JP4095280B2 - Acceleration sensor element - Google Patents

Acceleration sensor element Download PDF

Info

Publication number
JP4095280B2
JP4095280B2 JP2001349842A JP2001349842A JP4095280B2 JP 4095280 B2 JP4095280 B2 JP 4095280B2 JP 2001349842 A JP2001349842 A JP 2001349842A JP 2001349842 A JP2001349842 A JP 2001349842A JP 4095280 B2 JP4095280 B2 JP 4095280B2
Authority
JP
Japan
Prior art keywords
thin plate
semiconductor thin
substrate
acceleration sensor
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349842A
Other languages
Japanese (ja)
Other versions
JP2003152162A (en
Inventor
昌徳 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateyama Kagaku Kogyo Co Ltd
Original Assignee
Tateyama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateyama Kagaku Kogyo Co Ltd filed Critical Tateyama Kagaku Kogyo Co Ltd
Priority to JP2001349842A priority Critical patent/JP4095280B2/en
Publication of JP2003152162A publication Critical patent/JP2003152162A/en
Application granted granted Critical
Publication of JP4095280B2 publication Critical patent/JP4095280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Pressure Sensors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、静電容量により加速度を検出する半導体加速度センサ素子に関する。
【0002】
【従来の技術】
従来、例えばガラス基板の厚み方向に導電性を有した配線を設けた基板として、図5に示す導電性樹脂を用いたものがあった。この基板は、ガラス基板1の所定個所に空けた透孔2に、アルミニウム等を蒸着して金属薄膜層3を形成し、図5(a)に示すようにその透孔2内に導電性樹脂ペースト4を充填し、図5(b)に示すように導電性樹脂ペースト4を焼成して、導電性樹脂4aによる厚み方向配線5を形成した基板があった。また、図6(a)、(b)に示すように、ガラス基板1の所定個所に、金属薄膜3が形成された透孔2を設け、この透孔2にハンダ6のボールを載せ加熱し、透孔2内にハンダ6を溶融充填し、厚み方向配線7を形成したものもあった。
【0003】
さらに、ガラス基板用のガラスブロック8を形成する際に、図7(a)に示すようにその中に等間隔でタングステンワイヤ等の金属配線9を設け、このガラスブロック8が固まった後、図7(b)に示すように、ガラスブロック8を金属配線9ごと薄いガラス基板1にスライスし、厚み方向に配線を有した基板を形成したものもあった。
【0004】
【発明が解決しようとする課題】
上記従来の技術の図5に示す導電性樹脂を用いたものの場合、焼成した後の導電性樹脂4aは、収縮し金属薄膜3との間に隙間が生じてしまうものであった。従って、ガラス基板1の表裏間で気密性が要求される加速度センサなどの電子素子の基板には適さないものであった。
【0005】
また、図6に示すガラス基板1の透孔内にハンダ6を充填するものの場合、ガラス基板1に設けられる電子素子の製造工程や使用環境において、ハンダ6の融点以上の環境になる場合には使用できず、特に製造工程上高温になる場合に制限があった。
【0006】
さらに、図7に示すガラス基板1の場合、図7(c)に示すように、薄いガラス基板1にスライスした後、その表面を研磨して仕上げるものであるが、研磨時にガラスと金属配線9との摩耗の仕方が異なり、ガラス基板1表面に金属配線9が突出した状態となるという問題があった。従ってこの場合、電子素子を搭載するガラス基板1の表面性が悪く、このガラス基板1に他の電子部品を取り付ける場合やこのガラス基板1を回路基板表面に取り付ける場合の実装性にも問題があった。
【0007】
また、特開平11−351876号公報に開示されているように、内部を真空に保持した角速度センサの製造方法において、センサを構成する基板の一方に排気用の穴を設け、センサ内部の真空排気後この穴を金属薄膜やハンダ、低融点ガラス等で封止するものも提案されている。しかしこの場合、排気用穴はセンサ内部に連通しているものであり、真空にした後で排気用穴を塞ぐ際に封止用材料の不純物やガスがセンサ内に侵入する恐れがあり、また、密閉封止の信頼性も高いものではない。
【0008】
この発明は、上記従来の技術の問題点に鑑みて成されたもので、簡単な工程で基板の厚み方向の導電性を得ることができ、熱歪みも少なく、基板表裏間の気密性も確保することができ、小型で正確な加速度の検知が可能な半導体加速度センサ素子を提供することを目的とする。
【0009】
【課題を解決するための手段】
この発明は、絶縁性の基板に加速度検知用の所定の電極形状の半導体薄板が積層され、上記基板の上記半導体薄板の積層面とは反対側から上記半導体薄板に達する透孔が形成され、上記基板の裏面側に上記透孔内及び上記半導体薄板に接する裏面電極が形成された電子素子用基板を備え、この電子素子用基板表面側の上記半導体薄板に対面して加速度センサが設けられ、この加速度センサは、上記半導体薄板に対面して、重り部と、上記重り部が一体に形成され内側に収容した枠状のケース部と、上記重り部の四方に設けられ上記半導体薄板と対面した電極部と、上記重り部を支持して一体に形成され上記ケースの四方の角部に向かって各々延び、さらに前記角部から見てレ字状に屈曲するとともに、上記ケース部に沿って隣の角部に延びて、上記ケース部の前記隣の角部に繋がったレ字状の梁部とを備え、上記加速度センサの電極も上記透孔の裏面電極に接続され、上記基板の裏面側で上記透孔の裏面電極により外部の回路基板に接続可能とした加速度センサ素子である。
【0010】
上記加速度センサは、上記基板に設けられたケース部内で真空状態で気密状態に形成されている。さらに、絶縁性の基板に所定の電極形状の半導体薄板が陽極接合により密着積層され、上記基板の上記半導体薄板の積層面とは反対側から上記半導体薄板が露出するように透孔が形成され、上記基板及び半導体薄板の周縁部を囲むように上記ケース部が気密状態で接合され、上記透孔内及び上記露出した半導体薄板に接する裏面電極を備え、上記ケース部の上面開口部にガラス板が接合され、上記ケース部内を気密状態で密閉して上記加速度センサの重り部と電極部が真空状態に封止されたものである
【0011】
【発明の実施の形態】
以下この発明の実施の形態について図面に基づいて説明する。図1〜図4はこの発明の一実施形態を示すもので、この実施形態の電子素子用基板10は、ガラス板等の絶縁性基板11の所定の電極引き出し位置に、絶縁性基板11の厚み方向に形成された透孔12が形成されている。この透孔12の内表面には、導電性薄膜である金属薄膜14が設けられ、金属薄膜14は、絶縁性基板11の裏面側で配線パターンを含む裏面電極16に繋がっている。金属薄膜14は、AlやCr、Au等の金属から成る。
【0012】
絶縁性基板11の表面側には、その中央部に、基板に対して垂直方向の加速度を検知する正方形電極20aが形成され、その四方に基板面に対して平行な方向の加速度を検知する各台形電極20bを備え、さらにその周囲の四角形の枠部20cとに分かれて設けられた半導体薄板20が積層されている。半導体薄板20は、約200μm程度の厚さのシリコンウエハ基板から成り、所定の不純物をドープしてp型またはn型半導体に形成されている。絶縁性基板11と半導体薄板20の各部は、各々陽極接合により密着されている。
【0013】
この実施形態の加速度センサ22は、絶縁性基板11の半導体薄板20に対面して、加速度センサ22の重り部24と、重り部24が一体に形成され内側に収容した枠状のケース部26が設けられている。ケース部26も、500μm程度の厚さのシリコンウエハ基板に、所定の不純物をドープしてp型またはn型半導体に形成されている。重り部24は、半導体薄板20の中央の正方形電極20aに対向し、重り部24の四方に電極部28が形成されている。電極部28は、台形電極20bに平行に対面している。重り部24からは、重り部24を支持した梁部30が一体に形成されてレ字状に延び、ケース部26の四方の角部に繋がっている。ケース部26の底面は重り部24の底面よりも下方に位置し、半導体薄板20の枠部20cとAuロウや高温ハンダ等により、気密状態で密着されている。
【0014】
ケース部26の上面には、上面開口部を塞いでガラス板32が密着されている。ガラス板32は、ケース部26と低融点ガラス等により気密状態で接合されている。また、加速度センサ22の電極部28も、ケース部26を介して透孔12の裏面電極16に接続している。
【0015】
この実施形態の加速度センサ22の製造方法は、先ず図4(a)に示すように、例えばp型シリコン基板の半導体薄板20をエッチングして、正方形電極20a、台形電極20b及び枠部20cを形成する。このとき、エッチングにより各部を分割する溝状部34を形成し、各部がバラバラにならないように、溝状部34が貫通しないように表面側を一部残しておく。次に、図4(b)に示すように、裏面側のガラス等の絶縁性基板11を、陽極接合により一体的に密着させる。陽極接合は、約400℃の温度で1kV程度の電圧を印加して行う。次に、図1(c)に示すように、半導体薄板20の表面側の残った部分をエッチングし、溝状部34により、正方形電極20a、台形電極20b及び枠部20cが各々分離された状態にする。
【0016】
この後、絶縁性基板11の裏面側から、図3(b)、図4(d)に示すように、サンドブラストにより、透孔12を形成する。透孔12は、絶縁性基板11を貫通し、半導体薄板20を貫通させずにわずかに削って、透孔12内に半導体薄板20が露出した状態にする。
【0017】
また、ケース部26を形成するシリコン基板をエッチングして、重り部24,電極部28,梁部30を一体に形成する。このケース部26に予めガラス板32を密着する場合は、ガラス板32は陽極接合により一体に密着させることができる。そして、図4(e)に示すように、ケース部26を電子素子用基板10に真空中で、Auロウまたは高温ハンダにより密着させ、ケース部26内を真空状態に形成する。また、ケース部26を形成した後、ケース部26を電子素子用基板10にAuロウまたは高温ハンダにより密着させ、この後、ガラス板32をケース部26の開口部に密着させても良い。この場合、低融点ガラスにより接合する。
【0018】
なお、透孔12の形成は、ケース部26を絶縁性基板11に接合した後に行っても良い。そして、透孔12を形成した後、配線を含む裏面電極16を、マスク蒸着やスパッタリング等により形成する。
【0019】
この発明の電子素子用基板10を用いた加速度センサ22は、センサ内の気密封止を容易且つ確実に行うことができ、製造工程が簡単であり、製造コストも削減することができる。加速度センサ22内の各電極20a,20bを、絶縁性基板11に密着させた半導体薄板20により形成しているので、この半導体薄板20に接合する半導体のケース部26との間で熱膨張係数の差がなく、両者間の応力歪みを大幅に減少させることができる。また、重り部24を支持した梁部30がレ字状に延び、腕の長さが長く、加速度検知感度が高く、しかも外形は小さいものとすることができる。さらに、この電子素子用基板10は、内部を真空状態に維持したまま簡単に各電極20a,20bの反対側に、直に裏面電極16を形成することができ、この点も加速度センサ22小型化に大いに寄与する。
【0020】
なお、この発明の加速度センサの絶縁性基板はガラス系の材料の他、用途によりシリコンやセラミックス等を用いても良い。また、裏面電極は金属薄膜以外の導電体で構成しても良い。
【0021】
【発明の効果】
この発明の加速度センサ素子によれば、基板の表裏の電気的導通を図ることができるとともに、基板の表面に設けられる加速度センサ内部を容易に気密状態で設けることができ、その気密状態を確実に維持することができる。しかも、重り部に対して梁の長さを長くすることができ、外形を小さくすることと検知感度を上げるという相反する課題を解決して、感度の良い加速度センサを形成することができる。また、表面実装も容易に可能な加速度センサを提供することができる。これにより、加速度センサの小型化及び回路基板の実装密度の向上に大きく寄与する。さらに、小型化が容易であり、1ウエハからの取ることができる基板数を増加することができ、これによってもコスト削減を図ることができる。
【図面の簡単な説明】
【図1】 この発明の一実施形態の半導体加速度センサ素子を示す分解斜視図である。
【図2】 この発明の一実施形態の半導体加速度センサ素子を示す概略縦断面図である。
【図3】 この発明の一実施形態の電子素子用基板の平面図(a)と底面図(b)である。
【図4】 この発明の一実施形態の半導体加速度センサの概略製造工程を示す縦断面図である。
【図5】 従来の技術の電子素子用基板を示す縦断面図である。
【図6】 従来の技術の他の電子素子用基板を示す縦断面図である。
【図7】 従来の技術のさらに他の電子素子用基板の製造工程を示す概略図である。
【符号の説明】
10 電子素子用基板
11 絶縁性基板
12 透孔
14 金属薄膜
16 裏面電極
20 半導体薄板
20a 正方形電極
20b 台形電極
20c 枠部
22 加速度センサ
24 重り部
28 電極部
30 梁部
32 ガラス板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor acceleration sensor element that detects acceleration by capacitance .
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, as a substrate provided with conductive wiring in the thickness direction of a glass substrate, there is a substrate using a conductive resin shown in FIG. In this substrate, a metal thin film layer 3 is formed by vapor-depositing aluminum or the like in a through hole 2 formed in a predetermined portion of the glass substrate 1, and a conductive resin is formed in the through hole 2 as shown in FIG. There was a substrate in which the paste 4 was filled and the conductive resin paste 4 was baked as shown in FIG. 5B to form the wiring 5 in the thickness direction using the conductive resin 4a. Further, as shown in FIGS. 6A and 6B, a through hole 2 in which a metal thin film 3 is formed is provided at a predetermined portion of the glass substrate 1, and a ball of solder 6 is placed on the through hole 2 and heated. In some cases, solder 6 was melt-filled in the through holes 2 to form the thickness direction wiring 7.
[0003]
Furthermore, when forming the glass block 8 for the glass substrate, as shown in FIG. 7A, metal wirings 9 such as tungsten wires are provided at equal intervals in the glass block 8, and the glass block 8 is solidified. 7 (b), the glass block 8 was sliced together with the metal wiring 9 into a thin glass substrate 1 to form a substrate having wiring in the thickness direction.
[0004]
[Problems to be solved by the invention]
In the case of using the conductive resin shown in FIG. 5 of the above prior art, the conductive resin 4 a after baking contracts and a gap is formed between the metal thin film 3. Therefore, it is not suitable for a substrate of an electronic element such as an acceleration sensor that requires airtightness between the front and back of the glass substrate 1.
[0005]
Further, in the case where the solder 6 is filled in the through hole of the glass substrate 1 shown in FIG. 6, in the manufacturing process or use environment of the electronic element provided on the glass substrate 1, the environment becomes higher than the melting point of the solder 6. There was a limitation when it could not be used, and particularly when the temperature was high in the manufacturing process.
[0006]
Further, in the case of the glass substrate 1 shown in FIG. 7, as shown in FIG. 7 (c), after slicing to the thin glass substrate 1, the surface is polished and finished. There is a problem that the metal wiring 9 protrudes from the surface of the glass substrate 1 due to the difference in the manner of wear. Therefore, in this case, the surface property of the glass substrate 1 on which the electronic element is mounted is poor, and there is a problem in the mountability when another electronic component is attached to the glass substrate 1 or when the glass substrate 1 is attached to the circuit substrate surface. It was.
[0007]
Further, as disclosed in Japanese Patent Laid-Open No. 11-351876, in a manufacturing method of an angular velocity sensor in which the inside is kept in a vacuum, an exhaust hole is provided in one of the substrates constituting the sensor, and the inside of the sensor is evacuated. There has also been proposed a method in which the hole is sealed with a metal thin film, solder, low melting point glass, or the like. In this case, however, the exhaust hole communicates with the inside of the sensor. When the exhaust hole is closed after evacuation, impurities or gas of the sealing material may enter the sensor. The reliability of hermetic sealing is not high.
[0008]
The present invention has been made in view of the above-mentioned problems of the prior art, and can obtain the conductivity in the thickness direction of the substrate with a simple process, has little thermal distortion, and ensures airtightness between the front and back of the substrate. An object of the present invention is to provide a semiconductor acceleration sensor element that can be small and can accurately detect acceleration .
[0009]
[Means for Solving the Problems]
In the present invention, a semiconductor thin plate having a predetermined electrode shape for acceleration detection is laminated on an insulating substrate, and a through hole reaching the semiconductor thin plate from the opposite side of the laminated surface of the semiconductor thin plate of the substrate is formed. An electronic device substrate having a back electrode in contact with the inside of the through hole and the semiconductor thin plate is formed on the back surface side of the substrate, and an acceleration sensor is provided to face the semiconductor thin plate on the surface side of the electronic device substrate. The acceleration sensor faces the semiconductor thin plate, and includes a weight portion, a frame-like case portion in which the weight portion is integrally formed and housed inside, and electrodes facing the semiconductor thin plate provided on four sides of the weight portion. And the weight portion are integrally formed to extend toward the four corners of the case , bend in a letter shape when viewed from the corner , and adjacent to the case portion along the case portion. It extends to the corner portion And a said record-shaped beam portion that is connected to the corner portion adjacent to the casing portion, the electrode of the acceleration sensor is also connected to the back surface electrode of the holes, the back surface electrode of the holes in the rear surface side of the substrate Thus, the acceleration sensor element can be connected to an external circuit board.
[0010]
The acceleration sensor is formed in an airtight state in a vacuum state within a case portion provided on the substrate. Furthermore, a semiconductor thin plate having a predetermined electrode shape is adhered and laminated on an insulating substrate by anodic bonding, and a through hole is formed so that the semiconductor thin plate is exposed from the opposite side of the laminated surface of the semiconductor thin plate of the substrate, The case part is joined in an airtight manner so as to surround the peripheral part of the substrate and the semiconductor thin plate, and includes a back electrode in contact with the through hole and the exposed semiconductor thin plate, and a glass plate is provided in the upper surface opening of the case part. The inside of the case part is sealed in an airtight state, and the weight part and the electrode part of the acceleration sensor are sealed in a vacuum state .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show an embodiment of the present invention. An electronic element substrate 10 according to this embodiment has a thickness of an insulating substrate 11 at a predetermined electrode drawing position of an insulating substrate 11 such as a glass plate. A through hole 12 formed in the direction is formed. A metal thin film 14, which is a conductive thin film, is provided on the inner surface of the through hole 12, and the metal thin film 14 is connected to a back electrode 16 including a wiring pattern on the back surface side of the insulating substrate 11. The metal thin film 14 is made of a metal such as Al, Cr, or Au.
[0012]
On the surface side of the insulating substrate 11, a square electrode 20 a that detects acceleration in a direction perpendicular to the substrate is formed at the center, and each of the four electrodes detects acceleration in a direction parallel to the substrate surface. A semiconductor thin plate 20 provided with a trapezoidal electrode 20b and further divided into a rectangular frame portion 20c around it is laminated. The semiconductor thin plate 20 is formed of a silicon wafer substrate having a thickness of about 200 μm, and is formed into a p-type or n-type semiconductor by doping predetermined impurities. The portions of the insulating substrate 11 and the semiconductor thin plate 20 are in close contact with each other by anodic bonding.
[0013]
The acceleration sensor 22 according to this embodiment has a weight portion 24 of the acceleration sensor 22 facing the semiconductor thin plate 20 of the insulating substrate 11 and a frame-shaped case portion 26 in which the weight portion 24 is integrally formed and accommodated inside. Is provided. The case portion 26 is also formed as a p-type or n-type semiconductor by doping a silicon wafer substrate having a thickness of about 500 μm with a predetermined impurity. The weight portion 24 faces the square electrode 20a at the center of the semiconductor thin plate 20, and electrode portions 28 are formed on four sides of the weight portion 24. The electrode unit 28 faces the trapezoidal electrode 20b in parallel. From the weight portion 24, a beam portion 30 that supports the weight portion 24 is integrally formed and extends in a letter shape, and is connected to the four corners of the case portion 26. The bottom surface of the case portion 26 is positioned below the bottom surface of the weight portion 24 and is in close contact with the frame portion 20c of the semiconductor thin plate 20 in an airtight state by Au solder, high-temperature solder, or the like.
[0014]
A glass plate 32 is in close contact with the upper surface of the case portion 26 so as to close the upper surface opening. The glass plate 32 is joined to the case portion 26 by a low melting point glass or the like in an airtight state. The electrode part 28 of the acceleration sensor 22 is also connected to the back electrode 16 of the through hole 12 through the case part 26.
[0015]
In the manufacturing method of the acceleration sensor 22 of this embodiment, as shown in FIG. 4A, first, a semiconductor thin plate 20 of, for example, a p-type silicon substrate is etched to form a square electrode 20a, a trapezoidal electrode 20b, and a frame portion 20c. To do. At this time, a groove-like portion 34 that divides each portion is formed by etching, and a part of the surface side is left so that the groove-like portion 34 does not penetrate so that each portion does not fall apart. Next, as shown in FIG. 4B, an insulating substrate 11 such as glass on the back surface side is integrally adhered by anodic bonding. The anodic bonding is performed by applying a voltage of about 1 kV at a temperature of about 400 ° C. Next, as shown in FIG. 1C, the remaining portion on the surface side of the semiconductor thin plate 20 is etched, and the square electrode 20a, the trapezoidal electrode 20b, and the frame portion 20c are separated by the groove-shaped portion 34, respectively. To.
[0016]
Thereafter, as shown in FIGS. 3B and 4D, the through holes 12 are formed from the back side of the insulating substrate 11 by sandblasting. The through hole 12 penetrates the insulating substrate 11 and is slightly shaved without penetrating the semiconductor thin plate 20 so that the semiconductor thin plate 20 is exposed in the through hole 12.
[0017]
In addition, the silicon substrate forming the case portion 26 is etched to integrally form the weight portion 24, the electrode portion 28, and the beam portion 30. When the glass plate 32 is brought into close contact with the case portion 26 in advance, the glass plate 32 can be brought into close contact with the case portion 26 by anodic bonding. Then, as shown in FIG. 4E, the case portion 26 is brought into close contact with the electronic element substrate 10 in a vacuum by Au brazing or high-temperature solder, thereby forming the inside of the case portion 26 in a vacuum state. Further, after forming the case portion 26, the case portion 26 may be brought into close contact with the electronic element substrate 10 by Au soldering or high-temperature soldering, and then the glass plate 32 may be brought into close contact with the opening of the case portion 26. In this case, it joins by low melting glass.
[0018]
Note that the through holes 12 may be formed after the case portion 26 is bonded to the insulating substrate 11. And after forming the through-hole 12, the back surface electrode 16 containing wiring is formed by mask vapor deposition, sputtering, etc. FIG.
[0019]
The acceleration sensor 22 using the electronic element substrate 10 of the present invention can easily and reliably perform hermetic sealing in the sensor, the manufacturing process is simple, and the manufacturing cost can be reduced. Since each electrode 20a, 20b in the acceleration sensor 22 is formed by the semiconductor thin plate 20 in close contact with the insulating substrate 11, the coefficient of thermal expansion between the semiconductor case portion 26 and the semiconductor thin plate 20 is fixed. There is no difference, and the stress strain between the two can be greatly reduced. Further, the beam portion 30 supporting the weight portion 24 extends in a letter shape, the arm length is long, the acceleration detection sensitivity is high, and the outer shape can be small. Furthermore, the electronic device substrate 10 is internally briefly each electrode 20a while maintaining the vacuum state, the opposite side of 20b, it is possible to directly form the back surface electrode 16, the acceleration sensor 22 downsizing This point Greatly contributes to.
[0020]
The insulating substrate of the acceleration sensor according to the present invention may be made of silicon, ceramics, or the like depending on the application in addition to the glass-based material. Moreover, you may comprise a back surface electrode with conductors other than a metal thin film.
[0021]
【The invention's effect】
According to the acceleration sensor element of the present invention, electrical conduction between the front and back sides of the substrate can be achieved, and the inside of the acceleration sensor provided on the surface of the substrate can be easily provided in an airtight state. Can be maintained. In addition , the length of the beam can be increased with respect to the weight portion, and the conflicting problems of reducing the outer shape and increasing the detection sensitivity can be solved, and a highly sensitive acceleration sensor can be formed. In addition, an acceleration sensor that can be easily mounted on the surface can be provided. Thus, greatly contributes to the improvement of implementation density of the compact and the circuit board of the acceleration sensor. Furthermore, the size can be easily reduced, and the number of substrates that can be taken from one wafer can be increased, thereby reducing the cost.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a semiconductor acceleration sensor element according to an embodiment of the present invention.
FIG. 2 is a schematic longitudinal sectional view showing a semiconductor acceleration sensor element according to one embodiment of the present invention.
FIGS. 3A and 3B are a plan view and a bottom view of an electronic device substrate according to an embodiment of the present invention. FIGS.
FIG. 4 is a longitudinal sectional view showing a schematic manufacturing process of the semiconductor acceleration sensor according to the embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing a conventional substrate for electronic devices.
FIG. 6 is a longitudinal sectional view showing another electronic device substrate according to the prior art.
FIG. 7 is a schematic view showing a manufacturing process of still another electronic device substrate according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Substrate for electronic devices 11 Insulating substrate 12 Through-hole 14 Metal thin film 16 Back electrode 20 Semiconductor thin plate 20a Square electrode 20b Trapezoid electrode 20c Frame part 22 Acceleration sensor 24 Weight part 28 Electrode part 30 Beam part 32 Glass plate

Claims (3)

絶縁性の基板に加速度検知用の所定の電極形状の半導体薄板が積層され、上記基板の上記半導体薄板の積層面とは反対側から上記半導体薄板に達する透孔が形成され、上記基板の裏面側に上記透孔内及び上記半導体薄板に接する裏面電極が形成された電子素子用基板を備え、この電子素子用基板表面側の上記半導体薄板に対面して加速度センサが設けられ、この加速度センサは、上記半導体薄板に対面して、重り部と、上記重り部が一体に形成され内側に収容した枠状のケース部と、上記重り部の四方に設けられ上記半導体薄板と対面した電極部と、上記重り部を支持して一体に形成され上記ケースの四方の角部に向かって各々延び、さらに前記角部から見てレ字状に屈曲するとともに、上記ケース部に沿って隣の角部に延びて、上記ケース部の前記隣の角部に繋がったレ字状の梁部とを備え、上記加速度センサの電極も上記透孔の裏面電極に接続され、上記基板の裏面側で上記透孔の裏面電極により外部の回路基板に接続可能としたことを特徴とする加速度センサ素子。A semiconductor thin plate having a predetermined electrode shape for acceleration detection is laminated on an insulating substrate, and a through hole reaching the semiconductor thin plate from the side opposite to the laminated surface of the semiconductor thin plate of the substrate is formed. The electronic element substrate is provided with a back electrode in contact with the semiconductor thin plate in the through hole, and an acceleration sensor is provided facing the semiconductor thin plate on the surface side of the electronic element substrate. Facing the semiconductor thin plate, a weight portion, a frame-shaped case portion in which the weight portion is integrally formed and accommodated inside, an electrode portion provided on four sides of the weight portion and facing the semiconductor thin plate, and The weight part is integrally supported and extends toward the four corners of the case , bends in a letter shape when viewed from the corner, and extends to the next corner along the case part. The above case It said a record-shaped beam portion that is connected to the corners of the neighboring electrodes of the acceleration sensor is also connected to the back electrode of the through hole, of the substrate at the rear surface side of the outside by the back electrode of the hole An acceleration sensor element characterized in that it can be connected to a circuit board. 上記加速度センサは、上記基板に設けられたケース部内で、真空状態で気密状態に形成されていることを特徴とする請求項1記載の加速度センサ素子。2. The acceleration sensor element according to claim 1, wherein the acceleration sensor is formed in an airtight state in a vacuum state within a case portion provided on the substrate. 絶縁性の基板に所定の電極形状の半導体薄板が陽極接合により密着積層され、上記基板の上記半導体薄板の積層面とは反対側から上記半導体薄板が露出するように透孔が形成され、上記基板及び半導体薄板の周縁部を囲むように上記ケース部が気密状態で接合され、上記透孔内及び上記露出した半導体薄板に接する裏面電極を備え、上記ケース部の上面開口部にガラス板が接合され、上記ケース部内を気密状態で密閉して上記加速度センサの重り部と電極部が真空状態に封止されたことを特徴とする請求項2記載の加速度センサ素子。A semiconductor thin plate having a predetermined electrode shape is adhered and laminated on an insulating substrate by anodic bonding, and a through hole is formed so that the semiconductor thin plate is exposed from the side opposite to the laminated surface of the semiconductor thin plate of the substrate. The case portion is joined in an airtight manner so as to surround the peripheral portion of the semiconductor thin plate, and includes a back electrode in contact with the through hole and the exposed semiconductor thin plate, and a glass plate is joined to the upper surface opening of the case portion. 3. The acceleration sensor element according to claim 2, wherein the inside of the case portion is hermetically sealed and the weight portion and the electrode portion of the acceleration sensor are sealed in a vacuum state .
JP2001349842A 2001-11-15 2001-11-15 Acceleration sensor element Expired - Fee Related JP4095280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349842A JP4095280B2 (en) 2001-11-15 2001-11-15 Acceleration sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349842A JP4095280B2 (en) 2001-11-15 2001-11-15 Acceleration sensor element

Publications (2)

Publication Number Publication Date
JP2003152162A JP2003152162A (en) 2003-05-23
JP4095280B2 true JP4095280B2 (en) 2008-06-04

Family

ID=19162449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349842A Expired - Fee Related JP4095280B2 (en) 2001-11-15 2001-11-15 Acceleration sensor element

Country Status (1)

Country Link
JP (1) JP4095280B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525452B2 (en) * 2005-04-27 2010-08-18 パナソニック株式会社 Multi-axis acceleration sensor
JP2010164569A (en) * 2010-02-15 2010-07-29 Panasonic Corp Multiaxial acceleration sensor

Also Published As

Publication number Publication date
JP2003152162A (en) 2003-05-23

Similar Documents

Publication Publication Date Title
US4530029A (en) Capacitive pressure sensor with low parasitic capacitance
JP6247006B2 (en) Electronic device, oscillator, and method of manufacturing electronic device
US20040095199A1 (en) Surface mount crystal unit and surface mount crystal oscillator
GB2168160A (en) Silicon capacitive pressure sensor
JPH06331651A (en) Accelerometer with minute mechanism and preparation thereof
TWI517310B (en) Manufacturing method of electronic device package
JPH01142427A (en) Pressure sensor
JPS6313574B2 (en)
JPH0750789B2 (en) Method for manufacturing semiconductor pressure converter
JP2007333500A (en) Pressure sensor and manufacturing method of same
JP4864152B2 (en) Surface mount crystal unit
US20200391999A1 (en) Mems device and method for manufacturing mems device
CN114039574A (en) Ceramic temperature sensing type resonator
JP4095280B2 (en) Acceleration sensor element
JP2008032451A (en) Variable capacitance pressure sensor
US20040263186A1 (en) Capacitance type dynamic quantity sensor
JP6279857B2 (en) Electronic device, multi-cavity frame and multi-cavity electronic device
JPS594868B2 (en) semiconductor equipment
JP2007019310A (en) Piezoelectric device, method for manufacturing the same, and electronic device
JPH09116173A (en) Semiconductor sensor and its manufacture
JP5606696B2 (en) Mechanical quantity sensor and manufacturing method thereof
JP2002134659A (en) Board for electronic element, its manufacturing method, the electronic element and its manufacturing method
JPS63175482A (en) Pressure sensor
JP4426202B2 (en) Acceleration sensor and manufacturing method thereof
JP2022071552A (en) Mems module and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees