JPH11329074A - Conductive resin composition - Google Patents

Conductive resin composition

Info

Publication number
JPH11329074A
JPH11329074A JP6360699A JP6360699A JPH11329074A JP H11329074 A JPH11329074 A JP H11329074A JP 6360699 A JP6360699 A JP 6360699A JP 6360699 A JP6360699 A JP 6360699A JP H11329074 A JPH11329074 A JP H11329074A
Authority
JP
Japan
Prior art keywords
zinc
resin composition
metal
conductive resin
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6360699A
Other languages
Japanese (ja)
Other versions
JP3525071B2 (en
Inventor
和利 ▲榊▼原
Kazutoshi Sakakibara
Takashi Nakajima
隆志 中島
Minoru Kaneko
稔 金子
Masatoshi Harada
正利 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Togo Seisakusho Corp
Original Assignee
Togo Seisakusho Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Togo Seisakusho Corp filed Critical Togo Seisakusho Corp
Priority to JP06360699A priority Critical patent/JP3525071B2/en
Publication of JPH11329074A publication Critical patent/JPH11329074A/en
Application granted granted Critical
Publication of JP3525071B2 publication Critical patent/JP3525071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition having excellent forming property and conductivity by using zinc-based metal powder carrying conductivity as a main component, and including a low melting point metal and synthetic resin in the zinc-based metal powder. SOLUTION: This conductive resin composition is composed of zinc group- based powder, a low melting point metal melted when molded, and a synthetic resin. As the zinc-based metal powder, metal zinc powder, brass powder and tin-zinc powder can be used. The zinc-based metal powder having 1-100 μm of grain size is desirably used, and the zinc-based metal powder is desirably blended at 10-60 vol.% in relation to the whole of the conductive resin composition at 100 vol.%. As the low melting point metal, tin or a tin alloy known as the solder can be used, and formed into fine powder so as to be blended with the resin. The low melting point metal is blended at 15 vol.% or less in relation to the whole of the composition. As the synthetic resin material, the thermoplastic resin can be used, and desirably blended at 30-80 vol.% in relation to the whole of the composition. As other component, metal fiber, metal powder except for the zinc-based, and the extender such as calcium carbonate and talc can be blended.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気配線用樹脂組
成物として使用できる導電性樹脂組成物に関する。
The present invention relates to a conductive resin composition which can be used as a resin composition for electric wiring.

【0002】[0002]

【従来の技術】射出成形時の温度で溶融する低融点金属
が配合された導電性樹脂組成物としては特公平7−49
491号公報とか特開平5−325637号公報に見ら
れるように、金属繊維と低融点金属および合成樹脂から
なる導電性樹脂組成物がある。かかる導電性樹脂組成物
は射出成形等で所定形状に成形され、その構成成分であ
る金属繊維及び低融点金属が互いに当接した状態で樹脂
中に埋設される。このため成形体は導電性をもつ。
2. Description of the Related Art Japanese Patent Publication No. 7-49 discloses a conductive resin composition containing a low melting point metal which melts at the temperature during injection molding.
As disclosed in JP-A-491 and JP-A-5-325637, there is a conductive resin composition comprising a metal fiber, a low melting point metal and a synthetic resin. Such a conductive resin composition is formed into a predetermined shape by injection molding or the like, and the metal fibers and the low-melting-point metal, which are constituent components thereof, are buried in the resin in a state where they are in contact with each other. For this reason, the molded body has conductivity.

【0003】[0003]

【発明が解決しようとする課題】従来の導電性樹脂組成
物は金属繊維を導電性を付与するための主要構成成分と
して使用しているため、流動性が乏しく成形性が悪いと
いう問題がある。この成形性を改善するため金属繊維の
配合量を少なくし、その分低融点金属の配合量を増加さ
せると低融点金属が成形時に相分離し、均一な導電性を
もつ成形体が得られないという問題がある。また、金属
繊維は価格が高く産業上利用されにくいという問題もあ
る。
Since the conventional conductive resin composition uses metal fibers as a main component for imparting conductivity, there is a problem that fluidity is poor and moldability is poor. If the compounding amount of the metal fiber is reduced to improve the formability and the compounding amount of the low melting point metal is increased by that amount, the low melting point metal is phase-separated during molding, and a molded body having uniform conductivity cannot be obtained. There is a problem. In addition, there is also a problem that metal fibers are expensive and are hardly used industrially.

【0004】本発明はかかる問題を解決するもので、成
形性に優れかつ導電性に優れさらに安価な導電性樹脂組
成物を提供することを課題とする。
An object of the present invention is to solve such a problem, and an object of the present invention is to provide an inexpensive conductive resin composition having excellent moldability and excellent conductivity.

【0005】[0005]

【課題を解決するための手段】発明者等は導電材料とし
て使用する金属繊維が成形性を悪化することであると考
え、金属繊維に代えて金属粉末を活用することに思い至
った。そして、亜鉛金属粉末と錫を主成分とする半田合
金の組み合わせが優れた成形性と耐相分離性を兼ね備え
ることを見つけ、本発明を完成したものである。すなわ
ち、本発明の導電性樹脂組成物は、亜鉛系金属粉末と成
形時に溶融する低融点金属と合成樹脂材料とを含むこと
を特徴とする。
Means for Solving the Problems The present inventors have thought that the metal fibers used as the conductive material deteriorate the moldability, and have come to use metal powder instead of the metal fibers. The inventors have found that a combination of a zinc metal powder and a solder alloy containing tin as a main component has both excellent formability and resistance to phase separation, thereby completing the present invention. That is, the conductive resin composition of the present invention is characterized by containing a zinc-based metal powder, a low-melting-point metal that melts during molding, and a synthetic resin material.

