JPH11326366A - Semiconductor electronic component device and its manufacture - Google Patents

Semiconductor electronic component device and its manufacture

Info

Publication number
JPH11326366A
JPH11326366A JP14832998A JP14832998A JPH11326366A JP H11326366 A JPH11326366 A JP H11326366A JP 14832998 A JP14832998 A JP 14832998A JP 14832998 A JP14832998 A JP 14832998A JP H11326366 A JPH11326366 A JP H11326366A
Authority
JP
Japan
Prior art keywords
substrate
bonding
fusible
cover plate
semiconductor electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14832998A
Other languages
Japanese (ja)
Inventor
Masaya Tamura
昌弥 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP14832998A priority Critical patent/JPH11326366A/en
Publication of JPH11326366A publication Critical patent/JPH11326366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor electronic component device in which a gas generated in the bonding operation of a substrate to a lid plate is made to flow out to the outside, in which a vacuum at the inside is enhanced and whose operating state is enhanced, by a method wherein a temporary gap is formed in the bonding operation. SOLUTION: A housing space 13 which houses an acceleration detecting element 4 is formed between a substrate 2 and a lid plate 12 for an accelerometer 1. In addition, recessed grooves 14 and meltable protrusions 18 are formed in the bonding face 12B of the lid plate 12 to the substrate 2. Then, when the substrate 2 and the lid plate 12 are anodically bonded in a low-pressure atmosphere, a gap S is formed only near the recessed grooves 14 due to the meltable protrusions 18, and a gas which is generated inside the housing space 13 is made to flow out to the outside from the gap S. In succession, the meltable protrusions 18 are melted so as to flow into the recessed grooves 14, the substrate 2 and the lid plate 12 are bonded newly in the position of the gap S, and the housing space 13 is sealed airtightly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば検出部が密
閉構造となったセンサ等の検出装置に好適に用いられる
半導体電子部品装置及びその製造方法に関し、特に、マ
イクロマシニング技術を用いて基板上に形成した検出素
子を真空状態で密閉する構成とした半導体電子部品装置
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor electronic component device suitably used for a detecting device such as a sensor having a closed detecting portion, and a method of manufacturing the same. The present invention relates to a semiconductor electronic component device configured to hermetically seal a detection element formed in a vacuum state and a method of manufacturing the same.

【0002】[0002]

【従来の技術】一般に、密閉構造を有する半導体電子部
品装置としては、例えばシリコン材料等により形成さ
れ、エッチング処理を用いて表面上に加速度検出素子が
変位可能に形成された基板と、ガラス材料等によって形
成され、該基板上に接合された蓋板等とからなる加速度
センサが知られている。そして、この種の従来技術によ
る加速度センサは、基板に加わる加速度を加速度検出素
子の変位量として検出するものである。
2. Description of the Related Art In general, as a semiconductor electronic component device having a sealed structure, for example, a substrate formed of a silicon material or the like and having an acceleration detecting element displaceably formed on a surface thereof by an etching process, a glass material or the like An acceleration sensor is known which is formed of a cover plate and the like formed on the substrate and bonded to the substrate. An acceleration sensor of this type according to the related art detects an acceleration applied to a substrate as a displacement amount of an acceleration detecting element.

【0003】ここで、基板と蓋板とは、陽極接合等の手
段を用いて加速度検出素子の周辺部が減圧雰囲気中で接
合され、これによって加速度検出素子は基板と蓋板との
間に形成された真空度の高い収容凹部内に密閉状態で収
容されている。これにより、加速度検出素子は、前記収
容凹部内で変位するときに受ける空気抵抗等が小さくな
るから、基板に加わる加速度を高い精度で検出すること
ができる。
Here, the substrate and the cover plate are joined together in a reduced pressure atmosphere at the periphery of the acceleration detecting element by means such as anodic bonding, whereby the acceleration detecting element is formed between the substrate and the cover plate. It is housed in a closed state in the housing recess having a high degree of vacuum. Accordingly, the acceleration detecting element reduces the air resistance or the like received when the acceleration detecting element is displaced in the accommodating recess, so that the acceleration applied to the substrate can be detected with high accuracy.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した従
来技術では、基板と蓋板とを減圧雰囲気中で陽極接合す
ることにより、これらの間に形成される加速度検出素子
用の収容凹部を真空に近い減圧状態で密閉する構成とし
ている。
In the prior art described above, the substrate and the cover plate are anodically bonded in a reduced-pressure atmosphere, so that the accommodating recess for the acceleration detecting element formed therebetween is evacuated. It is configured to be hermetically sealed in a near reduced pressure state.

【0005】しかし、基板と蓋板とを陽極接合するとき
には、接合面から酸素等の気体が発生し、この気体は、
基板と蓋板とを減圧雰囲気中で接合しているにも拘ら
ず、少なくとも一部が加速度検出素子用の収容凹部内に
残留する傾向がある。このため、従来技術では、加速度
検出素子が収容凹部内の残留気体によって空気抵抗を受
け易くなり、その検出精度、信頼性を向上させるのが難
しいという問題がある。
However, when the substrate and the cover plate are anodic-bonded, a gas such as oxygen is generated from the bonding surface.
In spite of the fact that the substrate and the cover plate are joined in a reduced-pressure atmosphere, at least a part thereof tends to remain in the accommodating recess for the acceleration detecting element. For this reason, in the related art, there is a problem that the acceleration detection element is easily affected by air resistance due to the residual gas in the accommodation recess, and it is difficult to improve the detection accuracy and reliability.

【0006】また、例えばシリコンウエハ等の表面上に
複数の加速度センサを形成する場合には、各加速度セン
サの収容凹部内に残留する気体の量が一定とならないた
め、加速度検出素子毎に検出精度のばらつきが生じ易い
ばかりでなく、製造時の歩留まりが悪化するという問題
がある。
When a plurality of acceleration sensors are formed on the surface of a silicon wafer or the like, for example, the amount of gas remaining in the accommodating recess of each acceleration sensor is not constant. Not only tends to occur, but also the yield during manufacturing deteriorates.

【0007】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明は、機能部を収容するために基板
と蓋板との間に形成する空間の真空度を確実に高めるこ
とができ、機能部の信頼性を向上できると共に、作動状
態が安定した半導体電子部品装置を効率よく製造できる
ようにした半導体電子部品装置及びその製造方法を提供
することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and the present invention is intended to reliably increase the degree of vacuum in a space formed between a substrate and a cover plate to accommodate a functional unit. It is an object of the present invention to provide a semiconductor electronic component device capable of efficiently manufacturing a semiconductor electronic component device having a stable operation state while improving the reliability of a functional unit, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上述した課題を解決する
ために請求項1の発明は、表面に機能部が形成され該機
能部の周辺部が接合面となった基板と、該基板と対向す
る面に該基板上の機能部を収容する収容凹部が形成され
ると共に該収容凹部の周辺に接合面が形成され、基板上
に減圧雰囲気中で陽極接合して設けられた蓋板とからな
る半導体電子部品装置において、前記基板と蓋板とのう
ち少なくともいずれか一方の接合面には、前記基板と蓋
板との接合温度よりも高い温度で溶融する溶融性突起を
設け、前記接合面には該溶融性突起を囲んで溶融した突
起が流入するのを許す凹陥溝を設けたことを特徴とする
構成を採用している。
According to a first aspect of the present invention, there is provided a substrate having a functional portion formed on a surface thereof and a peripheral portion of the functional portion serving as a bonding surface. A housing recess for housing the functional unit on the substrate is formed on the surface to be bonded, and a joining surface is formed around the housing recess, and a lid plate is provided on the substrate by anodic bonding in a reduced-pressure atmosphere. In the semiconductor electronic component device, at least one of the joining surface of the substrate and the cover plate is provided with a fusible protrusion that melts at a temperature higher than the joining temperature of the substrate and the cover plate, and the joining surface is Adopts a configuration characterized by providing a concave groove surrounding the fusible projection and allowing the molten projection to flow in.

【0009】このように構成することにより、基板と蓋
板とを接合するときには、これらの接合面を溶融性突起
周辺の位置を除いて互いに接合でき、このとき基板と蓋
板との間で収容凹部内に発生する気体を溶融性突起の位
置から外部に流出させることができる。そして、溶融性
突起を加熱溶融して周囲の凹陥溝内に流入させた後に、
溶融性突起があった位置で基板と蓋板とを接合して前記
収容凹部を密閉することができる。
With this configuration, when the substrate and the cover plate are bonded together, these bonding surfaces can be bonded to each other except for the position around the fusible protrusion. Gas generated in the concave portion can flow out of the position of the fusible protrusion to the outside. Then, after heating and melting the fusible protrusion and flowing into the surrounding concave groove,
The substrate and the cover plate can be joined at the position where the fusible protrusion is present to seal the accommodation recess.

【0010】また、請求項2の発明では、前記基板はシ
リコン材料によって形成し、蓋板はガラス材料によって
形成し、溶融性突起は金、アルミニウム、半田、低融点
ガラスのいずれかを用いている。
[0010] In the second aspect of the present invention, the substrate is formed of a silicon material, the cover plate is formed of a glass material, and the fusible projection is made of any one of gold, aluminum, solder and low melting point glass. .

【0011】これにより、基板と蓋板との接合時には、
シリコン材料とガラス材料との接合温度よりも高い溶融
温度をもった溶融性突起により基板と蓋板との間に隙間
を保持できる。また、例えば溶融性突起として金を用い
る場合には、溶融性突起の溶融時に金とシリコン材料と
を共晶化させることにより、溶融性突起を金単体の場合
よりも低い温度で溶融させることができる。
Thus, when the substrate and the cover plate are joined,
A gap can be maintained between the substrate and the cover plate by the fusible protrusion having a melting temperature higher than the bonding temperature between the silicon material and the glass material. Further, for example, when gold is used as the fusible protrusion, the fusible protrusion can be melted at a lower temperature than the case of gold alone by eutecticizing the gold and the silicon material when the fusible protrusion is melted. it can.

【0012】さらに、請求項3の発明では、前記機能部
は、前記基板上にエッチング処理を用いて変位可能に形
成され、外部から加わる力を変位量として検出する外力
検出素子として構成している。
Further, in the invention according to claim 3, the functional portion is formed on the substrate so as to be displaceable by using an etching process, and is configured as an external force detecting element for detecting a force applied from the outside as a displacement amount. .

【0013】これにより、例えば加速度、角速度等の外
力が基板に加わったときには、基板と蓋板との間に形成
した空間内で外力検出素子を変位させ、その変位量を外
力の大きさとして検出することができる。
Thus, when an external force such as acceleration or angular velocity is applied to the substrate, the external force detecting element is displaced in a space formed between the substrate and the cover plate, and the amount of the displacement is detected as the magnitude of the external force. can do.

【0014】一方、請求項4の発明は、表面に機能部が
形成され該機能部の周辺部が接合面となった基板と、該
基板と対向する面に該基板上の機能部を収容する収容凹
部が形成されると共に該収容凹部の周辺に接合面が形成
され、基板上に接合して設けられる蓋板とを備えた半導
体電子部品装置の製造方法であって、前記基板と蓋板と
のうち少なくともいずれか一方の接合面に凹陥溝を形成
する凹陥溝形成工程と、前記凹陥溝に囲まれる接合面の
位置に前記基板と蓋板との接合温度よりも高い温度で溶
融する溶融性突起を形成する溶融性突起形成工程と、前
記基板の接合面と前記蓋板の接合面とを減圧雰囲気中で
前記溶融性突起の溶融温度よりも低い接合温度をもって
接合する第1の接合工程と、前記溶融性突起を減圧雰囲
気中で加熱溶融させることによって溶融した突起を前記
凹陥溝内に流入させる溶融工程と、前記基板と蓋板との
接合面のうち前記凹陥溝の近傍に位置した接合面を減圧
雰囲気中で互いに接合する第2の接合工程とからなる製
造方法を採用している。
On the other hand, according to a fourth aspect of the present invention, a functional part is formed on the surface, and a peripheral part of the functional part is a bonding surface, and the functional part on the substrate is accommodated on a surface facing the substrate. A method for manufacturing a semiconductor electronic component device, comprising: a housing recess formed and a joining surface formed around the housing recess, and a cover plate provided by being joined to the substrate. Forming a concave groove on at least one of the bonding surfaces, and melting at a temperature higher than a bonding temperature between the substrate and the cover plate at a position of the bonding surface surrounded by the concave groove. A fusible protrusion forming step of forming protrusions, and a first bonding step of bonding a bonding surface of the substrate and a bonding surface of the lid plate at a bonding temperature lower than a melting temperature of the fusible projection in a reduced-pressure atmosphere. The fusible protrusion is heated and melted in a reduced pressure atmosphere. A melting step of causing the molten protrusions to flow into the recessed groove, and a second bonding step of bonding a bonding surface of the bonding surface between the substrate and the cover plate, which is located near the concave groove, to each other in a reduced-pressure atmosphere. A manufacturing method including a joining step is employed.

【0015】これにより、凹陥溝形成工程では基板また
は蓋板の接合面に凹陥溝を形成でき、溶融性突起形成工
程では凹陥溝に囲まれる位置に溶融性突起を形成でき
る。そして、第1の接合工程では基板と蓋板との接合面
を減圧雰囲気中で接合でき、このとき基板と蓋板との間
で収容凹部内の気体を溶融性突起の位置から外部に流出
させることができる。また、溶融工程では溶融性突起を
加熱溶融して凹陥溝内に流入させることができ、第2の
接合工程では溶融性突起があった位置で基板と蓋板とを
新たに接合して前記収容凹部を密閉することができる。
[0015] Thus, in the concave groove forming step, a concave groove can be formed on the joint surface of the substrate or the cover plate, and in the fusible protrusion forming step, a fusible projection can be formed at a position surrounded by the concave groove. Then, in the first bonding step, the bonding surface between the substrate and the cover plate can be bonded in a reduced-pressure atmosphere, and at this time, the gas in the housing concave portion flows out from the position of the fusible protrusion to the outside between the substrate and the cover plate. be able to. Further, in the melting step, the fusible protrusion can be heated and melted to flow into the concave groove, and in the second joining step, the substrate and the cover plate are newly joined at the position where the fusible protrusion was located, and The recess can be sealed.

【0016】即ち、第1の接合工程によって溶融性突起
の周辺以外の大部分を接合しているので、第2の接合工
程では、溶融性突起の周辺に小さな面積で残された未接
合部を陽極接合するだけでよく、陽極接合時に発生する
ガスを少なくでき、半導体電子部品装置内の残留ガスを
少なくできる。
That is, since most parts other than the periphery of the fusible projection are joined by the first joining step, the unjoined portion left with a small area around the fusible projection in the second joining step. It is only necessary to perform anodic bonding, so that gas generated during anodic bonding can be reduced, and residual gas in the semiconductor electronic component device can be reduced.

【0017】また、請求項5の発明では、前記基板と蓋
板とのうち少なくともいずれか一方の接合面には、前記
機能部、溶融性突起および凹陥溝を取囲む逃し溝を形成
し、前記第1の接合工程では、前記収容凹部内の気体を
前記逃し溝を通じて外部に流出させている。
Further, in the invention of claim 5, a relief groove surrounding the functional portion, the fusible protrusion and the concave groove is formed on at least one of the joining surface of the substrate and the cover plate. In the first joining step, the gas in the housing recess is caused to flow out through the relief groove to the outside.

【0018】これにより、例えばシリコンウエハ等の基
板上に複数の機能部を形成するときには、複数の機能
部、溶融性突起および凹陥溝と、これらの各機能部、溶
融性突起および凹陥溝をそれぞれ取囲む逃し溝とを基板
または蓋板に形成できる。そして、第1の接合工程で
は、各機能部を収容した収容凹部内の気体を溶融性突起
の位置から逃し溝を通じて外部に流出させることができ
る。
Accordingly, when a plurality of functional parts are formed on a substrate such as a silicon wafer, for example, the plurality of functional parts, the fusible protrusions and the concave grooves, and the respective functional parts, the fusible protrusions and the concave grooves are respectively formed. Surrounding relief grooves can be formed in the substrate or lid plate. Then, in the first joining step, the gas in the accommodation recess accommodating each functional portion can escape from the position of the fusible protrusion to the outside through the groove.

