0004] Generally, a spin valve film is formed by stacking a first ferromagnetic layer (free layer), a nonmagnetic layer, a second ferromagnetic layer (fixed layer), and an antiferromagnetic layer on a substrate in this order. It has a structure. Such a multi-layered spin valve film has a nonmagnetic layer interposed between the first and second ferromagnetic layers, and an antiferromagnetic layer is adhered to one of the ferromagnetic layers. It is. In this configuration, a giant magnetoresistance effect is developed between the first and second ferromagnetic layers by bringing the antiferromagnetic layer into close contact with the second ferromagnetic layer. The giant magnetoresistance effect is based on the fact that the relative angle of magnetization between the first and second ferromagnetic layers separated by the non-magnetic layer depends on the external magnetic field strength when an externally applied magnetic field is applied. And the electrical resistance increases or decreases as a result. The rate of change of the electric resistance of the spin valve film, that is, the sensitivity, is higher than the anisotropic magnetoresistance effect of the NiFe film, and is 7-8.
% Has been reported. In addition, by using a NiFe alloy or a Co-based alloy having excellent soft magnetic properties for the first ferromagnetic layer (free layer), the signal magnetic field from the magnetic recording medium is sufficiently large even with a weak magnetic field of 20 to 30 Oe. The change rate of the magnetoresistance can be obtained.

【0005】さらに、非常に薄い反強磁性体層を強磁性
体層に隣接して設けると、交換結合作用が生じその強磁
性体層の磁化の向きが固定される。この交換結合作用に
よって生じる磁界は、交換結合磁界Hexと呼ばれる一
方向性の異方性磁界である。この交換結合作用が強いこ
と、即ち交換結合磁界Hexが高いほどスピンバルブ膜
の特性は良好と評価される。
Further, when a very thin antiferromagnetic layer is provided adjacent to the ferromagnetic layer, an exchange coupling action occurs, and the direction of magnetization of the ferromagnetic layer is fixed. The magnetic field generated by this exchange coupling action is a unidirectional anisotropic magnetic field called exchange coupling magnetic field Hex. The stronger the exchange coupling action, that is, the higher the exchange coupling magnetic field Hex, the better the characteristics of the spin valve film.

【0006】反強磁性体層として、特開平2-61572 号公
報に記載されている鉄- マンガン合金膜、特開平6-7624
7 号公報に記載されているニッケル- マンガン合金膜な
どが知られているが、これらには材料上問題がある。磁
気記録再生装置に用いられる反強磁性体材料に必要な特
性は以下の5つである。(1)大きな結合磁界(2)1
50℃以上の温度上昇に対して特性を保持する(3)5
0nm以下の厚さの薄膜で特性を発揮する(4)複雑な
異方性化プロセス、例えば長時間の熱処理などを必要と
しない(5)曝される環境に対する十分な耐食性、であ
る。上記の材料は以上の項目に照らし合わせると温度特
性、耐食性、プロセスの簡略さ等の点についての材料的
な問題を解決し切れていない。このような問題は高記録
密度の磁気記録再生装置の実現、特に装置としての信頼
性を実現することを著しく困難にしていた。
As an antiferromagnetic layer, an iron-manganese alloy film described in JP-A-2-61572,
A nickel-manganese alloy film and the like described in Japanese Patent Publication No. 7 are known, but these have problems in material. The following five characteristics are required for the antiferromagnetic material used in the magnetic recording / reproducing apparatus. (1) Large coupling magnetic field (2) 1
Maintains characteristics against temperature rise of 50 ° C or more (3) 5
(4) not requiring a complicated anisotropic process, for example, a long-time heat treatment, and (5) sufficient corrosion resistance to an exposed environment, which exhibits properties with a thin film having a thickness of 0 nm or less. In view of the above items, the above-mentioned materials have not been able to solve the material problems regarding temperature characteristics, corrosion resistance, simplicity of the process, and the like. Such a problem has made it extremely difficult to realize a magnetic recording / reproducing apparatus with a high recording density, particularly to realize the reliability of the apparatus.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
9-16923 号公報に示されているCr30-70 Mn30-70
3-30(atomic %)合金薄膜で耐食性と温度特性に優れた
反強磁性体が見いだされた。しかるに残る課題は上記
(1)の大きな結合磁界である。何となれば公知例によ
るとCrMnPt合金による結合磁界はCrMnPt膜
の膜厚を30nm以上と厚くしなければ十分な交換結合
磁界を得ることができない。また、磁気抵抗効果膜はそ
の使用状態において、180〜200℃という高温にな
ることがあるので、その温度においても十分に大きな交
換結合磁界を持つ必要がある。従ってCrMnPt合金
による交換結合磁界を更に向上することができ、しかも
高温においても大きな交換結合磁界を持てば膜厚を薄く
することができ、良好なスピンバルブ特性を得ることが
できる。
SUMMARY OF THE INVENTION
Cr 30-70 Mn 30-70 P disclosed in JP 9-16923
An antiferromagnetic material having excellent corrosion resistance and temperature characteristics was found in a t 3-30 (atomic%) alloy thin film. However, the remaining problem is the large coupling magnetic field of the above (1). According to a known example, a sufficient exchange coupling magnetic field cannot be obtained unless the thickness of the CrMnPt film is increased to 30 nm or more. Further, since the magnetoresistive effect film may reach a high temperature of 180 to 200 [deg.] C. in its use state, it is necessary to have a sufficiently large exchange coupling magnetic field even at that temperature. Therefore, the exchange coupling magnetic field of the CrMnPt alloy can be further improved, and even if the exchange coupling magnetic field is large even at a high temperature, the film thickness can be reduced, and good spin valve characteristics can be obtained.

【0008】従って本発明の目的は従来にない大きな交
換結合磁界が得られる磁気抵抗効果膜の製造方法を提供
することである。
Accordingly, it is an object of the present invention to provide a method of manufacturing a magnetoresistive film capable of obtaining an unprecedented large exchange coupling magnetic field.

【0009】[0009]

【課題を解決するための手段】本発明の磁気抵抗効果膜
の製造方法は、基板上に設けられており、非磁性層を介
して対向して積層されている強磁性体層の内、一方の強
磁性体層に隣接して反強磁性体層が設けられているもの
において、前記基板上にAlあるいはSiターゲットを
用いてAC電圧を印加してスパッタした後、この基板上
に磁気抵抗効果膜を形成することを特徴とする。
According to the present invention, there is provided a method of manufacturing a magnetoresistive film, wherein one of ferromagnetic layers provided on a substrate and opposed to each other with a nonmagnetic layer interposed therebetween. In the case where an antiferromagnetic material layer is provided adjacent to the ferromagnetic material layer, sputtering is performed by applying an AC voltage to the substrate using an Al or Si target, and then the magnetoresistance effect is formed on the substrate. The method is characterized in that a film is formed.

【0010】また前記のAlあるいはSiターゲットを
用いてAC電圧を印加してスパッタする際にArとO2
の混合ガスを導入してスパッタすることが好ましい。ま
た、本発明において強磁性体層に隣接して設けられる反
強磁性体層がCrMnPt合金あるいはIrMn合金で
あることが好ましい。
When sputtering is performed by applying an AC voltage using the Al or Si target, Ar and O 2 are used.
Is preferably introduced by introducing a mixed gas of In the present invention, the antiferromagnetic layer provided adjacent to the ferromagnetic layer is preferably a CrMnPt alloy or an IrMn alloy.