【0006】亜鉛系金属粉末の大きな表面積により溶融
した低融点金属を捉え、低融点金属が樹脂及び亜鉛系金
属粉末より相分離するのを阻止すると考えられる。ま
た、粉末は繊維に比較し丸いため樹脂の流動性を大きく
阻害することが無く、成形性に優れている。
It is considered that the large surface area of the zinc-based metal powder captures the molten low-melting metal and prevents the low-melting metal from phase-separating from the resin and the zinc-based metal powder. Further, since the powder is rounder than the fiber, the powder does not significantly impair the fluidity of the resin and has excellent moldability.

【0007】[0007]

【発明の実施の形態】本発明の導電性樹脂組成物は、亜
鉛系金属粉末と低融点金属と合成樹脂材料とを含む。亜
鉛系金属粉末は導電性を担保する基本成分である。亜鉛
系金属粉末としては金属亜鉛粉末、黄銅粉末、錫−亜鉛
粉末等を挙げることができる。粉末の形態としては球
状、楕円状、薄片状等の粉末を使用できる。粉末の表面
は凹凸の多い比表面積の大きいものが好ましい。比表面
積を大きくすることにより溶融した低融点金属の捕捉が
強くなり、溶融した低融点金属の相分離をより効果的に
阻止できる。なお、亜鉛は低融点金属、特に錫に対して
良く濡れるばかりでなく、錫と合金化が遅い。このため
亜鉛の表面に濡れて付着した錫が、亜鉛と合金化して亜
鉛に吸収される程度が低く、長く亜鉛表面で溶融した錫
あるいは錫合金として存在する。このため亜鉛系金属粉
末を互いに接合するのに好都合である。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive resin composition of the present invention contains a zinc-based metal powder, a low melting point metal, and a synthetic resin material. Zinc-based metal powder is a basic component that ensures conductivity. Examples of the zinc-based metal powder include a metal zinc powder, a brass powder, and a tin-zinc powder. As a form of the powder, a spherical, elliptical, flaky or the like powder can be used. The surface of the powder preferably has a large specific surface area with many irregularities. By increasing the specific surface area, the trapping of the molten low melting point metal becomes stronger, and the phase separation of the molten low melting point metal can be more effectively prevented. In addition, zinc not only wets well with low melting point metals, especially tin, but also has a slow alloying with tin. For this reason, tin which wets and adheres to the surface of zinc has a low degree of being alloyed with zinc and absorbed by zinc, and exists as tin or a tin alloy that has long been melted on the zinc surface. This is convenient for joining zinc-based metal powders to each other.

【0008】亜鉛系金属粉末の大きさは粒径で1〜10
0μm、より好ましくは15〜80μm程度である。な
お、粒径が小さくなるほど、酸化皮膜が多くなつて、通
電性が悪くなる。逆に粒径が大きくなると分散性が低下
し、成形性と強度が低下する。亜鉛系金属粉末の配合量
は導電性樹脂組成物全体を100体積%としたとき、1
0〜60体積%程度が好ましい。良好な通電性を必要と
する場合には30体積%以上、さらには40体積%以上
が良い。また、成形して得られる成形体の強度を必要と
する場合には、亜鉛系金属粉末の配合量は40体積%以
下であるのが好ましい。
The size of the zinc-based metal powder is 1 to 10 in terms of particle size.
0 μm, more preferably about 15 to 80 μm. The smaller the particle size, the more the oxide film increases and the lower the conductivity. Conversely, as the particle size increases, dispersibility decreases, and moldability and strength decrease. The amount of the zinc-based metal powder is 1 when the entire conductive resin composition is 100% by volume.
About 0 to 60% by volume is preferable. When good electric conductivity is required, the content is preferably 30% by volume or more, and more preferably 40% by volume or more. When the strength of the compact obtained by molding is required, the amount of the zinc-based metal powder is preferably 40% by volume or less.

【0009】なお、亜鉛系金属粉末と樹脂との結合を強
化するため亜鉛系金属粉末の表面にシラン系あるいはチ
タン系等のカップリング剤で処理することも好ましい。
低融点金属としては通常半田として知られている錫合金
を使用できる。具体的には錫、錫−亜鉛、錫−銅、錫−
インジウム、錫−銀等を使用できる。低融点金属は通常
微粉末として樹脂に配合される。低融点金属の好ましい
粒径は6〜50μm程度である。
It is preferable to treat the surface of the zinc-based metal powder with a silane-based or titanium-based coupling agent in order to strengthen the bond between the zinc-based metal powder and the resin.
As the low melting point metal, a tin alloy commonly known as solder can be used. Specifically, tin, tin-zinc, tin-copper, tin-
Indium, tin-silver and the like can be used. The low melting point metal is usually blended with the resin as a fine powder. The preferred particle size of the low melting point metal is about 6 to 50 μm.