【0019】[0019]

【発明の実施の形態】以下、本発明による実施の形態
を、図1ないし図10を参照しつつ加速度センサを例に
挙げて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to FIGS. 1 to 10 by taking an acceleration sensor as an example.

【0020】1は本実施の形態による加速度センサ、2
は該加速度センサ1の本体部分を構成する基板で、該基
板2は、単結晶のシリコン材料等によって形成された略
四角形状の底板3と、後述の隔壁10とから構成されて
いる。
Reference numeral 1 denotes an acceleration sensor according to the present embodiment;
Is a substrate that constitutes the main body of the acceleration sensor 1. The substrate 2 is composed of a bottom plate 3 having a substantially rectangular shape formed of a single-crystal silicon material or the like, and a partition 10 to be described later.

【0021】4は基板2の底板3上に形成された機能部
としての加速度検出素子で、該加速度検出素子4は、図
1および図2に示す如く、低抵抗なシリコン材料からな
る後述の可動部5および固定電極部6によって構成され
ている。
Numeral 4 denotes an acceleration detecting element as a functional part formed on the bottom plate 3 of the substrate 2. The acceleration detecting element 4 is made of a low-resistance movable silicon material, as shown in FIGS. And a fixed electrode unit 6.

【0022】5は基板2の底板3上に設けられた可動部
で、該可動部5は、後述する絶縁部7とほぼ同様の絶縁
部(図示せず)を介して底板3上に固着された4個の支
持部5Aと、該各支持部5Aから底板3に沿ってそれぞ
れ延びる梁5Bと、該各梁5Bの先端側に連結された質
量部5C等とを一体形成する構成となっている。そし
て、質量部5Cは各梁5Bと共に基板2から離間した状
態を保持し、基板2に対して図1中の矢示A方向に変位
可能となっている。
Reference numeral 5 denotes a movable portion provided on the bottom plate 3 of the substrate 2. The movable portion 5 is fixed to the bottom plate 3 via an insulating portion (not shown) substantially similar to an insulating portion 7 described later. The four supporting parts 5A, the beams 5B extending from the supporting parts 5A along the bottom plate 3, and the mass parts 5C and the like connected to the distal ends of the beams 5B are integrally formed. I have. The mass portion 5C keeps a state of being separated from the substrate 2 together with the beams 5B, and is displaceable with respect to the substrate 2 in a direction indicated by an arrow A in FIG.

【0023】6,6は前記質量部5Cの左,右両側に設
けられた一対の固定電極部で、該各固定電極部6は、例
えば酸化シリコン、窒化シリコン等からなる絶縁部7を
介して基板2の底板3上に固着されている。
Reference numerals 6 and 6 denote a pair of fixed electrode portions provided on both the left and right sides of the mass portion 5C. Each of the fixed electrode portions 6 is connected via an insulating portion 7 made of, for example, silicon oxide or silicon nitride. It is fixed on the bottom plate 3 of the substrate 2.

【0024】8,8,…は各固定電極部6に一体形成さ
れた平板状の固定側電極で、該各固定側電極8は各固定
電極部6から可動部5の質量部5Cに向けて延びてい
る。
Reference numerals 8, 8,... Denote plate-shaped fixed electrodes integrally formed with the fixed electrode portions 6. Each fixed electrode 8 is directed from each fixed electrode portion 6 toward the mass portion 5C of the movable portion 5. Extending.

【0025】9,9,…は可動部5の質量部5Cに一体
形成された平板状の可動側電極で、該各可動側電極9は
質量部5Cの左,右両側に配置され、矢示A方向と直交
する方向に延びている。そして、各可動側電極9は矢示
A方向の隙間を挟んで固定側電極8と対向している。
Reference numerals 9, 9,... Denote flat movable electrodes integrally formed with the mass portion 5C of the movable portion 5. Each movable electrode 9 is disposed on both the left and right sides of the mass portion 5C. It extends in a direction orthogonal to the A direction. Each movable electrode 9 faces the fixed electrode 8 with a gap in the direction of arrow A interposed therebetween.

【0026】ここで、基板2に矢示A方向の加速度(外
力)が加わったときには、可動部5の質量部5Cが可動
側電極9と共に基板2に対して矢示A方向に変位し、可
動側電極9と固定側電極8との間の隙間寸法が加速度の
大きさに応じて変化する。これにより、加速度検出素子
4は、基板2に加わる加速度の大きさを可動側電極9と
固定側電極8との間の静電容量の変化として検出する構
成となっている。
Here, when an acceleration (external force) in the direction of arrow A is applied to the substrate 2, the mass portion 5 C of the movable portion 5 is displaced in the direction of arrow A with respect to the substrate 2 together with the movable side electrode 9, The dimension of the gap between the side electrode 9 and the fixed side electrode 8 changes according to the magnitude of the acceleration. Thus, the acceleration detecting element 4 is configured to detect the magnitude of the acceleration applied to the substrate 2 as a change in the capacitance between the movable electrode 9 and the fixed electrode 8.

【0027】10は基板2の一部を構成した隔壁で、該
隔壁10は、絶縁部7とほぼ同様の絶縁部11を介して
底板3上に固着された低抵抗なシリコン材料からなり、
加速度検出素子4を取囲む略四角形状の枠体として底板
3の外周側に配設されている。また、隔壁10は可動部
5、固定電極部6と等しい高さ位置まで底板3上に突出
し、その先端面は後述する蓋板12との接合面10Aと
なっている。
Numeral 10 denotes a partition wall constituting a part of the substrate 2. The partition wall 10 is made of a low-resistance silicon material fixed on the bottom plate 3 via an insulating portion 11 substantially similar to the insulating portion 7.
A substantially rectangular frame surrounding the acceleration detecting element 4 is provided on the outer peripheral side of the bottom plate 3. Further, the partition wall 10 protrudes above the bottom plate 3 to the same height position as the movable portion 5 and the fixed electrode portion 6, and its distal end surface is a joint surface 10A with a lid plate 12 described later.

【0028】12はパイレックスガラス等のガラス材料
からなる略四角形状の蓋板で、該蓋板12には、加速度
検出素子4と対向する面側(下面側)の中央部に位置し
て加速度検出素子4を収容する四角形状の収容凹部12
Aが形成されている。また、蓋板12の下面側には、基
板2側に対する接合面12Bが収容凹部12Aを取囲む
位置に形成されている。
Reference numeral 12 denotes a substantially rectangular cover plate made of a glass material such as Pyrex glass. The cover plate 12 is located at the center of the surface (lower surface) facing the acceleration detecting element 4 and detects acceleration. Rectangular housing recess 12 for housing element 4
A is formed. Further, on the lower surface side of the lid plate 12, a bonding surface 12B to the substrate 2 side is formed at a position surrounding the accommodation recess 12A.

【0029】そして、隔壁10と蓋板12との接合面1
0A,12Bは、陽極接合を用いて互いに接合され、こ
れによって基板2と蓋板12との間には、蓋板12の収
容凹部12Aに対応する位置に加速度検出素子4を収容
した収容空間13が密閉状態で形成されている。さら
に、蓋板12には、例えば6個の電極取出孔12C,1
2C,…が板厚方向に形成され、該各電極取出孔12C
の底部側は加速度検出素子4の各支持部5A、各固定電
極部6によって閉塞されている。
The joining surface 1 between the partition 10 and the cover plate 12
0A and 12B are joined to each other by using anodic bonding, whereby a housing space 13 accommodating the acceleration detecting element 4 is provided between the substrate 2 and the cover plate 12 at a position corresponding to the housing recess 12A of the cover plate 12. Are formed in a sealed state. Further, the cover plate 12 has, for example, six electrode extraction holes 12C, 1C.
2C,... Are formed in the plate thickness direction.
Is closed by the support portions 5A and the fixed electrode portions 6 of the acceleration detecting element 4.

【0030】14,14,…は後述の溶融性突起18
(図6参照)を取囲んで蓋板12の接合面12Bに形成
された例えば6個の凹陥溝で、該各凹陥溝14は、図3
および図4に示す如く、四角形状の開口部をもって接合
面12Bに開口している。そして、各凹陥溝14は接合
面12Bに取囲まれた状態で互いに間隔をもって配設さ
れ、その内部空間は基板2側の接合面10Aによって密
閉されている。
.., Are fusible protrusions 18 described later.
For example, there are six concave grooves formed on the joint surface 12B of the cover plate 12 surrounding the concave groove 14 (see FIG. 6).
And as shown in FIG. 4, it has an opening in the joint surface 12B with a square opening. The recessed grooves 14 are arranged at intervals from each other in a state of being surrounded by the bonding surface 12B, and the internal space is sealed by the bonding surface 10A on the substrate 2 side.

【0031】ここで、蓋板12には、各凹陥溝14の底
部中央から接合面12Bに向けて延びる柱状の凸部15
が形成され、該各凸部15は凹陥溝14によって取囲ま
れると共に、その先端面は蓋板12の接合面12Bと同
一平面上に配設されている。
The cover plate 12 has a columnar projection 15 extending from the center of the bottom of each groove 14 toward the joint surface 12B.
Are formed, and each of the convex portions 15 is surrounded by the concave groove 14, and the front end surface thereof is disposed on the same plane as the joint surface 12 </ b> B of the cover plate 12.

【0032】16,16,…は蓋板12の各凹陥溝14
内に残された例えば6個の溶融体で、該各溶融体16
は、図3および図4に示す如く、後述する第1の接合工
程で基板2と蓋板12とを接合するときに溶融性突起1
8として蓋板12の各凸部15の先端側に予め配設され
ていたものであり、後述の溶融工程で加熱溶融されるこ
とによって各凹陥溝14内に流入した状態で固化してい
る。
Are recessed grooves 14 of the cover plate 12.
In each of the melts 16, for example, six melts
As shown in FIGS. 3 and 4, when the substrate 2 and the cover plate 12 are joined in a first joining step described later,
Numeral 8 is provided beforehand on the distal end side of each convex portion 15 of the lid plate 12, and is solidified while flowing into each concave groove 14 by being heated and melted in a melting step described later.

【0033】そして、溶融体16(溶融性突起18)
は、基板2と蓋板12との接合温度(例えば350℃)
よりも高い温度で溶融または液状化する金属、低融点ガ
ラス等の材料からなり、例えば370℃程度の温度で基
板2側のシリコン(Si)と共晶化して溶融状態となる
金(Au)またはその合金等によって構成されている。
The melt 16 (fusible protrusion 18)
Is the bonding temperature between the substrate 2 and the cover plate 12 (for example, 350 ° C.)
It is made of a material such as a metal or a low-melting glass which melts or liquefies at a higher temperature, for example, gold (Au) or eutectic at a temperature of about 370 ° C., which becomes eutectic with silicon (Si) on the substrate 2 side and becomes molten It is made of the alloy or the like.

【0034】17,17,…は銀等を主成分として形成
された導電性ペーストで、該各導電性ペースト17は蓋
板12の各電極取出孔12C内に充填され、可動側電極
9、固定側電極8からの検出信号を可動部5、固定電極
部6を介して蓋板12の外部に導出するものである。
Are conductive pastes formed mainly of silver or the like. Each of the conductive pastes 17 is filled in each of the electrode extraction holes 12C of the cover plate 12, and the movable electrode 9 and the fixed The detection signal from the side electrode 8 is led out of the cover plate 12 via the movable part 5 and the fixed electrode part 6.

【0035】本実施の形態による加速度センサ1は上述
の如き構成を有するもので、次に図5ないし図10を参
照しつつその製造方法について説明する。
The acceleration sensor 1 according to the present embodiment has the above-described configuration. Next, a method of manufacturing the acceleration sensor 1 will be described with reference to FIGS.

【0036】まず、図5に示す凹陥溝形成工程および溶
融性突起形成工程では、ガラス材料からなる蓋板12に
対してサンドブラスト、エッチング、レーザ等の加工手
段により凹陥溝14を形成する。続いて、蓋板12の接
合面12Bに金等の金属膜を形成し、この金属膜に対し
てエッチングを施す。これにより、図6に示す複数の溶
融性突起18,18,…を各凹陥溝14に囲まれた凸部
15の先端側に形成し、各溶融性突起18を蓋板12の
接合面12Bから例えば0.1〜1μm程度の突出寸法
をもって基板2側に突出させる。
First, in the concave groove forming step and the fusible protrusion forming step shown in FIG. 5, the concave groove 14 is formed on the cover plate 12 made of a glass material by a processing means such as sandblasting, etching, or laser. Subsequently, a metal film such as gold is formed on the joint surface 12B of the cover plate 12, and the metal film is etched. .. Shown in FIG. 6 are formed on the distal end side of the convex portion 15 surrounded by the concave grooves 14, and each of the fusible projections 18 is formed from the joint surface 12 </ b> B of the cover plate 12. For example, it is projected toward the substrate 2 with a projection dimension of about 0.1 to 1 μm.

【0037】次に、図7に示す第1の接合工程では、ま
ず真空陽極接合装置の減圧室等にセットした基板2側の
接合面10Aと蓋板12側の接合面12Bとを互いに衝
合させる。これにより、溶融性突起18は接合面10
A,12B間に挟持され、この位置の近傍では接合面1
0A,12B間に僅かな隙間Sが形成される。
Next, in the first bonding step shown in FIG. 7, first, the bonding surface 10A on the substrate 2 and the bonding surface 12B on the cover plate 12 set in a decompression chamber of a vacuum anodic bonding apparatus are bonded to each other. Let it. As a result, the fusible protrusion 18 is
A, 12B, and in the vicinity of this position, the joining surface 1
A slight gap S is formed between 0A and 12B.

【0038】そして、この接合工程では、陽極接合を用
いて接合面10A,12Bを真空に近い減圧雰囲気中で
互いに接合し、このときの接合温度を例えば350℃に
保持する。この結果、溶融性突起18は溶融(共晶化)
温度が約370℃であるため固体状態を保持し、接合面
10A,12Bは、収容空間13を取囲む全周部位のう
ち前記隙間Sの位置を除いた大部分が接合される。
In this bonding step, the bonding surfaces 10A and 12B are bonded to each other in a reduced-pressure atmosphere close to vacuum using anodic bonding, and the bonding temperature at this time is maintained at, for example, 350.degree. As a result, the fusible projection 18 is melted (eutectic).
Since the temperature is about 370 ° C., the solid state is maintained, and most of the joining surfaces 10A and 12B are joined except for the position of the gap S in the entire peripheral area surrounding the housing space 13.

【0039】また、蓋板12の接合面12Bは、各電極
取出孔12Cの周辺部が基板2側の各支持部5A、各固
定電極部6にそれぞれ接合され、これによって各電極取
出孔12Cの底部側は閉塞される。さらに、このとき隙
間Sの位置を除いた接合面10A,12Bから発生した
酸素等の気体は、溶融性突起18の位置から隙間Sを通
じて外部に流出する。
The joining surface 12B of the cover plate 12 has a peripheral portion of each electrode extraction hole 12C joined to each support portion 5A and each fixed electrode portion 6 on the substrate 2 side, thereby forming each electrode extraction hole 12C. The bottom side is closed. Further, at this time, gas such as oxygen generated from the joint surfaces 10A and 12B except for the position of the gap S flows out from the position of the fusible protrusion 18 through the gap S.

【0040】次に、図8に示す溶融工程では、基板2等
を減圧雰囲気中で例えば400℃程度の温度まで加熱
し、金からなる溶融性突起18をシリコンからなる隔壁
10と共晶化することによって溶融させる。これによ
り、各溶融性突起18は液状化して蓋板12の各凹陥溝
14内に流入し、接合面12Bの位置では潰れて平坦と
なるため、接合面10A,12B間の隙間Sは消失し、
接合面10A,12Bは各凹陥溝14の近傍で互いに接
触した状態となる。
Next, in the melting step shown in FIG. 8, the substrate 2 and the like are heated in a reduced-pressure atmosphere to a temperature of, for example, about 400 ° C., so that the fusible protrusions 18 made of gold are eutecticized with the partition walls 10 made of silicon. To melt. As a result, each of the fusible protrusions 18 liquefies and flows into each of the recessed grooves 14 of the lid plate 12, and is crushed and flat at the position of the joint surface 12B, so that the gap S between the joint surfaces 10A and 12B disappears. ,
The joining surfaces 10A and 12B come into contact with each other in the vicinity of each concave groove 14.

【0041】そこで、次なる第2の接合工程では、陽極
接合を用いて接合面10A,12Bのうち各凹陥溝14
の近傍に残されていた僅かな未接合部位を減圧雰囲気中
で新たに接合し、これによって収容空間13を真空に近
い減圧状態で密閉する。ここで、第2の接合工程によっ
て基板2と蓋板12とを接合したときには、図3に示す
状態となる。
Accordingly, in the next second bonding step, each of the concave grooves 14 in the bonding surfaces 10A and 12B is formed by using anodic bonding.
The small unjoined portion left in the vicinity of is newly joined in a reduced pressure atmosphere, whereby the accommodation space 13 is sealed in a reduced pressure state close to a vacuum. Here, when the substrate 2 and the cover plate 12 are joined in the second joining step, the state shown in FIG. 3 is obtained.

【0042】即ち、第1の接合工程によって各溶融性突
起18の周辺以外の大部分を接合しているので、第2の
接合工程では、各溶融性突起18(各凹陥溝14)の周
辺に小さな面積で残された未接合部を陽極接合するだけ
でよく、陽極接合時に発生するガスを少なくでき、収容
空間13内の残留ガスを少なくできる。
That is, since most parts other than the periphery of each fusible projection 18 are joined by the first joining step, in the second joining step, the periphery of each fusible projection 18 (each concave groove 14) is formed. It is only necessary to perform anodic bonding on the unbonded portion left in a small area, so that the gas generated during anodic bonding can be reduced, and the residual gas in the housing space 13 can be reduced.

【0043】さらに、第2の接合工程によって完成した
加速度センサ1に信号端子等を設けるため、蓋板12の
各電極取出孔12C内に導電性ペースト17を充填す
る。
Further, in order to provide a signal terminal or the like to the acceleration sensor 1 completed in the second joining step, a conductive paste 17 is filled in each electrode extraction hole 12C of the cover plate 12.

【0044】また、加速度センサ1を前記各工程によっ
て製造するときには、図9および図10に示す如く、予
め用意したシリコンウエハ19上に複数の加速度センサ
1を形成する。即ち、各加速度センサ1の基板2となる
シリコンウエハ19および蓋板12となるガラス板20
に対して前記凹陥溝形成工程、溶融性突起形成工程、第
1の接合工程、溶融工程および第2の接合工程を行う。
そして、このときガラス板20には、各加速度センサ1
用の収容凹部12A、凹陥溝14、溶融性突起18と、
後述の逃し溝21,21,…とを形成する。
When the acceleration sensor 1 is manufactured by the above steps, a plurality of acceleration sensors 1 are formed on a silicon wafer 19 prepared in advance, as shown in FIGS. That is, a silicon wafer 19 serving as the substrate 2 of each acceleration sensor 1 and a glass plate 20 serving as the cover plate 12
Then, the concave groove forming step, the fusible projection forming step, the first joining step, the melting step, and the second joining step are performed on the groove.
At this time, each of the acceleration sensors 1
Accommodation recess 12A, recessed groove 14, fusible projection 18,
.. Are formed.

【0045】ここで、各逃し溝21は、各加速度センサ
1の蓋板12の接合面12Bに設けられ、各加速度セン
サ1の加速度検出素子4、収容凹部12A、凹陥溝1
4、溶融性突起18等を取囲んで格子状に延びている。
また、第1の接合工程でシリコンウエハ19とガラス板
20とを接合した状態では、各加速度センサ1の収容空
間13が溶融性突起18の位置で各逃し溝21にそれぞ
れ連通し、各逃し溝21は端部側が外部に開口してい
る。
Here, each relief groove 21 is provided on the joint surface 12B of the cover plate 12 of each acceleration sensor 1, and the acceleration detecting element 4, the accommodating concave portion 12A, and the concave groove 1 of each acceleration sensor 1 are provided.
4. It extends in a lattice shape surrounding the fusible projections 18 and the like.
In a state where the silicon wafer 19 and the glass plate 20 are joined in the first joining step, the accommodating spaces 13 of the acceleration sensors 1 communicate with the escape grooves 21 at the positions of the fusible projections 18, respectively. Reference numeral 21 denotes an end opening to the outside.

【0046】これにより、第1の接合工程では、シリコ
ンウエハ19とガラス板20との接合時に各収容空間1
3内に生じる気体が各逃し溝21を通じて外部に流出
し、第2の接合工程では、各収容空間13を高い真空状
態でそれぞれ密閉することができる。また、第2の接合
工程を行った後には、例えば図10中に二点鎖線で示す
ように各加速度センサ1を逃し溝21の位置で切離して
形成する。
Thus, in the first bonding step, each of the storage spaces 1 is bonded when the silicon wafer 19 and the glass plate 20 are bonded.
The gas generated in 3 flows out to the outside through each relief groove 21, and in the second joining step, each accommodation space 13 can be sealed in a high vacuum state. After the second joining step is performed, each acceleration sensor 1 is cut off at the position of the relief groove 21 as shown by a two-dot chain line in FIG. 10, for example.

【0047】かくして、本実施の形態では、蓋板12の
接合面12Bに位置して溶融性突起18と凹陥溝14と
を設ける構成としたから、第1の接合工程では、収容空
間13内に発生する気体を溶融性突起18の位置から外
部に流出させることができ、溶融工程では、溶融性突起
18の溶融物を周囲の凹陥溝14内に溶融体16として
流入させ、溶融性突起18による隙間Sを消失させるこ
とができる。
Thus, in the present embodiment, since the fusible projection 18 and the concave groove 14 are provided at the joint surface 12B of the cover plate 12, the first joining step The generated gas can flow out from the position of the fusible protrusion 18 to the outside. In the melting step, the melt of the fusible protrusion 18 flows into the surrounding concave groove 14 as the melt 16, and The gap S can be eliminated.

【0048】これにより、第2の接合工程では、基板2
と蓋板12との接合面10A,12Bのうち凹陥溝14
の近傍に残された僅かな未接合部位を接合するだけでよ
くなり、発生するガスが少ないので収容空間13を高い
真空状態で確実に密閉でき、その内部に残留する酸素等
の気体を大幅に低減させることができる。
Thus, in the second bonding step, the substrate 2
Recesses 14 of the joint surfaces 10A and 12B
It is only necessary to join a small unjoined part left in the vicinity of the space, and since the generated gas is small, the housing space 13 can be reliably sealed in a high vacuum state, and the gas such as oxygen remaining in the inside can be greatly reduced. Can be reduced.

【0049】そして、この場合には、各溶融性突起18
を取囲む位置に凹陥溝14を設けたから、溶融工程では
各溶融性突起18の溶融物を凹陥溝14内に安定して収
容することができる。これにより、各溶融性突起18の
溶融物が基板2と蓋板12との間で潰れて大きく拡が
り、互いに連なった状態で収容空間13と外部との間に
延在するのを凹陥溝14によって確実に防止することが
できる。
In this case, each fusible projection 18
Since the concave groove 14 is provided at a position surrounding the concave groove 14, the melt of each fusible projection 18 can be stably accommodated in the concave groove 14 in the melting step. Accordingly, the molten material of each of the fusible protrusions 18 is crushed between the substrate 2 and the cover plate 12 and greatly expanded, and extends between the accommodation space 13 and the outside in a state where they are connected to each other by the concave grooves 14. It can be reliably prevented.

【0050】即ち、仮りに各溶融性突起18の溶融物が
図4中に仮想線で示すように接合面10A,12B間に
連なって延在する場合には、第2の接合工程を行ったと
しても、この溶融物の位置では接合面10A,12Bを
接合できないため、接合面10A,12B間には収容空
間13と外部とを連通させる未接合部分が残されること
がある。しかし、本実施の形態では、溶融工程で生じる
各溶融性突起18の溶融物を凹陥溝14内に確実に収容
できるから、収容空間13を安定した密閉状態に保持す
ることができる。
That is, if the molten material of each fusible projection 18 extends continuously between the joining surfaces 10A and 12B as shown by the imaginary line in FIG. 4, the second joining step is performed. However, since the joining surfaces 10A and 12B cannot be joined at the position of the melt, an unjoined portion that allows the housing space 13 to communicate with the outside may be left between the joining surfaces 10A and 12B. However, in the present embodiment, the molten material of each of the fusible projections 18 generated in the melting step can be reliably accommodated in the concave groove 14, so that the accommodation space 13 can be held in a stable and sealed state.

【0051】従って、本実施の形態によれば、外部から
の加速度に応じて加速度検出素子4を真空度の高い収容
空間13内で安定して変位させることができ、加速度の
検出精度、検出動作の信頼性を確実に向上させることが
できる。また、収容空間13内に残留した気体の量に応
じて加速度センサ1毎に検出精度のばらつきが生じるの
を抑制でき、検出精度の安定した加速度センサ1を効率
よく製造できると共に、製造時の歩留まりを向上させる
ことができる。
Therefore, according to the present embodiment, the acceleration detecting element 4 can be stably displaced in the accommodation space 13 having a high degree of vacuum according to the external acceleration, and the acceleration detection accuracy and the detection operation Can be reliably improved. In addition, it is possible to suppress the occurrence of variation in detection accuracy for each acceleration sensor 1 in accordance with the amount of gas remaining in the accommodation space 13, and it is possible to efficiently manufacture the acceleration sensor 1 with stable detection accuracy, and to increase the production yield. Can be improved.

【0052】また、各加速度センサ1の蓋板12となる
ガラス板20に対して格子状に延びる複数の逃し溝21
を設けたから、第1の接合工程では、各収容空間13内
に生じる気体を溶融性突起18による隙間Sを通じて各
逃し溝21へと確実に流出させることができ、多数の加
速度センサ1をシリコンウエハ19上に形成する場合で
も、各収容空間13の減圧、密閉作業を効率よく行うこ
とができる。
Further, a plurality of relief grooves 21 extending in a grid pattern with respect to the glass plate 20 serving as the lid plate 12 of each acceleration sensor 1.
In the first joining step, the gas generated in each storage space 13 can be reliably discharged to each relief groove 21 through the gap S formed by the fusible protrusion 18, and the large number of acceleration sensors 1 Even when it is formed on the space 19, the pressure reduction and sealing work of each accommodation space 13 can be performed efficiently.

【0053】なお、前記実施の形態では、溶融性突起1
8(溶融体16)、凹陥溝14、逃し溝21等を蓋板1
2側、即ちガラス板20側に設ける構成としたが、本発
明はこれに限らず、これらを基板2側、即ちシリコンウ
エハ19側に設ける構成としてもよく、または基板2と
蓋板12との両方に設ける構成としてもよい。
In the above embodiment, the fusible protrusion 1
8 (melt 16), concave groove 14, escape groove 21 and the like
However, the present invention is not limited to this, and may be provided on the substrate 2 side, that is, on the silicon wafer 19 side, or between the substrate 2 and the cover plate 12. It is good also as a structure provided in both.

【0054】また、前記実施の形態では、逃がし溝21
を各加速度センサ1の周囲からシリコンウエハ19の外
周端に伸長させ、その端面側で外部に連通させる構成と
したが、本発明はこれに限らず、逃がし溝を各加速度セ
ンサ1の基板2を取囲む位置にのみ配設し、この逃がし
溝をシリコンウエハ19またはガラス板20に形成した
板厚方向の通気孔を用いて外部に連通させる構成として
もよい。
In the above embodiment, the escape groove 21
Is extended from the periphery of each acceleration sensor 1 to the outer peripheral end of the silicon wafer 19, and is communicated to the outside at the end surface side. However, the present invention is not limited to this, and the escape groove is formed on the substrate 2 of each acceleration sensor 1. A configuration may be adopted in which the relief groove is provided only at the surrounding position and the relief groove communicates with the outside using a ventilation hole formed in the silicon wafer 19 or the glass plate 20 in the thickness direction.

【0055】さらに、前記実施の形態では、溶融性突起
18として例えば金、またはその合金等を用いる場合を
例示したが、本発明はこれに限らず、溶融性突起の溶融
温度が基板2と蓋板12との接合温度よりも高く、かつ
蓋板12等の軟化温度よりも低い構成とすればよく、例
えばアルミニウム、半田合金、低融点ガラス等によって
溶融性突起を構成してもよい。
Further, in the above-described embodiment, the case where, for example, gold or an alloy thereof is used as the fusible projection 18 is exemplified. However, the present invention is not limited to this. What is necessary is just to make it the structure higher than the joining temperature with the board | plate 12, and lower than the softening temperature of the cover board 12, etc., for example, a fusible protrusion may be comprised by aluminum, a solder alloy, low melting glass, etc.

【0056】また、前記実施の形態では、半導体電子部
品装置として加速度センサ1を例に挙げて述べたが、本
発明はこれに限らず、機能部を基板と蓋板との間に減圧
状態で密閉する構成とした半導体電子部品装置であれば
適用してもよく、例えば角速度、速度、圧力等を検出す
る機能部を備えた半導体電子部品装置に適用してもよ
い。
In the above-described embodiment, the acceleration sensor 1 has been described as an example of the semiconductor electronic component device. However, the present invention is not limited to this, and the functional unit is disposed between the substrate and the cover plate under reduced pressure. The present invention may be applied to any semiconductor electronic component device having a hermetically sealed configuration. For example, the present invention may be applied to a semiconductor electronic component device having a function unit for detecting angular velocity, speed, pressure, and the like.

【0057】[0057]

【発明の効果】以上詳述した通り、請求項1に記載の発
明によれば、基板または蓋板の接合面には溶融性突起と
凹陥溝とを設ける構成としたから、基板と蓋板とを陽極
接合するときには、これらの間に形成された空間内に発
生する気体を溶融性突起の位置から外部に流出させるこ
とができ、溶融性突起を加熱溶融した後に凹陥溝の近傍
に残された僅かな未接合部位を接合するだけで、機能部
を収容した空間を高い真空状態で確実に密閉することが
できる。
As described in detail above, according to the first aspect of the present invention, the structure in which the fusible protrusion and the concave groove are provided on the joint surface of the substrate or the cover plate is provided. When anodic bonding is performed, the gas generated in the space formed between them can flow out from the position of the fusible protrusion to the outside, and after the fusible protrusion is heated and melted, it is left near the concave groove. The space accommodating the functional unit can be reliably sealed in a high vacuum state by only joining a small unjoined portion.

【0058】そして、溶融性突起を加熱溶融するときに
は、その溶融物を周囲の凹陥溝内に安定して流入させる
ことができ、溶融性突起の溶融物が基板と蓋板との接合
面に大きく拡がってこれらの接合状態が低下するのを凹
陥溝によって確実に防止できると共に、基板と蓋板との
間に形成された空間を安定した密閉状態に保持すること
ができる。従って、機能部を前記空間内で安定して作動
させることができ、その信頼性を確実に向上できると共
に、作動状態が安定した半導体電子部品装置を効率よく
製造することができる。
When the fusible protrusions are heated and melted, the fusible protrusions can be stably flowed into the surrounding recessed grooves, and the fusible protrusions can be largely deposited on the joint surface between the substrate and the cover plate. It is possible to reliably prevent the joining state from being reduced by the recessed groove, and it is possible to maintain the space formed between the substrate and the cover plate in a stable and sealed state. Therefore, the functional unit can be operated stably in the space, the reliability thereof can be surely improved, and a semiconductor electronic component device whose operating state is stable can be efficiently manufactured.

【0059】また、請求項2の発明によれば、溶融性突
起を金、アルミニウム、半田、低融点ガラスのいずれか
を用いて構成したから、基板と蓋板とを接合するときに
は、これらの接合温度よりも高い温度で溶融する溶融性
突起によって基板と蓋板との間に隙間を確実に形成で
き、この隙間から機能部を収容した空間内の気体を外部
へと安定して流出させることができる。また、例えば溶
融性突起として金を用いる場合には、溶融性突起をシリ
コン材料からなる基板と共晶化させることによって金単
体の場合よりも低い温度で容易に溶融できる。
According to the second aspect of the present invention, the fusible projection is made of any one of gold, aluminum, solder and low-melting glass. The gap between the substrate and the cover plate can be reliably formed by the fusible protrusion that melts at a temperature higher than the temperature, and the gas in the space containing the functional unit can be stably discharged to the outside from the gap. it can. Further, for example, when gold is used as the fusible protrusion, the fusible protrusion can be easily melted at a lower temperature than that of the case of gold alone by eutecticizing the fusible protrusion with a substrate made of a silicon material.

【0060】さらに、請求項3の発明によれば、機能部
を基板上に変位可能に形成した外力検出素子によって構
成したから、外力検出素子を基板と蓋板との間に形成さ
れた真空度の高い空間内で外力に応じて安定的に変位さ
せることができ、外力の検出精度、検出動作の信頼性を
確実に向上させることができる。
Further, according to the third aspect of the present invention, since the function section is constituted by the external force detecting element formed so as to be displaceable on the substrate, the external force detecting element is formed by the degree of vacuum formed between the substrate and the cover plate. In a high space, the displacement can be stably performed according to the external force, and the detection accuracy of the external force and the reliability of the detection operation can be reliably improved.

【0061】一方、請求項4の発明によれば、凹陥溝形
成工程、溶融性突起形成工程、第1の接合工程、溶融工
程、第2の接合工程によって半導体電子部品装置を製造
するようにしたから、第1の接合工程では基板と蓋板と
の間に形成された空間内に発生する気体を溶融性突起の
位置から外部に流出させることができ、溶融工程では溶
融性突起の溶融物を周囲の凹陥溝内に安定して流入させ
ることができる。そして、第2の接合工程では凹陥溝の
近傍に残された僅かな未接合部位を接合するだけでよい
ので、発生するガスが少なくなり機能部を収容した空間
を高い真空状態で確実に密閉することができる。従っ
て、機能部を前記空間内で安定して作動させることがで
き、その信頼性を確実に向上できると共に、作動状態が
安定した半導体電子部品装置を効率よく製造することが
できる。
On the other hand, according to the invention of claim 4, the semiconductor electronic component device is manufactured by the concave groove forming step, the fusible projection forming step, the first joining step, the melting step, and the second joining step. Therefore, in the first joining step, gas generated in the space formed between the substrate and the lid plate can be discharged to the outside from the position of the fusible protrusion, and the melt of the fusible protrusion is discharged in the melting step. It can flow stably into the surrounding recessed groove. In the second joining step, it is only necessary to join a small unjoined portion left in the vicinity of the concave groove, so that the generated gas is reduced and the space accommodating the functional unit is securely sealed in a high vacuum state. be able to. Therefore, the functional unit can be operated stably in the space, the reliability thereof can be surely improved, and a semiconductor electronic component device whose operating state is stable can be efficiently manufactured.

【0062】また、請求項5の発明によれば、基板また
は蓋板に逃し溝を形成することによって半導体電子部品
装置を製造するようにしたから、例えばシリコンウエハ
等の基板上に複数の機能部を形成するときには、基板と
蓋板との間で各機能部を収容した複数の空間内の気体を
溶融性突起の位置から逃し溝を通じて外部へと確実に流
出させることができ、多数の機能部を基板上に形成する
場合でも、前記各空間の減圧、密閉作業を効率よく行う
ことができる。
According to the fifth aspect of the present invention, a semiconductor electronic component device is manufactured by forming a relief groove in a substrate or a cover plate. For example, a plurality of functional units are provided on a substrate such as a silicon wafer. When forming, the gas in the plurality of spaces accommodating each functional part between the substrate and the lid plate can be reliably discharged to the outside through the escape groove from the position of the fusible protrusion, and a large number of functional parts Can be efficiently performed even when the substrate is formed on the substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による加速度センサを一部
破断して示す正面図である。
FIG. 1 is a partially cutaway front view of an acceleration sensor according to an embodiment of the present invention.

【図2】図1中の矢示II−II方向からみた縦断面図であ
る。
FIG. 2 is a longitudinal sectional view as seen from the direction of arrows II-II in FIG.

【図3】基板と蓋板とを接合した状態を示す図2中の要
部拡大断面図である。
FIG. 3 is an enlarged sectional view of a main part in FIG. 2, showing a state in which a substrate and a cover plate are joined.

【図4】図3中の矢示IV−IV方向からみた断面図であ
る。
FIG. 4 is a sectional view as seen from the direction of arrows IV-IV in FIG. 3;

【図5】凹陥溝形成工程、溶融性突起形成工程により蓋
板の接合面に凹陥溝、溶融性突起を形成した状態を示す
縦断面図である。
FIG. 5 is a longitudinal sectional view showing a state in which a concave groove and a fusible protrusion are formed on a joint surface of a lid plate by a concave groove forming step and a fusible protrusion forming step.

【図6】蓋板に設けられた溶融性突起、凹陥溝を示す図
5中の要部拡大断面図である。
FIG. 6 is an enlarged sectional view of a main part in FIG. 5, showing a fusible protrusion and a concave groove provided on a cover plate.

【図7】基板と蓋板とを接合する第1の接合工程を示す
縦断面図である。
FIG. 7 is a longitudinal sectional view showing a first joining step of joining a substrate and a cover plate.

【図8】溶融性突起を溶融させる溶融工程を示す要部拡
大断面図である。
FIG. 8 is an enlarged sectional view of a main part showing a melting step of melting the fusible protrusion.

【図9】多数の加速度センサが形成されたシリコンウエ
ハとガラス板とを示す正面図である。
FIG. 9 is a front view showing a silicon wafer and a glass plate on which a number of acceleration sensors are formed.

【図10】図9中の各加速度センサのうち、隣合う3個
の加速度センサを拡大して示す縦断面図である。
FIG. 10 is an enlarged longitudinal sectional view showing three adjacent acceleration sensors among the acceleration sensors in FIG. 9;

【符号の説明】[Explanation of symbols]

1 加速度センサ 2 基板 4 加速度検出素子(機能部) 12 蓋板 12A 収容凹部 13 収容空間 14 凹陥溝 16 溶融体(溶融性突起) 18 溶融性突起 19 シリコンウエハ(基板) 20 ガラス板(蓋板) 21 逃し溝 DESCRIPTION OF SYMBOLS 1 Acceleration sensor 2 Substrate 4 Acceleration detecting element (functional part) 12 Cover plate 12A Housing recess 13 Housing space 14 Depression groove 16 Melt (fusible protrusion) 18 Melt protrusion 19 Silicon wafer (substrate) 20 Glass plate (cover plate) 21 Escape groove

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面に機能部が形成され該機能部の周辺
部が接合面となった基板と、該基板と対向する面に該基
板上の機能部を収容する収容凹部が形成されると共に該
収容凹部の周辺に接合面が形成され、基板上に減圧雰囲
気中で陽極接合して設けられた蓋板とからなる半導体電
子部品装置において、 前記基板と蓋板とのうち少なくともいずれか一方の接合
面には、前記基板と蓋板との接合温度よりも高い温度で
溶融する溶融性突起を設け、前記接合面には該溶融性突
起を囲んで溶融した突起が流入するのを許す凹陥溝を設
ける構成としたことを特徴とする半導体電子部品装置。
1. A substrate having a functional part formed on the surface and a peripheral part of the functional part serving as a bonding surface, and a receiving recess for receiving the functional part on the substrate is formed on a surface facing the substrate. A bonding surface is formed around the housing recess, and a semiconductor electronic component device comprising a lid plate provided on the substrate by anodic bonding in a reduced pressure atmosphere, wherein at least one of the substrate and the lid plate is provided. The joining surface is provided with a fusible projection that melts at a temperature higher than the joining temperature of the substrate and the lid plate, and the joining surface is surrounded by a recessed groove surrounding the fusible projection and allowing the molten projection to flow. A semiconductor electronic component device characterized by comprising:
【請求項2】 前記基板はシリコン材料によって形成
し、前記蓋板はガラス材料によって形成し、前記溶融性
突起は金、アルミニウム、半田、低融点ガラスのいずれ
かを用いてなる請求項1に記載の半導体電子部品装置。
2. The substrate according to claim 1, wherein the substrate is formed of a silicon material, the cover plate is formed of a glass material, and the fusible protrusion is formed of one of gold, aluminum, solder, and low-melting glass. Semiconductor electronic parts equipment.
【請求項3】 前記機能部は、前記基板上にエッチング
処理を用いて変位可能に形成され、外部から加わる力を
変位量として検出する外力検出素子として構成してなる
請求項1または2に記載の半導体電子部品装置。
3. The external force detecting element according to claim 1, wherein the functional unit is formed on the substrate so as to be displaceable by using an etching process, and detects an externally applied force as a displacement amount. Semiconductor electronic parts equipment.
【請求項4】 表面に機能部が形成され該機能部の周辺
部が接合面となった基板と、該基板と対向する面に該基
板上の機能部を収容する収容凹部が形成されると共に該
収容凹部の周辺に接合面が形成され、基板上に接合して
設けられる蓋板とを備えた半導体電子部品装置の製造方
法であって、 前記基板と蓋板とのうち少なくともいずれか一方の接合
面に凹陥溝を形成する凹陥溝形成工程と、 前記凹陥溝に囲まれる接合面の位置に前記基板と蓋板と
の接合温度よりも高い温度で溶融する溶融性突起を形成
する溶融性突起形成工程と、 前記基板の接合面と前記蓋板の接合面とを減圧雰囲気中
で前記溶融性突起の溶融温度よりも低い接合温度をもっ
て接合する第1の接合工程と、 前記溶融性突起を減圧雰囲気中で加熱溶融させることに
よって溶融した突起を前記凹陥溝内に流入させる溶融工
程と、 前記基板と蓋板との接合面のうち前記凹陥溝の近傍に位
置した接合面を減圧雰囲気中で互いに接合する第2の接
合工程とからなる半導体電子部品装置の製造方法。
4. A substrate having a functional portion formed on the surface and a peripheral portion of the functional portion serving as a bonding surface, and a concave portion for receiving the functional portion on the substrate is formed on a surface facing the substrate. A method of manufacturing a semiconductor electronic component device, comprising: a joining surface formed around the housing recess, and a lid plate provided on the substrate and joined thereto, wherein at least one of the substrate and the lid plate is provided. A concave groove forming step of forming a concave groove in the joint surface; and a fusible protrusion for forming a fusible protrusion at a position of the joint surface surrounded by the concave groove at a temperature higher than a joining temperature of the substrate and the cover plate. A forming step, a first bonding step of bonding the bonding surface of the substrate and the bonding surface of the lid plate at a bonding temperature lower than the melting temperature of the fusible protrusion in a reduced-pressure atmosphere, and reducing the pressure of the fusible protrusion. Melting by heating and melting in atmosphere A melting step of causing the projections to flow into the concave groove; and a second bonding step of bonding the bonding surfaces of the bonding surface between the substrate and the cover plate, which are located near the concave groove, to each other in a reduced-pressure atmosphere. Of manufacturing a semiconductor electronic component device.
【請求項5】 前記基板と蓋板とのうち少なくともいず
れか一方の接合面には、前記機能部、溶融性突起および
凹陥溝を取囲む逃し溝を形成し、前記第1の接合工程で
は、前記収容凹部内の気体を前記逃し溝を通じて外部に
流出させてなる請求項4に記載の半導体電子部品装置の
製造方法。
5. A relief groove surrounding at least one of the substrate and the cover plate, the relief groove surrounding the functional portion, the fusible protrusion and the concave groove, wherein in the first bonding step, 5. The method of manufacturing a semiconductor electronic component device according to claim 4, wherein the gas in the housing recess is caused to flow out through the relief groove to the outside.
JP14832998A 1998-05-13 1998-05-13 Semiconductor electronic component device and its manufacture Pending JPH11326366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14832998A JPH11326366A (en) 1998-05-13 1998-05-13 Semiconductor electronic component device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14832998A JPH11326366A (en) 1998-05-13 1998-05-13 Semiconductor electronic component device and its manufacture

Publications (1)

Publication Number Publication Date
JPH11326366A true JPH11326366A (en) 1999-11-26

Family

ID=15450351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14832998A Pending JPH11326366A (en) 1998-05-13 1998-05-13 Semiconductor electronic component device and its manufacture

Country Status (1)

Country Link
JP (1) JPH11326366A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247293A1 (en) * 1999-12-10 2002-10-09 Shellcase Ltd. Methods for producing packaged integrated circuit devices & packaged integrated circuit devices produced thereby
JP2003512723A (en) * 1999-10-19 2003-04-02 イメーゴ・アー・ベー Method for anodic bonding
US7157742B2 (en) 1998-02-06 2007-01-02 Tessera Technologies Hungary Kft. Integrated circuit device
US7192796B2 (en) 2003-07-03 2007-03-20 Tessera Technologies Hungary Kft. Methods and apparatus for packaging integrated circuit devices
US7566853B2 (en) 2005-08-12 2009-07-28 Tessera, Inc. Image sensor employing a plurality of photodetector arrays and/or rear-illuminated architecture
JP2010171368A (en) * 2008-12-25 2010-08-05 Denso Corp Semiconductor device, and method for manufacturing the same
US9548145B2 (en) 2007-01-05 2017-01-17 Invensas Corporation Microelectronic assembly with multi-layer support structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157742B2 (en) 1998-02-06 2007-01-02 Tessera Technologies Hungary Kft. Integrated circuit device
US9530945B2 (en) 1998-02-06 2016-12-27 Invensas Corporation Integrated circuit device
US7781240B2 (en) 1998-02-06 2010-08-24 Tessera Technologies Hungary Kft. Integrated circuit device
JP2003512723A (en) * 1999-10-19 2003-04-02 イメーゴ・アー・ベー Method for anodic bonding
EP1247293A4 (en) * 1999-12-10 2006-02-15 Shellcase Ltd Methods for producing packaged integrated circuit devices & packaged integrated circuit devices produced thereby
US7144745B2 (en) 1999-12-10 2006-12-05 Tessera Technologies Hungary Kft. Methods for producing packaged integrated circuit devices and packaged integrated circuit devices produced
EP1247293A1 (en) * 1999-12-10 2002-10-09 Shellcase Ltd. Methods for producing packaged integrated circuit devices & packaged integrated circuit devices produced thereby
US7939918B2 (en) 1999-12-10 2011-05-10 Tessera Technologies Ireland Limited Chip packages with covers
JP2003516634A (en) * 1999-12-10 2003-05-13 シェルケース リミティド Manufacturing method of packaged integrated circuit device and packaged integrated circuit device manufactured by the manufacturing method
US7192796B2 (en) 2003-07-03 2007-03-20 Tessera Technologies Hungary Kft. Methods and apparatus for packaging integrated circuit devices
US7566853B2 (en) 2005-08-12 2009-07-28 Tessera, Inc. Image sensor employing a plurality of photodetector arrays and/or rear-illuminated architecture
US9548145B2 (en) 2007-01-05 2017-01-17 Invensas Corporation Microelectronic assembly with multi-layer support structure
JP2010171368A (en) * 2008-12-25 2010-08-05 Denso Corp Semiconductor device, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6300676B1 (en) Small size electronic part and a method for manufacturing the same, and a method for forming a via hole for use in the same
RU2371378C2 (en) Micromechanical component and method of its manufacturing
US6879048B2 (en) Glass frit wafer bonding process and packages formed thereby
JP5892378B2 (en) Manufacturing method of package material
EP2017628B1 (en) Physical sensor and method of manufacturing
JP2006116694A (en) Hermetically sealed microdevice with getter shield
JPH0810170B2 (en) Method of manufacturing semiconductor absolute pressure sensor
WO2007061841A2 (en) Capacitor electrode formed on surface of integrated circuit chip
EP2346083B1 (en) Mems sensor
JPH11326366A (en) Semiconductor electronic component device and its manufacture
JP3405108B2 (en) External force measuring device and manufacturing method thereof
JP6569382B2 (en) Manufacturing method of electronic device
JP2007057394A (en) Pressure sensor and its manufacturing method
JP5440148B2 (en) Method for manufacturing piezoelectric device
JPH10227709A (en) Pressure sensor device
JP2003098026A (en) Manufacturing method of capacitance type pressure sensor and capacitance type pressure sensor
JP5225824B2 (en) Electronic component package and method of manufacturing electronic component package
JP2002280470A (en) Semiconductor device and its manufacturing method
JP7521312B2 (en) Inertial sensor and method for manufacturing the inertial sensor
JPH11142430A (en) Electronic part and manufacture thereof
JP4095280B2 (en) Acceleration sensor element
JPH1082705A (en) Manufacture of small electronic device
JP4922856B2 (en) Hermetic package, angular velocity sensor, and method of manufacturing hermetic package
JPH1068643A (en) Manufacture of miniature electronic part
JP2004104117A (en) Package for electronic components, and piezoelectric vibration device using the package