【0011】[0011]

【発明の実施の形態】本発明を適用する磁気抵抗効果膜
を用いている磁気ヘッドの再生部は図1に示すような構
造をしている。すなわち、基板の上に下部シールド膜
8、ギャップアルミナ膜9、磁気抵抗効果膜10、ギャ
ップアルミナ膜11、上部シールド膜12の順に形成さ
れている。従って磁気抵抗効果膜10はアルミナ膜上に
成膜されている。磁気抵抗効果膜10は、図2に示すよ
うにギャップアルミナ膜9の上に、Taなどの下地膜層
1、第一の強磁性体層(自由層)2、非磁性層3、第二
の強磁性体層(固定層)4、反強磁性体層5、Taなど
の保護膜層6の積層した基本構造を持つ。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A reproducing section of a magnetic head using a magnetoresistive film to which the present invention is applied has a structure as shown in FIG. That is, the lower shield film 8, the gap alumina film 9, the magnetoresistive film 10, the gap alumina film 11, and the upper shield film 12 are formed on the substrate in this order. Therefore, the magnetoresistive film 10 is formed on the alumina film. As shown in FIG. 2, a magnetoresistive film 10 is formed on a gap alumina film 9 on a base film layer 1 such as Ta, a first ferromagnetic layer (free layer) 2, a nonmagnetic layer 3, and a second It has a basic structure in which a ferromagnetic layer (fixed layer) 4, an antiferromagnetic layer 5, and a protective film layer 6 such as Ta are laminated.

【0012】この磁気抵抗効果膜10は、5nm厚のT
a下地膜層1、5nm厚のNi81Fe19合金からなる第
一の強磁性体層(自由層)2、3nm厚のCuからなる
非磁性層3、2.5nm厚のCoからなる第二の強磁性
体層(固定層)4、30〜40nm厚のCrMnPt合
金からなる反強磁性体層5とすることができる。
The magnetoresistive film 10 has a 5 nm thick T
a Underlayer 1, 5 nm thick first ferromagnetic layer (free layer) made of Ni 81 Fe 19 alloy 2, 3 nm thick nonmagnetic layer 3, 2.5 nm thick Co The ferromagnetic layer (fixed layer) 4 of the above, and an antiferromagnetic layer 5 made of a CrMnPt alloy having a thickness of 30 to 40 nm can be obtained.

【0013】この磁気抵抗効果膜10では、耐蝕性の良
いCrMnPt合金を反強磁性体層5としており、それ
に隣接する強磁性体層4をCoあるいはCo合金とする
とともに、反強磁性体層5の組成を一般式Crx Mny
Ptz (x, y, z: atomic %)で表される合金からなり、
このx, y, z は32≦ x≦ 50 、 36 ≦ y≦ 53 、 11≦
z≦ 17 、 x+y+z = 100を満足するようにすることによ
って、大きな交換結合磁界と高い熱安定性を有するスピ
ンバルブ型磁気抵抗効果膜を実現し、この結果良好な感
度と信頼性を兼ね備えた磁気抵抗効果膜を持った磁気ヘ
ッドを得ることができる。反強磁性体層5に隣接してい
る第二の強磁性体層4の膜厚を2〜3.5nmとするこ
とが好適である。
In this magnetoresistive effect film 10, a CrMnPt alloy having good corrosion resistance is used as the antiferromagnetic layer 5, and the adjacent ferromagnetic layer 4 is made of Co or a Co alloy. formula Cr x Mn y the composition of the
It consists of an alloy represented by Pt z (x, y, z: atomic%),
X, y, z are 32 ≦ x ≦ 50, 36 ≦ y ≦ 53, 11 ≦
By satisfying z ≦ 17, x + y + z = 100, a spin-valve magnetoresistive film with a large exchange coupling magnetic field and high thermal stability is realized, resulting in good sensitivity and reliability. Thus, a magnetic head having a magnetoresistive film having the above characteristics can be obtained. It is preferable that the thickness of the second ferromagnetic layer 4 adjacent to the antiferromagnetic layer 5 be 2 to 3.5 nm.

【0014】本発明の磁気抵抗効果膜の製造方法として
は、ギャップアルミナ膜9としてアルミナ膜を800A
(オングストローム)厚に成膜した基板を用いる。基板
をスパッタチャンバーに搬送後、3×10-7Torrまで真
空引きした後Arガスを30sccm、酸素ガスを20
sccmの流量でチャンバー内に導入した。チャンバー
内に備えられたAlターゲットに100WのAC電力を
投入し、20秒から2分間放電させた。放電完了後3分
間真空引きした後磁気抵抗効果膜10を以下の様にして
成膜した。磁気抵抗効果膜10を構成する膜はDCマグ
ネトロンスパッタリング法により以下のように製作し
た。アルゴン3mTorr から9mTorr の雰囲気中にて、以
下の材料を順次積層して製作した。スパッタリングター
ゲットとしてタンタル、ニッケル- 19wt%鉄合金、
銅、コバルト、クロム- マンガン-白金の各ターゲット
を用いた。
The method of manufacturing the magnetoresistive film according to the present invention is as follows.
(Angstrom) A substrate with a thick film is used. After transferring the substrate to the sputtering chamber, the substrate was evacuated to 3 × 10 −7 Torr, and then Ar gas was supplied at 30 sccm and oxygen gas was supplied at 20 sc.
It was introduced into the chamber at a flow rate of sccm. AC power of 100 W was applied to an Al target provided in the chamber, and discharge was performed for 20 seconds to 2 minutes. After evacuation was performed for 3 minutes after the discharge was completed, a magnetoresistive film 10 was formed as follows. The film constituting the magnetoresistive film 10 was manufactured by DC magnetron sputtering as follows. The following materials were sequentially laminated in an atmosphere of 3 mTorr to 9 mTorr of argon. Tantalum, nickel-19wt% iron alloy as sputtering target,
Copper, cobalt and chromium-manganese-platinum targets were used.

【0015】磁気抵抗効果膜は、各ターゲットを配置し
たカソードに各々高電圧を印加して装置内にプラズマを
発生させ順次各層を形成した。膜形成時には永久磁石を
用いて基板に平行におよそ70Oeの磁界を印加して一
軸異方性を持たせるとともに、クロム−マンガン−白金
膜の交換結合磁界の方向を印加磁界の方向に誘導した。
各層の形成条件を表1に示す。
The magnetoresistive film was formed by applying a high voltage to each of the cathodes on which the respective targets were arranged, generating plasma in the apparatus, and sequentially forming each layer. At the time of film formation, a magnetic field of about 70 Oe was applied in parallel to the substrate using a permanent magnet to impart uniaxial anisotropy, and the direction of the exchange coupling magnetic field of the chromium-manganese-platinum film was guided in the direction of the applied magnetic field.
Table 1 shows the conditions for forming each layer.

【0016】[0016]

【表1】 [Table 1]

【0017】磁気抵抗効果膜10は、形成後に真空熱処
理装置内において熱処理を行った。熱処理は室温から所
定の温度たとえば230℃まで上昇し、所定の時間たと
えば3時間保持し、室温まで冷却して行った。上記昇
温、保持、および冷却の全工程において、基板の面内に
平行に3kOeの磁界を印加して行った。上記磁界の方
向は、膜形成時に永久磁石にて印加した磁界と平行な方
向とした。
After the formation of the magnetoresistive film 10, a heat treatment was performed in a vacuum heat treatment apparatus. The heat treatment was performed by increasing the temperature from room temperature to a predetermined temperature, for example, 230 ° C., holding for a predetermined time, for example, 3 hours, and cooling to room temperature. In all of the steps of temperature increase, holding, and cooling, a magnetic field of 3 kOe was applied in parallel to the plane of the substrate. The direction of the magnetic field was parallel to the magnetic field applied by the permanent magnet during film formation.

【0018】[0018]

【実施例】本発明に従って磁気抵抗効果膜を成膜するに
当たって、成膜前の基板の表面処理条件による交換結合
磁界Hexへの影響を調べた。その結果を表2に示す。
アルミナ膜を800A厚に成膜した基板を用い、表面処
理として、3×10-7 Torr まで真空引きした後Arガ
スを30sccm、酸素ガスを20sccmの流量でス
パッタチャンバー内に導入し、チャンバー内に備えられ
たAlターゲットに100〜200WのAC電力を投入
し、30秒から3分間放電させた。放電完了後上に述べ
たのと同様にして磁気抵抗効果膜を成膜したものを表2
では実施例としている。同じ基板を用いて、基板の表面
処理として従来から用いられているイオンミリング法で
行った後、磁気抵抗効果膜を成膜したものを比較例とし
ている。表2から明らかなように、本発明によれば交換
結合磁界が従来例に比べて大きくすることができた。
EXAMPLES In forming a magnetoresistive film according to the present invention, the effect of the surface treatment conditions of the substrate before film formation on the exchange coupling magnetic field Hex was examined. Table 2 shows the results.
Using a substrate on which an alumina film was formed to a thickness of 800 A, as a surface treatment, evacuated to 3 × 10 −7 Torr, then introduced Ar gas at a flow rate of 30 sccm and oxygen gas at a flow rate of 20 sccm into the sputtering chamber. AC power of 100 to 200 W was applied to the provided Al target, and discharge was performed for 30 seconds to 3 minutes. Table 2 shows that the magnetoresistive film was formed after the discharge was completed in the same manner as described above.
This is an embodiment. Using the same substrate as the surface treatment of the substrate by a conventional ion milling method, and then forming a magnetoresistive film as a comparative example. As is clear from Table 2, according to the present invention, the exchange coupling magnetic field could be increased as compared with the conventional example.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上説明したように、本発明の磁気抵抗
効果膜の製造方法によれば、従来よりも大きな交換結合
磁界が得られる。このように本発明によれば磁気抵抗効
果膜は大きな交換結合磁界を持つので、良好なスピンバ
ルブ特性が得られ、高密度磁気記録の再生ヘッドとして
高出力で特性の安定したものが実現できる。
As described above, according to the method of manufacturing a magnetoresistive effect film of the present invention, a larger exchange coupling magnetic field can be obtained than in the prior art. As described above, according to the present invention, since the magnetoresistive film has a large exchange coupling magnetic field, good spin valve characteristics can be obtained, and a high-output magnetic recording head having stable characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果膜を応用した磁気ヘッド
の再生部の概略図である。
FIG. 1 is a schematic view of a reproducing section of a magnetic head to which a magnetoresistive film of the present invention is applied.

【図2】本発明の磁気抵抗効果膜の一実施態様の概略図
である。
FIG. 2 is a schematic view of one embodiment of the magnetoresistive film of the present invention.

【符号の説明】[Explanation of symbols]

1 下地膜層 2 第一の強磁性体層(自由層) 3 非磁性層 4 第二の強磁性体層(固定層) 5 反強磁性体層 6 保護膜層 8 下部シールド膜 9、11 ギャップアルミナ膜 10 磁気抵抗効果膜 12 上部シールド膜 REFERENCE SIGNS LIST 1 base film layer 2 first ferromagnetic layer (free layer) 3 nonmagnetic layer 4 second ferromagnetic layer (fixed layer) 5 antiferromagnetic layer 6 protective film layer 8 lower shield film 9, 11 gap Alumina film 10 Magnetoresistive film 12 Upper shield film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に設けられており、非磁性層を介
して対向して積層されている強磁性体層の内、一方の強
磁性体層に隣接して反強磁性体層が設けられている磁気
抵抗効果膜の製造方法において、前記基板上にAlある
いはSiターゲットを用いてAC電圧を印加してスパッ
タした後、この基板上に磁気抵抗効果膜を形成すること
を特徴とする磁気抵抗効果膜の製造方法。
An antiferromagnetic layer is provided adjacent to one of the ferromagnetic layers provided on a substrate and opposed to each other with a nonmagnetic layer interposed therebetween. A method of manufacturing a magnetoresistive film, wherein an AC voltage is applied to the substrate by sputtering using an Al or Si target, and then a magnetoresistive film is formed on the substrate. Manufacturing method of resistive effect film.
【請求項2】 前記のAlあるいはSiターゲットを用
いてAC電圧を印加してスパッタする際にArとO2
混合ガスを導入してスパッタすることを特徴とする請求
項1記載の磁気抵抗効果膜の製造方法。
2. A magnetoresistive effect according to claim 1, wherein a sputtering is performed by introducing a mixed gas of Ar and O 2 when applying an AC voltage using said Al or Si target and performing sputtering. Manufacturing method of membrane.
【請求項3】 強磁性体層に隣接して設けられる反強磁
性体層がCrMnPt合金あるいはIrMn合金である
ことを特徴とする請求項1あるいは2記載の磁気抵抗効
果膜の製造方法。
3. The method according to claim 1, wherein the antiferromagnetic layer provided adjacent to the ferromagnetic layer is a CrMnPt alloy or an IrMn alloy.
JP13618298A 1998-05-19 1998-05-19 Manufacture of magnetoresistive effect film Withdrawn JPH11329883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13618298A JPH11329883A (en) 1998-05-19 1998-05-19 Manufacture of magnetoresistive effect film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13618298A JPH11329883A (en) 1998-05-19 1998-05-19 Manufacture of magnetoresistive effect film

Publications (1)

Publication Number Publication Date
JPH11329883A true JPH11329883A (en) 1999-11-30

Family

ID=15169270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13618298A Withdrawn JPH11329883A (en) 1998-05-19 1998-05-19 Manufacture of magnetoresistive effect film

Country Status (1)

Country Link
JP (1) JPH11329883A (en)

Similar Documents

Publication Publication Date Title
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
KR100462926B1 (en) Spin tunnel magnetoresistive effect film and element, magnetoresistive sensor using same, magnetic apparatus, and method for manufacturing same
JP2962415B2 (en) Exchange coupling membrane
JPH10294506A (en) Spin valve type thin-film element and its manufacture
JPH11121832A (en) Spin bulb-type thin film element
JP3473016B2 (en) Ferromagnetic tunnel junction device, magnetic head and magnetic memory
JP2000500292A (en) Magnetic field sensor and method of manufacturing magnetic field sensor
JP3175922B2 (en) Method of manufacturing spin-valve thin film element
JP2001345493A (en) Tunnel magnetoresistance effect element and magnetic head thereof
JP3684005B2 (en) Magnetoresistive element, magnetoresistive head, and magnetoresistive magnetic field sensor
JP3822313B2 (en) Method for manufacturing magnetoresistive multilayer film
JPH1091921A (en) Dual spin bulb-type thin film magnetic head
JPH11329883A (en) Manufacture of magnetoresistive effect film
JP2610376B2 (en) Magnetoresistance effect element
JP2000216020A (en) Magneto-resistive effect film and manufacture thereof
JP3071781B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin-film magnetic head using the magnetoresistive element
JP3274449B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
JPH11329838A (en) Magnetoresistive film
JP3843837B2 (en) Method for manufacturing spin valve magnetoresistive sensor and method for manufacturing thin film magnetic head
JP2001345494A (en) Magnetoresistance effect element and manufacturing method thereof, magnetoresistance effect type magnetic head and manufacturing method thereof, and magnetic recording/reproducing equipment
JP3274440B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
JP3255901B2 (en) Method for producing exchange coupling membrane
JP3048571B2 (en) Exchange coupling film, magnetoresistive element using this exchange coupling film, and thin film magnetic head using the magnetoresistive element
JPH1174123A (en) Magneto-resistance effect film
JP3048572B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20040205

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040624