【0010】低融点金属の配合量は導電性樹脂組成物全
体を100体積%としたとき、3〜30体積%程度、よ
り好ましくは6〜15体積%である。合成樹脂材料とし
ては熱可塑性樹脂を使用できる。具体的には12ナイロ
ン、6ナイロン、66ナイロン、ポリアセタール、ポリ
エチレンテレフタレート(PET)、ポリブチレンテレ
フタレート(PBT)、ポリフェニレンスルフィド(P
PS)、ポリスチレン、シンジオタクチックポリスチレ
ン(SPS)、ポリプロピレン(PP)、ポリエチレン
(PE)、エチレン共重合樹脂(EVA、EAA、アイ
オノマー)等の結晶性樹脂、ABS、ポリウレタン、ポ
リカーボネート(PC)、変性ポリフェニレンオキシド
樹脂等の非晶性樹脂、液晶高分子、熱可塑性エラスレマ
ーを使用できる。なお、複数種類の熱可塑性樹脂をブレ
ンドしたポリマーアロイとして使用しても良い。特別な
場合には、シリコンゴム、フッ素ゴム、アクリルゴム等
のゴム材料、エポキシ樹脂、フェノール樹脂、熱硬化性
樹脂を用いることができる。
The amount of the low melting point metal is about 3 to 30% by volume, more preferably 6 to 15% by volume, assuming that the whole conductive resin composition is 100% by volume. A thermoplastic resin can be used as the synthetic resin material. Specifically, 12 nylon, 6 nylon, 66 nylon, polyacetal, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene sulfide (P
PS), polystyrene, syndiotactic polystyrene (SPS), polypropylene (PP), polyethylene (PE), crystalline resin such as ethylene copolymer resin (EVA, EAA, ionomer), ABS, polyurethane, polycarbonate (PC), modified Amorphous resins such as polyphenylene oxide resins, liquid crystal polymers, and thermoplastic elastomers can be used. In addition, you may use as a polymer alloy which blended several types of thermoplastic resins. In a special case, a rubber material such as silicone rubber, fluorine rubber, or acrylic rubber, an epoxy resin, a phenol resin, or a thermosetting resin can be used.

【0011】合成樹脂材料の配合量は導電性樹脂組成物
全体を100体積%としたとき、30〜80体積%程
度、より好ましくは40〜65体積%がよい。なお、亜
鉛系金属粉末と低融点金属との相対配合割合は体積率で
亜鉛系金属粉末/低融点金属の比率が1〜20程度、よ
り好ましくは4〜10程度がよい。比率が小さくなると
低融点金属同士が凝集し易くなり成形性が低下する。逆
に比率が大きくなると通電性、電磁シールド性が低下す
る傾向にある。
The amount of the synthetic resin material is preferably about 30 to 80% by volume, more preferably 40 to 65% by volume, based on 100% by volume of the whole conductive resin composition. The relative mixing ratio between the zinc-based metal powder and the low-melting-point metal is preferably about 1 to 20, more preferably about 4 to 10 in terms of volume ratio. When the ratio is low, the low melting point metals are liable to aggregate with each other, and the moldability is reduced. Conversely, when the ratio increases, the electrical conductivity and electromagnetic shielding properties tend to decrease.

【0012】他の成分として、金属繊維、亜鉛系金属粉
末以外の金属粉末、炭酸カルシウム、タルク等の増量
材、その他、樹脂組成物に使用される添加剤を配合する
ことができる。金属繊維としてはアルミニウム、アルミ
ニウム合金等で作られたアルミニウム系金属繊維が好ま
しい。金属繊維の直径は50〜100μm程度、長さは
2〜5mm程度が成形性および導通性の観点から好まし
い。なお、金属繊維としてアルミニウム系金属繊維を使
用する場合、全組成物を100体積%とすると、亜鉛粉
末とアルミニウム系金属繊維は20〜50体積%を占め
る程度が好ましい。
As other components, metal fibers, metal powders other than zinc-based metal powders, fillers such as calcium carbonate and talc, and other additives used in resin compositions can be blended. As the metal fiber, an aluminum-based metal fiber made of aluminum, an aluminum alloy, or the like is preferable. The diameter of the metal fiber is preferably about 50 to 100 μm, and the length is preferably about 2 to 5 mm from the viewpoint of moldability and conductivity. In addition, when aluminum-based metal fibers are used as metal fibers, zinc powder and aluminum-based metal fibers preferably occupy 20 to 50% by volume when the total composition is 100% by volume.

【0013】亜鉛粉末とアルミニウム系金属繊維との合
計体積に対して、低融点金属の比率、すなわち、(亜鉛
粉末の体積+アルミニウム系金属繊維の体積)/低融点
金属の体積は2〜17が好ましい。比率が大きくなると
導電性が悪くなり、逆に比率が小さくなると低融点金属
が分離するようになる。導電性樹脂組成物は、前記した
成分を押出機等で溶融混練し、ペレットとすることによ
り調製することができる。そしてこの導電性樹脂組成物
を原料として射出成形し、目的の導電性をもつ樹脂成型
品を得ることができる。特に本発明の導電性樹脂組成物
は電気回路の回路構成材料として好ましい。すなわち、
2色成形により、非導電性の樹脂組成物で成形された本
体上に本発明の導電性樹脂組成物で形成した電気回路成
形品を一体的に成形することにより優れた樹脂成形電気
部品を得ることができる。
The ratio of the low-melting metal to the total volume of the zinc powder and the aluminum-based metal fiber, that is, (volume of zinc powder + volume of aluminum-based metal fiber) / volume of the low-melting metal is 2 to 17. preferable. As the ratio increases, the conductivity deteriorates, and when the ratio decreases, the low-melting point metal separates. The conductive resin composition can be prepared by melt-kneading the above-mentioned components using an extruder or the like to form pellets. Then, the conductive resin composition is injection-molded as a raw material to obtain a resin molded product having a desired conductivity. In particular, the conductive resin composition of the present invention is preferable as a circuit constituent material of an electric circuit. That is,
An excellent resin molded electric component is obtained by integrally molding an electric circuit molded product formed with the conductive resin composition of the present invention on a main body molded with a non-conductive resin composition by two-color molding. be able to.

【0014】なお、2色成形により電気回路部分のみを
導電性樹脂組成物で形成する場合、亜鉛系金属粉末及び
低融点金属等の金属成分の配合量を高くし、得られる電
気回路部分の導通性をより高めることも好ましい。電磁
シールドとか熱伝導を必要とする成形品の場合、必要な
強度を得るために合成樹脂材料の配合量を増大させ、金
属成分の配合量を少なくすることもできる。また、電磁
シールドのガスケット成型品に対しては、合成樹脂材料
として、ゴムあるいはエラストマーを用いることができ
る。
When only the electric circuit portion is formed of the conductive resin composition by two-color molding, the amount of the metal component such as the zinc-based metal powder and the low-melting metal is increased to increase the conductivity of the obtained electric circuit portion. It is also preferable to further enhance the properties. In the case of a molded article that requires electromagnetic shielding or heat conduction, the amount of the synthetic resin material can be increased and the amount of the metal component can be reduced to obtain the required strength. Further, for a gasket molded product of an electromagnetic shield, rubber or an elastomer can be used as a synthetic resin material.

【0015】[0015]

【作用】本発明の導電性樹脂組成物は亜鉛系金属粉末を
導電材の主要成分としている。亜鉛系金属は金属材料と
して比較的軟らかく融点も低い。また、亜鉛系金属粉末
は低融点金属の錫合金とも良く濡れる。このため溶融し
た低融点金属は亜鉛系金属粉末の表面に付着して捕捉さ
れ、溶融した低融点金属が樹脂及び亜鉛系金属粉末から
相分離することが少ない。また、亜鉛系金属粉末は繊維
形状でなく繊維と比較して相対的に丸いため、溶融した
樹脂の流動を妨げることが少ない。このため本発明の導
電性樹脂組成物は成形性が良い。
The conductive resin composition of the present invention contains zinc-based metal powder as a main component of the conductive material. Zinc-based metal is relatively soft and has a low melting point as a metal material. In addition, the zinc-based metal powder wets well with the tin alloy of the low melting point metal. Therefore, the molten low-melting-point metal adheres to and is captured by the surface of the zinc-based metal powder, and the molten low-melting-point metal rarely undergoes phase separation from the resin and the zinc-based metal powder. In addition, since the zinc-based metal powder is not in a fiber form but is relatively round as compared with the fiber, the flow of the molten resin is hardly hindered. Therefore, the conductive resin composition of the present invention has good moldability.

【0016】金属繊維に代えて金属粉末を使用すること
により成形体としての導電性が悪化するのではないかと
考えられるが、導電性の低下の程度は大きくなく、実用
上大きな問題にならない。金属繊維を多量に配合した場
合の成形性の悪化に対処するため樹脂成分の配合量を高
める必要があるが、亜鉛系金属粉末を使用することによ
り成形性が高まり、その分亜鉛系金属粉末の配合割合を
高く、樹脂成分の配合割合を低くできる。この結果亜鉛
系金属粉末を使用することによる導電性の低下をカバー
できる。
It is considered that the use of metal powder in place of metal fibers may deteriorate the conductivity of the molded body, but the degree of the decrease in conductivity is not so large that it does not pose a serious problem in practical use. It is necessary to increase the compounding amount of the resin component in order to cope with the deterioration of the moldability when a large amount of metal fibers are blended, but the use of the zinc-based metal powder enhances the moldability, and the zinc-based metal powder The mixing ratio can be increased and the mixing ratio of the resin component can be reduced. As a result, a decrease in conductivity due to the use of the zinc-based metal powder can be covered.

【0017】本発明の導電性樹脂組成物は2色成形によ
る電気回路部分、電磁シールド機能を持つ樹脂成形品、
電磁シールド用のガスケット等に使用できる。
The conductive resin composition of the present invention comprises an electric circuit portion formed by two-color molding, a resin molded product having an electromagnetic shielding function,
Can be used for gaskets for electromagnetic shielding.

【0018】[0018]

【実施例】(実施例1)表1に示す8種類の導電性樹脂
組成物を調製した。原料として低融点金属として平均粒
径50μmの無鉛半田(Sn−Cu−Ni、融点225
℃)を、亜鉛系金属粉末としてメジアン粒径286(涙
滴)65(球)22(フレーク)μmの亜鉛金属粉末
を、金属繊維として銅繊維(直径30μm、長さ2.5
mm)アルミニウム繊維(直径90μm、長さ3mm)
を、樹脂としてABS、PBT、ポリフェニレンサルフ
ァイド(PPS)、12ナイロン、変性ポリフェニレン
オキシド(変性PPE)、熱可塑性エラストマー(TP
E)を用いた。
EXAMPLES (Example 1) Eight kinds of conductive resin compositions shown in Table 1 were prepared. Lead-free solder having an average particle size of 50 μm (Sn—Cu—Ni, melting point 225)
° C) as zinc-based metal powder, zinc metal powder having a median particle size of 286 (tears) 65 (sphere) 22 (flakes) μm, and copper fiber (diameter 30 μm, length 2.5
mm) Aluminum fiber (diameter 90 μm, length 3 mm)
With ABS, PBT, polyphenylene sulfide (PPS), 12 nylon, modified polyphenylene oxide (modified PPE), thermoplastic elastomer (TP)
E) was used.

【0019】導電性樹脂組成物は表1に示す配合で混合
原料を作り、この混合原料を押出機で棒状に押し出しそ
の後切断することで直径5mm、長さ5mmのペレット
とした。成形は射出成形機を使用し、通常の射出成形条
件で図1に示す、厚さ2mm、幅15mmで、長さ74
mmのS字形状に曲がり、両端から10mmの幅方向中
央に直径6mmの貫通孔をもつ通電材を成形した。
The conductive resin composition was prepared into a mixed raw material according to the composition shown in Table 1, and the mixed raw material was extruded into a rod shape by an extruder and then cut into pellets having a diameter of 5 mm and a length of 5 mm. Molding is performed using an injection molding machine under normal injection molding conditions, as shown in FIG. 1, with a thickness of 2 mm, a width of 15 mm, and a length of 74 mm.
The current-carrying material was bent into an S-shape of mm and had a through-hole with a diameter of 6 mm at the center in the width direction of 10 mm from both ends.

【0020】成形性は資料No.8を除いて特に問題は
無かった。導電性については通電材の2つの貫通孔に直
径12mmの端子をねじ止めし、両端子間の電気抵抗を
ミリオームハイテスターで測定した。測定結果を表1に
合わせて示す。さらに、両端子間に20Aの直流電流を
30分間流した時の通電材料表面の温度を測定した。な
お、室温は22℃で行った。測定結果を表1に合わせて
示す。
The moldability is described in Document No. Except for 8, there was no particular problem. Regarding the conductivity, a terminal having a diameter of 12 mm was screwed into two through holes of the current-carrying material, and the electric resistance between both terminals was measured with a milliohm high tester. The measurement results are shown in Table 1. Further, the temperature of the surface of the current-carrying material when a DC current of 20 A was passed between both terminals for 30 minutes was measured. In addition, room temperature was performed at 22 degreeC. The measurement results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1に示すように、試料No.1〜No.
5の本発明の導電性樹脂組成物で得られた成形品が体積
固有抵抗も比較的低く、発熱も少なく、成形性も良かっ
た。試料No.5、No.6の導電性樹脂組成物も体積
固有抵抗も比較的低く、発熱も少なく、成形性も良いが
高価な銅繊維、アルミニウム繊維を用いているため高価
となり、製品としての価値がそれだけ低い。
As shown in Table 1, the sample No. 1 to No.
The molded article obtained from the conductive resin composition of the present invention No. 5 had relatively low volume resistivity, generated little heat, and had good moldability. Sample No. 5, no. The conductive resin composition of No. 6 also has relatively low volume resistivity, low heat generation, and good moldability, but is expensive due to the use of expensive copper and aluminum fibers, and its value as a product is correspondingly low.

【0023】また、亜鉛金属粉末のみで低融点金属を配
合しなかった試料No.7及び銅繊維のみで低融点金属
を配合しなかった試料No.8の成形品はいずれも体積
固有抵抗が高かった。特に試料No.8の成形品は温度
上昇による通電不良が発生し通電材料として使用できる
ものでもなく、また、成形性も問題が有った。 (実施例2)表2に示す3種類の導電性樹脂組成物を調
製した。原料として低融点金属として球状で平均粒径5
0μmのSn−Cu−Ni半田(融点225℃)および
球状で平均粒径40μmのSn半田(融点232℃)
を、亜鉛系金属粉末として球状でメジアン粒径3μm及
び球状でメジアン粒径70μmの金属亜鉛粉末を用い
た。樹脂としてポリフェニレンオキシド(PPE)とポ
リプロピレン(PP)のポリマーアロイおよびシンジオ
タクチックポリスチレン(SPS)を用いた。
Sample No. 2 containing only zinc metal powder and no low melting point metal was blended. Sample No. 7 and copper fiber alone, and no low melting point metal was blended. All of the molded products of No. 8 had high volume resistivity. In particular, the sample No. The molded product of No. 8 suffered from poor electrical conduction due to a rise in temperature and could not be used as an electrically conductive material, and had a problem in moldability. (Example 2) Three kinds of conductive resin compositions shown in Table 2 were prepared. Spherical material with low melting point and average particle size of 5
0 μm Sn—Cu—Ni solder (melting point: 225 ° C.) and spherical Sn solder having an average particle size of 40 μm (melting point: 232 ° C.)
Was used as the zinc-based metal powder, spherical zinc metal powder having a median particle size of 3 μm and spherical median particle size of 70 μm. As the resin, a polymer alloy of polyphenylene oxide (PPE) and polypropylene (PP) and syndiotactic polystyrene (SPS) were used.

【0024】導電性樹脂組成物は表2に示す配合で混合
原料を作り、この混合原料を実施例1と同様に、押出機
で棒状に押し出しその後切断することで直径5mm、長
さ5mmのペレットとし、その後、実施例1と同様に射
出成形機を使用して通常の射出成形条件で図1に示す通
電材を成形した。成形性は全ての組成物共に特に問題は
無かった。参考までに溶融指数(MI)および体積固有
抵抗を表2に示す。NO.12の材料から得られた通電
材の体積抵抗率が高いのは明らかではない。
As for the conductive resin composition, a mixed raw material was prepared according to the composition shown in Table 2, and the mixed raw material was extruded into a rod shape by an extruder and cut as in Example 1 to obtain pellets having a diameter of 5 mm and a length of 5 mm. Thereafter, the current-carrying material shown in FIG. 1 was molded under the usual injection molding conditions using an injection molding machine in the same manner as in Example 1. There was no particular problem with the moldability of all the compositions. Table 2 shows the melting index (MI) and the volume resistivity for reference. NO. It is not clear that the volume resistivity of the current-carrying material obtained from the 12 materials is high.

【0025】[0025]

【表2】 [Table 2]

【0026】(実施例3)低融点金属として球状で平均
粒径40μmのSn半田(融点232℃)6体積%、亜
鉛系金属粉末として球状でメジアン粒径70μmの金属
亜鉛粉末50体積%、合成樹脂としてポリフェニレンオ
キシド(PPE)とポリプロピレン(PP)のポリマー
アロイ44体積%の組成で混合原料を作り、この混合原
料を実施例1と同様にペレットおよび通電材を成形し
た。
Example 3 6% by volume of Sn solder (melting point: 232 ° C.) having a spherical average particle diameter of 40 μm as a low melting point metal, and 50% by volume of zinc metal powder having a spherical and median particle diameter of 70 μm as a zinc-based metal powder. A mixed raw material was prepared with a composition of 44% by volume of a polymer alloy of polyphenylene oxide (PPE) and polypropylene (PP) as a resin, and the mixed raw material was formed into pellets and a current-carrying material in the same manner as in Example 1.

【0027】得られた通電材の体積固有抵抗は1.5x
10-4Ω・cm、熱伝導率は14.4W/mk、引っ張
り強度18.9MPa、引っ張り伸び6%、比重4.4
3、荷重たわみ温度ASTM D−648準拠の試験荷
重0.451MPa142℃であった。さらにこの通電
材を用いて、市販のシールド評価機を用いて磁界のシー
ルド効果および電解のシールド効果を調べた。シールド
試験方法の概略を図2に示す。なお、試験片としては本
実施例3の通電材とともに、同じ厚さ4mmの金属板
(鉄)および厚さ4mmの樹脂板に銀−銅系の金属粉末
を混入した導電塗膜をもつものの3試料について試験し
た。試験結果を図3および図4に示す。
The volume resistivity of the obtained conductive material is 1.5 ×
10 -4 Ω · cm, thermal conductivity of 14.4 W / mk, tensile strength of 18.9 MPa, tensile elongation of 6%, specific gravity of 4.4
3. Deflection temperature under load The test load was 0.451 MPa at 142 ° C. in accordance with ASTM D-648. Furthermore, using this conductive material, the shielding effect of a magnetic field and the shielding effect of electrolysis were examined using a commercially available shield evaluation machine. FIG. 2 shows an outline of the shield test method. In addition, as the test piece, the conductive material in which silver-copper-based metal powder was mixed into a metal plate (iron) having a thickness of 4 mm and a resin plate having a thickness of 4 mm together with the conducting material of Example 3 was used. The sample was tested. The test results are shown in FIGS.

【0028】図3より明らかなように、本実施例の通電
材の磁界シールド効果は、測定周波数10〜1000M
Hzで金属板と同程度の高いシールド効果を示した。ま
た、電解のシールド効果については、図4より明らかな
ように、金属板と同程度の電解シールド効果を示した。 (実施例4)低融点金属として球状で平均粒径40μm
のSn半田(融点232℃)を、亜鉛系金属粉末として
涙滴状でメジアン粒径18μmの亜鉛金属粉末を、アル
ミニウム繊維として直径90μm、長さ3mmのもの
を、合成樹脂としてポリフェニレンオキシド(PPE)
とポリプロピレン(PP)のポリマーアロイを用いた。
そして、亜鉛金属粉末とアルミニウム繊維をそれぞれ5
体積%と25体積%の組合せ(後で説明する図5の◆印
の組合せ)、亜鉛金属粉末とアルミニウム繊維をそれぞ
れ10体積%と25体積%の組合せ(後で説明する図5
の■印の組合せ)、亜鉛金属粉末とアルミニウム繊維を
それぞれ15体積%と20体積%の組合せ(後で説明す
る図5の▲印の組合せ)および亜鉛金属粉末とアルミニ
ウム繊維をそれぞれ15体積%と25体積%の組合せ
(後で説明する図5の●印の組合せ)の4種類の組合せ
とした。さらに前記Sn半田をそれぞれ3体積%、4体
積%および5体積%それぞれ加え、残りを前記合成樹脂
とした12種類の導電性樹脂組成物を実施例1と同様に
して調製した。
As is clear from FIG. 3, the magnetic field shielding effect of the current-carrying material of this embodiment is measured at a measurement frequency of 10 to 1000M.
It showed a high shielding effect comparable to a metal plate at Hz. Further, as shown in FIG. 4, the shielding effect of electrolysis was substantially the same as that of the metal plate. (Example 4) Spherical low-melting point metal having an average particle size of 40 µm
Of Sn solder (melting point 232 ° C.), teardrop-shaped zinc metal powder having a median particle size of 18 μm as zinc-based metal powder, aluminum fiber having a diameter of 90 μm and a length of 3 mm, and polyphenylene oxide (PPE) as a synthetic resin
And a polypropylene (PP) polymer alloy.
Then, zinc metal powder and aluminum fiber are each
The combination of volume% and 25% by volume (combination of the symbol “◆” in FIG. 5 described later) and the combination of zinc metal powder and aluminum fiber in 10% and 25% by volume (FIG.
, A combination of 15% by volume and 20% by volume of zinc metal powder and aluminum fiber (a combination of ▲ in FIG. 5 described later) and a combination of 15% by volume of zinc metal powder and aluminum fiber, respectively. Four types of combinations of 25% by volume (combinations indicated by ● in FIG. 5 described later) were used. Further, 12 types of conductive resin compositions were prepared in the same manner as in Example 1 by adding the Sn solder at 3% by volume, 4% by volume and 5% by volume, respectively, and using the remainder as the synthetic resin.

【0029】これら12種類の導電性樹脂組成物よりそ
れぞれ熱プレスで120mmx120mmx1mmの1
2種類の板材を成形した。これらの板材の表面にミリオ
ームハイテスタ(4点式)を用い120mm間隔の抵抗
を測定した。得られた結果を図5に示す。図5より亜鉛
金属粉末とアルミニウム繊維との総量が少ない場合に
は、低融点合金の組成の1体積%の異なりにより板材の
抵抗値が大きく変化する。
Each of these 12 types of conductive resin compositions was heated to a size of 120 mm × 120 mm × 1 mm.
Two types of plate materials were formed. The resistance at 120 mm intervals was measured on the surface of these plate materials using a milliohm high tester (four-point type). The results obtained are shown in FIG. As shown in FIG. 5, when the total amount of the zinc metal powder and the aluminum fiber is small, the resistance value of the sheet material greatly changes due to the difference of 1% by volume of the composition of the low melting point alloy.

【0030】[0030]

【発明の効果】本発明の導電性樹脂組成物は成形性が良
くかつ導電性および熱伝導性にも優れている。さらに安
価な亜鉛金属粉末を用いているため安価であり、導電
材、熱伝導材としての価値が高い。
The conductive resin composition of the present invention has good moldability and excellent electrical conductivity and thermal conductivity. Further, since inexpensive zinc metal powder is used, it is inexpensive and has high value as a conductive material and a heat conductive material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 通電材の試験に用いた成形品の平面図であ
る。
FIG. 1 is a plan view of a molded product used for a test of a conductive material.

【図2】 通電材のシールド評価試験方法の概略を示す
図である。
FIG. 2 is a diagram showing an outline of a shield evaluation test method for a conductive material.

【図3】 実施例3の組成物で成形した通電材の磁界シ
ールド効果を示す線図である。
FIG. 3 is a diagram showing a magnetic field shielding effect of a current-carrying material molded with the composition of Example 3.

【図4】 実施例3の組成物で成形した通電材の電解シ
ールド効果を示す線図である。
FIG. 4 is a diagram showing an electrolytic shielding effect of a current-carrying material molded with the composition of Example 3.

【図5】 実施例4の組成物で成形した通電材の低融点
金属、亜鉛金属粉末及びアルミニウム繊維の組成割合と
得られる導通材の抵抗値の関係を示す図である。導電材
料の試験に用いた成形品の平面図である。
FIG. 5 is a graph showing the relationship between the composition ratio of a low-melting metal, a zinc metal powder, and an aluminum fiber of a current-carrying material formed from the composition of Example 4 and the resistance value of a conductive material obtained. It is a top view of the molded article used for the test of the conductive material.

フロントページの続き (72)発明者 原田 正利 愛知県愛知郡東郷町大字春木字蛭池1番地 株式会社東郷製作所内Continued on the front page. (72) Inventor Masatoshi Harada 1 Toki-cho, Haruki, Togo-cho, Aichi-gun, Aichi Prefecture Inside Togo Seisakusho Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛系金属粉末と成形時に溶融する低融
点金属と合成樹脂材料とを含むことを特徴とする導電性
樹脂組成物。
1. A conductive resin composition comprising a zinc-based metal powder, a low-melting metal which melts during molding, and a synthetic resin material.
【請求項2】 前記亜鉛系金属粉末の粒子径が1〜10
0μmである請求項1記載の導電性樹脂組成物。
2. The zinc-based metal powder having a particle size of 1 to 10
The conductive resin composition according to claim 1, which has a thickness of 0 µm.
【請求項3】 前記低融点金属は錫または錫を含む合金
である請求項1記載の導電性樹脂組成物。
3. The conductive resin composition according to claim 1, wherein the low melting point metal is tin or an alloy containing tin.
【請求項4】 前記低融点金属は全組成物の15体積%
以下である請求項1記載の導電性樹脂組成物。
4. The low melting point metal comprises 15% by volume of the total composition.
The conductive resin composition according to claim 1, which is as follows.
【請求項5】 前記合成樹脂材料はナイロン、PBT、
液晶ポリマー、ABS、PPS、熱可塑性エラストマ
ー、SPS、PC、PP、PE、エチレン共重合樹脂、
ポリフェニレン樹脂、シリコンゴム、フッ素ゴム、アク
リルゴム、エポキシ樹脂の少なくとも1種である請求項
1記載の導電性樹脂組成物。
5. The synthetic resin material is nylon, PBT,
Liquid crystal polymer, ABS, PPS, thermoplastic elastomer, SPS, PC, PP, PE, ethylene copolymer resin,
The conductive resin composition according to claim 1, which is at least one of polyphenylene resin, silicone rubber, fluorine rubber, acrylic rubber, and epoxy resin.
【請求項6】 前記亜鉛系金属粉末は全組成物の40体
積%以上である請求項1記載の導電性樹脂組成物。
6. The conductive resin composition according to claim 1, wherein the zinc-based metal powder accounts for 40% by volume or more of the total composition.
【請求項7】 前記亜鉛系金属粉末の総体積は前記低融
点金属の総体積の4〜10倍である請求項1記載の導電
性樹脂組成物。
7. The conductive resin composition according to claim 1, wherein the total volume of the zinc-based metal powder is 4 to 10 times the total volume of the low melting point metal.
【請求項8】 金属繊維を含む請求項1記載の導電性樹
脂組成物。
8. The conductive resin composition according to claim 1, comprising a metal fiber.
【請求項9】 前記亜鉛系金属粉末および前記金属繊維
は全組成物の50体積%以下である請求項8記載の導電
性樹脂組成物。
9. The conductive resin composition according to claim 8, wherein the content of the zinc-based metal powder and the metal fibers is 50% by volume or less of the whole composition.
【請求項10】 前記亜鉛系金属粉末および前記金属繊
維の総体積は前記低融点金属の総体積の4〜10倍であ
る請求項8記載の導電性樹脂組成物。
10. The conductive resin composition according to claim 8, wherein the total volume of the zinc-based metal powder and the metal fibers is 4 to 10 times the total volume of the low melting point metal.
【請求項11】 前記金属繊維はその直径が50〜10
0μmである請求項8記載の導電性樹脂組成物。
11. The metal fiber has a diameter of 50-10.
The conductive resin composition according to claim 8, which has a thickness of 0 µm.
【請求項12】 前記金属繊維はその長さが2〜5mm
である請求項8記載の導電性樹脂組成物。
12. The metal fiber has a length of 2 to 5 mm.
The conductive resin composition according to claim 8, which is:
【請求項13】 前記金属繊維はアルミニウム系金属繊
維である請求項8記載の導電性樹脂組成物。
13. The conductive resin composition according to claim 8, wherein said metal fiber is an aluminum-based metal fiber.
JP06360699A 1998-03-10 1999-03-10 Conductive resin composition Expired - Fee Related JP3525071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06360699A JP3525071B2 (en) 1998-03-10 1999-03-10 Conductive resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5845398 1998-03-10
JP10-58453 1998-03-10
JP06360699A JP3525071B2 (en) 1998-03-10 1999-03-10 Conductive resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003196666A Division JP2004047470A (en) 1998-03-10 2003-07-14 Conductive resin composition and method for manufacturing resin molding using it

Publications (2)

Publication Number Publication Date
JPH11329074A true JPH11329074A (en) 1999-11-30
JP3525071B2 JP3525071B2 (en) 2004-05-10

Family

ID=26399511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06360699A Expired - Fee Related JP3525071B2 (en) 1998-03-10 1999-03-10 Conductive resin composition

Country Status (1)

Country Link
JP (1) JP3525071B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176414A (en) * 2001-12-11 2003-06-24 Shin Etsu Chem Co Ltd Thermally conductive silicone composition, cured product thereof and method for laying the same, and heat- releasing structure for semiconductor device using the same
JP2004529229A (en) * 2001-03-13 2004-09-24 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Conductive plastic molding material, its use and molded articles produced therefrom
JP2007045987A (en) * 2005-08-12 2007-02-22 Tosoh Corp Polyarylene sulfide composition
JP2007045988A (en) * 2005-08-12 2007-02-22 Tosoh Corp Polyarylene sulfide composition
JP2007051270A (en) * 2005-05-25 2007-03-01 Tosoh Corp Polyarylene sulfide composition
JP2007146105A (en) * 2005-11-04 2007-06-14 Tosoh Corp Polyarylene sulfide composition
JP2007517928A (en) * 2003-12-12 2007-07-05 シーメンス アクチエンゲゼルシヤフト Metal-plastic-hybrid and molded body produced from the hybrid
JP2007291220A (en) * 2006-04-25 2007-11-08 Tosoh Corp Polyarylene sulfide composition
JP2007291300A (en) * 2006-04-27 2007-11-08 Tosoh Corp Polyarylene sulfide composition
JP2011500935A (en) * 2007-10-23 2011-01-06 チェイル インダストリーズ インコーポレイテッド Thermally conductive polymer composite and molded article using the same
JP2013544950A (en) * 2010-12-28 2013-12-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション Polymer with metal filler for EMI shielding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529229A (en) * 2001-03-13 2004-09-24 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Conductive plastic molding material, its use and molded articles produced therefrom
JP2003176414A (en) * 2001-12-11 2003-06-24 Shin Etsu Chem Co Ltd Thermally conductive silicone composition, cured product thereof and method for laying the same, and heat- releasing structure for semiconductor device using the same
JP2007517928A (en) * 2003-12-12 2007-07-05 シーメンス アクチエンゲゼルシヤフト Metal-plastic-hybrid and molded body produced from the hybrid
JP2007051270A (en) * 2005-05-25 2007-03-01 Tosoh Corp Polyarylene sulfide composition
JP2007045987A (en) * 2005-08-12 2007-02-22 Tosoh Corp Polyarylene sulfide composition
JP2007045988A (en) * 2005-08-12 2007-02-22 Tosoh Corp Polyarylene sulfide composition
JP2007146105A (en) * 2005-11-04 2007-06-14 Tosoh Corp Polyarylene sulfide composition
US8357737B2 (en) 2005-11-04 2013-01-22 Tosoh Corporation Polyarylene sulfide composition
JP2007291220A (en) * 2006-04-25 2007-11-08 Tosoh Corp Polyarylene sulfide composition
JP2007291300A (en) * 2006-04-27 2007-11-08 Tosoh Corp Polyarylene sulfide composition
JP2011500935A (en) * 2007-10-23 2011-01-06 チェイル インダストリーズ インコーポレイテッド Thermally conductive polymer composite and molded article using the same
JP2013544950A (en) * 2010-12-28 2013-12-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション Polymer with metal filler for EMI shielding

Also Published As

Publication number Publication date
JP3525071B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
CN1914694B (en) Metal/plastic hybrid and shaped body produced therefrom
EP0942436B1 (en) Electroconductive resin composition
US5958303A (en) Electrically conductive compositions and methods for producing same
EP1180263B1 (en) Electrically conductive thermoplastic elastomer and product made thereof
US20070012900A1 (en) Enhanced performance conductive filler and conductive polymers made therefrom
JPH11329074A (en) Conductive resin composition
US6409942B1 (en) Electrically conductive compositions and methods for producing same
JP2001338529A (en) Conductive resin composition
JP2004047470A (en) Conductive resin composition and method for manufacturing resin molding using it
JP2000357413A (en) Conductive resin composition
JPH0647254B2 (en) Conductive resin composition
JP2001261975A (en) Electroconductive thermoplastic resin composition
JP5040107B2 (en) Method for producing molded product made of conductive thermoplastic resin
JPH06315932A (en) Conductive resin molded piece
JPH05109313A (en) Conductive resin composition and its molding
JP2523097B2 (en) Conductive resin composition and molded article thereof
JPH05109314A (en) Conductive resin composition and its molding
JPH1180468A (en) Resin molding material containing conductive filler
JPH0763970B2 (en) Conductive resin molding
JP2004027097A (en) Thermoplastic resin composition
JPH0741609A (en) Electrically conductive resin composition
JPH0743965B2 (en) Conductive resin composition
EP0674326A2 (en) Electrical conductor having an insulation of plastic material
JPH039956A (en) Highly conductive resin composition
JPS61106663A (en) Electrically conductive polyamide resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20031208

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Effective date: 20040216

Free format text: JAPANESE INTERMEDIATE CODE: A61

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees