JPH11326228A - Mirror surface body visual inspection device - Google Patents

Mirror surface body visual inspection device

Info

Publication number
JPH11326228A
JPH11326228A JP10155375A JP15537598A JPH11326228A JP H11326228 A JPH11326228 A JP H11326228A JP 10155375 A JP10155375 A JP 10155375A JP 15537598 A JP15537598 A JP 15537598A JP H11326228 A JPH11326228 A JP H11326228A
Authority
JP
Japan
Prior art keywords
wafer
image
imaging
mirror surface
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10155375A
Other languages
Japanese (ja)
Inventor
Yoshitaka Yaginuma
芳隆 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP10155375A priority Critical patent/JPH11326228A/en
Publication of JPH11326228A publication Critical patent/JPH11326228A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection
    • G01N2021/8825Separate detection of dark field and bright field

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To visually inspect a mirror surface according to an image with an improved S/N ratio. SOLUTION: A wafer W, a lens 5 of an image pick-up optical system, and a high-resolution image pick-up element 6 are arranged in parallel one another, thus obtaining the image of the wafer W with the high-resolution image pick-up element 6. A bright visual field lighting system 8 shows a white plate 11 on the mirror surface of the wafer W and picks up the image of the mirror surface of the wafer W with an improved S/N ratio by an image pick-up camera 4. A dark visual field lighting system 9 directly applies light to the wafer W by appropriately using a light projection type lighting device 12, a surface- lighting device 16, a side-lighting device 18, and an annular lighting device 20 with a small lighting angle. By picking up images in bright visual field lighting and dark visual field lighting, a defect can be easily evaluated and judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエーハ等
の表面が鏡面とされている鏡面体の検査に用いられる鏡
面体外観検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a specular surface appearance inspection apparatus used for inspecting a mirror surface of a semiconductor wafer or the like having a mirror surface.

【0002】[0002]

【従来の技術】半導体ウエーハはシリコン等のインゴッ
トからウエーハ状に切断されて鏡面研磨されて鏡面体と
して仕上げられるが、この鏡面体としての半導体ウエー
ハの表面欠陥の検査が行われる。この表面欠陥として、
ゴミ、キズ、汚れ、ピンホール等の立体的または平面的
な欠陥があり、これら欠陥の検査は、通常、目視検査か
自動検査で行われる。目視検査は煩雑で手間がかかると
いう問題がある。自動検査で行われる場合、例えばテレ
ビカメラ方式とレーザ走査方式とが行われている。テレ
ビカメラ方式で行う場合、例えば照明光学系の光源から
の照射光をコリメータ鏡等で投光光線としてウエーハの
表面に照射し、これを暗視野照明として照明光路外の上
方から高感度撮像カメラで撮像して画像データを得るよ
うにしている。ウエーハ上のゴミやキズなどの欠陥は散
乱光によって明るい像として捕らえられ、目視観察によ
り、またデジタル信号として検出できる。
2. Description of the Related Art A semiconductor wafer is cut into a wafer shape from an ingot of silicon or the like, and is mirror-polished and finished as a mirror. A surface defect of the semiconductor wafer as the mirror is inspected. As this surface defect,
There are three-dimensional or planar defects such as dust, scratches, dirt, and pinholes, and these defects are usually inspected by visual inspection or automatic inspection. The visual inspection has a problem that it is complicated and time-consuming. When the inspection is performed by the automatic inspection, for example, a television camera system and a laser scanning system are performed. In the case of the TV camera system, for example, the irradiation light from the light source of the illumination optical system is radiated to the surface of the wafer as a projection light beam by a collimator mirror or the like, and this is used as a dark-field illumination by a high-sensitivity imaging camera from above the illumination optical path from above. Image data is obtained by imaging. Defects such as dust and scratches on the wafer are captured as bright images by scattered light, and can be detected by visual observation and as digital signals.

【0003】また、レーザ走査方式で行う場合、レーザ
ー光を例えばスポット光としてX−Y方向に走査してウ
エーハ面上を移動させ、欠陥がある場合には散乱光や回
折光となるので、これを受光素子で受光する等して欠陥
として検出するようになっている。
In the laser scanning method, a laser beam is moved in the XY direction as a spot beam, for example, to move on the wafer surface. If there is a defect, the beam becomes scattered light or diffracted light. Is detected as a defect by receiving light by a light receiving element or the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たテレビカメラ方式の場合、暗視野照明下で撮像する際
に、ウエーハに対して斜め上方にテレビカメラが位置し
て撮像するために、ウエーハ面に対してテレビカメラの
撮像レンズ系と撮像素子とが非平行な配置となるために
ウエーハ全体が合焦位置になく、ウエーハの表面全体に
亘って欠陥を検出することができないという欠点があ
る。これを改善するためにテレビカメラの撮像光学系の
焦点深度を深くすると、被検査体がウエーハのような鏡
面体の場合には照明系の光源等がウエーハ画像に写って
しまい正確な撮像データが得られないという問題が生じ
る。一般的な明視野照明系を用いてウエーハを撮像する
とした場合、光源とウエーハとの間にハーフミラーをお
いて、ハーフミラーを通してウエーハを落射照明してウ
エーハを撮像することになる。しかし、被検査体がウエ
ーハのような鏡面体であると、撮像されるウエーハの画
像にウエーハの鏡面に映った光源やレンズなどの部材な
どが写ってしまい、鏡面の明視野照明での検査ができな
いという問題がある。
However, in the case of the above-described television camera system, when imaging under dark-field illumination, the television camera is positioned obliquely upward with respect to the wafer to perform imaging. On the other hand, since the imaging lens system of the television camera and the imaging device are arranged in a non-parallel manner, the entire wafer is not at the in-focus position, and there is a disadvantage that defects cannot be detected over the entire surface of the wafer. If the depth of focus of the imaging optical system of the TV camera is increased to improve this, if the object to be inspected is a mirror-like object such as a wafer, the light source of the illumination system will appear in the wafer image and accurate imaging data will be obtained. There is a problem that it cannot be obtained. When a wafer is imaged using a general bright-field illumination system, a half mirror is provided between the light source and the wafer, and the wafer is imaged by incident illumination of the wafer through the half mirror. However, if the object to be inspected is a mirror-like object such as a wafer, the light source and the lens etc. reflected on the mirror surface of the wafer appear in the image of the wafer to be imaged. There is a problem that can not be.

【0005】また、レーザ走査方式の場合、検査用のス
ポット光が小さいため被検査体であるウエーハが相対的
に大面積となり、走査速度の高速化と検査の長時間化が
要求される。また、検出されたデータからキズと汚れな
どの欠陥の区別がつかず、しかも照明条件を変えた複数
種類の画像による多様な情報を得るのが難しかった。こ
のように従来のウエーハの検査装置では、正常面と欠陥
とのS/N比が悪く、ウエーハ表面に存在する各種の欠
陥としてのキズ、ゴミ、汚れ、ピンホールなどの検査判
別が短時間で十分に行えないという欠点があった。
Further, in the case of the laser scanning method, since the spotlight for inspection is small, the wafer to be inspected has a relatively large area, and it is required to increase the scanning speed and lengthen the inspection. In addition, it is difficult to distinguish defects such as flaws and stains from the detected data, and it is difficult to obtain a variety of information from a plurality of types of images with different illumination conditions. As described above, in the conventional wafer inspection apparatus, the S / N ratio between the normal surface and the defect is poor, and the inspection and determination of various defects existing on the wafer surface, such as scratches, dust, dirt, and pinholes, can be performed in a short time. There was a drawback that it could not be performed sufficiently.

【0006】本発明は、このような実情に鑑みて、明視
野で鏡面体全体を合焦状態で精密に撮像できるようにし
た鏡面体外観検査装置を提供することを目的とする。ま
た、本発明の他の目的は、正常面と欠陥とのS/N比を
上げて鏡面体のキズやゴミや汚れなどの各種の欠陥を判
別できるようにした鏡面体外観検査装置を提供すること
である。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a specular body appearance inspection apparatus capable of precisely imaging the entire mirror body in a focused state in a bright field. Another object of the present invention is to provide a specular body appearance inspection apparatus capable of discriminating various kinds of defects such as scratches, dust, and dirt on the specular body by increasing the S / N ratio between a normal surface and a defect. That is.

【0007】[0007]

【課題を解決するための手段】本発明に係る鏡面体外観
検査装置は、鏡面体の鏡面の法線に対して斜め方向に位
置する撮像レンズを有する撮像カメラによって前記鏡面
が撮像素子に結像されるように配置され、撮像レンズと
鏡面と撮像素子が互いに平行に配設されていると共に、
鏡面の法線に対して撮像レンズと反対側に、前記鏡面に
映る明るい均一面が配置されてなることを特徴とする。
従って、撮像カメラの光軸は鏡面の法線に対して斜め方
向にあり、明るい均一面が被検査体である鏡面体の検査
面である鏡面(の全面)に写る状態で撮像カメラで鏡面
を撮像すると、鏡面はその全体に亘って撮像レンズを介
して撮像素子上に合焦状態で結像され、しかも鏡面体の
鏡面について光源ムラが撮像画像に投影されずS/N比
が良好な鏡面体全体の画像データを鮮明に得られる。そ
して鏡面上に欠陥がある場合、汚れやピンホール等の平
面度の高い欠陥は鏡面の正常な部分のように正反射像が
できず、他の正常な部分とのコントラストが大きく明瞭
に検出できる明視野画像が得られる。他方、ゴミやキズ
等の凸部のある立体的な欠陥では、その部分で反射する
乱反射光の一部が撮像レンズに入射されるためにコント
ラストが小さく比較的検出しにくい。
According to the present invention, there is provided a mirror appearance inspection apparatus according to the present invention, wherein the mirror surface is imaged on an image sensor by an imaging camera having an imaging lens positioned obliquely to a normal to a mirror surface of the mirror body. The imaging lens, the mirror surface, and the imaging device are arranged in parallel with each other,
A bright uniform surface reflected on the mirror surface is arranged on a side opposite to the imaging lens with respect to a normal line of the mirror surface.
Therefore, the optical axis of the imaging camera is oblique to the normal of the mirror surface, and the mirror surface is projected by the imaging camera in a state where a bright uniform surface is reflected on (the entire surface of) the inspection surface of the inspection target mirror object. When an image is taken, the mirror surface is formed in an in-focus state on the image sensor through the image pickup lens over the entire surface, and furthermore, the light source unevenness is not projected on the captured image with respect to the mirror surface of the mirror body, and the S / N ratio is good. Image data of the whole body can be obtained clearly. When there is a defect on the mirror surface, a defect having a high flatness such as dirt or a pinhole cannot form a regular reflection image like a normal portion of the mirror surface, and the contrast with other normal portions is large and can be clearly detected. A bright-field image is obtained. On the other hand, in the case of a three-dimensional defect having a convex portion such as dust or a flaw, a part of the irregularly reflected light reflected at the portion is incident on the imaging lens, so that the contrast is small and relatively difficult to detect.

【0008】また、本発明による鏡面体外観検査装置
は、鏡面体が撮像レンズを有する撮像カメラによって撮
像素子に撮像されるように配置されていて、撮像レンズ
と鏡面体と撮像素子が互いに平行に配設されていると共
に、照明系として暗視野照明系と明視野照明系とが配設
されていて、暗視野照明系と明視野照明系のいずれかの
照明光を選択的に用いて撮像された照明の異なる複数の
画像から異常部を検出するようにしてなることを特徴と
する。上述した明視野照明下での撮像特性に加えて、暗
視野照明系を用いて被検査体を照明した場合には、得ら
れた撮像画像は、欠陥のない正常な鏡面は黒く、ゴミや
キズ等の立体的な欠陥は照明光の一部が反射して撮像レ
ンズに入射されるために明るい像となり、明瞭に識別で
きる。他方、汚れやピンホールなどの凸部のないまたは
小さい欠陥は乱反射による撮像レンズへの入射光量が少
ないので、明瞭に識別できない。そのため、判別すべき
欠陥の種類等に応じて明視野照明系と暗視野照明系とを
選択的に用いて被検査体を照射し、各照明下の画像を撮
り、各画像の相対的異常部情報を検出すれば、各種の欠
陥を明瞭にとらえられ、判別が容易に行える。
Further, the specular body appearance inspection apparatus according to the present invention is arranged such that the specular body is picked up by the image pickup device by the image pickup camera having the image pickup lens, and the image pickup lens, the mirror body, and the image pickup element are parallel to each other. A dark-field illumination system and a bright-field illumination system are arranged as illumination systems, and an image is captured by selectively using either the dark-field illumination system or the bright-field illumination system. An abnormal portion is detected from a plurality of images having different illuminations. In addition to the above-described imaging characteristics under bright-field illumination, when an object to be inspected is illuminated using a dark-field illumination system, the obtained captured image is black on a normal mirror surface without defects, and dust and scratches. Such a three-dimensional defect becomes a bright image because part of the illumination light is reflected and enters the imaging lens, and can be clearly identified. On the other hand, defects having no or small projections such as dirt and pinholes cannot be clearly identified because the amount of light incident on the imaging lens due to irregular reflection is small. Therefore, the object to be inspected is illuminated by selectively using a bright-field illumination system and a dark-field illumination system according to the type of defect to be determined, and images under each illumination are taken. If the information is detected, various types of defects can be clearly caught and can be easily determined.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図1
乃至図3により説明する。図1は本発明の実施の形態に
よる外観検査装置の要部構成図、図2は図1に示す外観
検査装置の明視野撮像系を示す構成図、図3は図1に示
す外観検査装置の暗視野撮像系を示す構成図である。図
1に示す外観検査装置1において、基台2上に被検査体
である半導体ウエーハ(以下、ウエーハという)Wを支
持する回転テーブル3がその中心線回りに回転可能に配
設されている。ウエーハWはその表面が鏡面に研磨され
ている。そして、このウエーハWに対して斜め上方にウ
エーハWの表面を撮像して欠陥検査するための鏡面体撮
像用の撮像カメラ4が設けられている。この撮像カメラ
4内には撮像レンズ系として広角撮像用のレンズ5が含
まれており、レンズ5を通したウエーハWの結像位置で
ある焦点面に高精細度撮像子6が撮像素子として設けら
れている。レンズ5は例えば両面凸レンズからなってい
て互いに直交する長軸aと短軸bを備えており、しかも
レンズ5は短軸bが撮像光学系の主軸とされ、長軸aが
主軸に直交してウエーハWの表面及び高精細度撮像子6
と平行に配設されている。しかも、この撮像光学系は、
光軸Lがレンズ5の長軸aと短軸bの交差点を通ってウ
エーハW及び高精細度撮像素子6の各中心点を結ぶよう
に構成されている。従ってレンズ5はウエーハWの表面
と高精細度撮像子6と同軸で互いに平行に配設され、光
軸Lはレンズ5、ウエーハWの表面及び高精細度撮像子
6に斜めに交差することになる。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIGS. FIG. 1 is a configuration diagram of a main part of a visual inspection device according to an embodiment of the present invention, FIG. 2 is a configuration diagram showing a bright-field imaging system of the visual inspection device shown in FIG. 1, and FIG. FIG. 2 is a configuration diagram illustrating a dark-field imaging system. In a visual inspection apparatus 1 shown in FIG. 1, a turntable 3 for supporting a semiconductor wafer (hereinafter, referred to as a wafer) W as an object to be inspected is provided on a base 2 so as to be rotatable around its center line. The surface of the wafer W is mirror-polished. Further, an imaging camera 4 for mirror-surface imaging for observing the surface of the wafer W obliquely above the wafer W for defect inspection is provided. The imaging camera 4 includes a wide-angle imaging lens 5 as an imaging lens system, and a high-definition imaging element 6 is provided as an imaging element on a focal plane which is an image forming position of the wafer W through the lens 5. Have been. The lens 5 is composed of, for example, a biconvex lens and has a major axis a and a minor axis b orthogonal to each other, and the minor axis b of the lens 5 is the principal axis of the imaging optical system, and the major axis a is orthogonal to the principal axis. Surface of wafer W and high-definition image sensor 6
And are arranged in parallel. Moreover, this imaging optical system
The optical axis L is configured to connect the center point of the wafer W and the center point of the high-definition image sensor 6 through the intersection of the major axis a and the minor axis b of the lens 5. Therefore, the lens 5 is disposed coaxially and parallel to the surface of the wafer W and the high-definition image sensor 6, and the optical axis L obliquely intersects the lens 5, the surface of the wafer W, and the high-definition image sensor 6. Become.

【0010】この外観検査装置1には、照明系として明
視野照明系8と暗視野照明系9が配設されている。明視
野照明系8では、図1及び図2に示すように、ウエーハ
Wに直接光が入射しない位置と角度を以て例えばパネル
状の光源10が配設され、この光源10に対向して白色
板11(均一面)が配設され、白色板11は光源10か
らの射出光束を受けて均一な反射光としてウエーハWを
照射する。ここで、光源10としては白熱灯、蛍光灯な
どの各種の光源を採用でき、また白色板11としては光
源10からの照射光を均一な反射光にして照射できてウ
エーハWに映っても明るさのムラがでない均一な面であ
ればよく、例えば、すりガラス、ケント紙、乳白色板等
が用いられる。そして、ウエーハWの鏡面に映る明るい
白色板11の像は撮像カメラ4でレンズ5を含む撮像光
学系を介して高精細度撮像子6上にピンぼけ状態で結像
されるようになっている。
The appearance inspection apparatus 1 is provided with a bright-field illumination system 8 and a dark-field illumination system 9 as illumination systems. In the bright field illumination system 8, as shown in FIGS. 1 and 2, for example, a panel-shaped light source 10 is disposed at a position and an angle at which light does not directly enter the wafer W, and a white plate 11 is opposed to the light source 10. (A uniform surface) is provided, and the white plate 11 receives the light beam emitted from the light source 10 and irradiates the wafer W as uniform reflected light. Here, various light sources such as an incandescent lamp and a fluorescent lamp can be used as the light source 10, and the white plate 11 can irradiate the irradiation light from the light source 10 as uniform reflected light so that the light is reflected even on the wafer W. It is sufficient that the surface is uniform without unevenness, and for example, frosted glass, Kent paper, milky white plate and the like are used. Then, the image of the bright white plate 11 reflected on the mirror surface of the wafer W is formed in an out-of-focus state on the high-definition image pickup device 6 by the imaging camera 4 via the imaging optical system including the lens 5.

【0011】次に暗視野照明系9として、例えば図1及
び図3に示すように、第一照明系、第二照明系、第三照
明系、第四照明系とが設けられ、これらは必要に応じて
選択的にまたは複数同時にウエーハWを直接照射するよ
うに制御させられる。第一照明系は、例えばウエーハW
の上方に配設された投光型照明装置12であり、この投
光型照明装置12は、ウエーハWの上方にハロゲンラン
プなどの第一光源13が位置し、その背面には略半球面
状の凹面鏡14が設けられ、第一光源13から射出され
た光束はコンデンサレンズ15を介してウエーハWを照
明するようになっている。尚、この照明光のウエーハW
の正常面での反射光は撮像カメラ4から外れた方向に反
射することになる。第二照明系は、ウエーハWの上方に
配設された面照明装置16であり、この面照明装置16
として、ウエーハWの上方であって投光型照明装置12
のコンデンサレンズ15の周囲に例えばパネル型の第二
光源17が配設され、この第二光源17から直接ウエー
ハWの表面全体を照射するようになっており、その正常
面での反射光は撮像カメラ4から外れた方向に反射する
ようになっている。
Next, as a dark field illumination system 9, for example, as shown in FIGS. 1 and 3, a first illumination system, a second illumination system, a third illumination system, and a fourth illumination system are provided. Is controlled so as to irradiate the wafer W directly selectively or simultaneously at a plurality of times. The first illumination system is, for example, a wafer W
, A first light source 13 such as a halogen lamp is positioned above a wafer W, and a substantially hemispherical surface is formed on the back surface thereof. Is provided, and a light beam emitted from the first light source 13 illuminates the wafer W via the condenser lens 15. In addition, the wafer W of this illumination light
Is reflected in a direction away from the imaging camera 4. The second illumination system is a surface illumination device 16 disposed above the wafer W.
Above the wafer W and the projection type lighting device 12
For example, a panel-type second light source 17 is provided around the condenser lens 15 of the above, and the entire surface of the wafer W is directly radiated from the second light source 17. The light is reflected in a direction away from the camera 4.

【0012】第三照明系は、第一及び第二照明系の照明
光路から外れてウエーハWの斜め上方に配置された1ま
たは複数個のサイド照明装置18であり、このサイド照
明装置18は例えば高周波蛍光灯などの第三光源19か
らなり、斜め上方からウエーハWを照明して正常面では
撮像カメラ4から外れた方向に反射されるようになって
いる。第四照明系は、第一、第二及び第三照明系の高さ
より低い位置に、ウエーハWの外側全周に渡って配置さ
れ、他の暗視野照明系よりも小さい傾斜角度で投光して
ウエーハWを照明する照明装置20であり、この照明装
置20は例えば円形高周波蛍光灯、低角度大径LEDリ
ング照明などのリング状の第四光源20aからなり、小
さい傾斜角度で斜め上方からウエーハWを照明して、正
常面での反射光は撮像カメラ4から外れた方向に反射さ
れるようになっている。また第四光源20aの照射光が
撮像カメラ4に入射しないように、第四光源20aの背
面に全周に亘って遮光用反射板27が設けられている。
そのため、本実施の形態では、1種類の照明装置からな
る明視野照明系8と4種類の照明装置12,16,1
8、20からなる暗視野照明系9とから適宜選択して、
または複数同時にウエーハWを照明するようになってい
る。また、撮像カメラ4の高精細度撮像子6は、図1に
示すように欠陥検知の制御手段21内の複数の画像メモ
リーを持つ欠陥検出回路22に接続されていて、欠陥検
出回路22では入力された各画像信号を基に例えば信号
パターンや各画像の相関処理等によりキズ、ゴミ、汚
れ、ピンホールなどのウエーハW上の各種の欠陥を検出
するようになっており、欠陥検出回路22にはウエーハ
W上での欠陥の位置を特定する等の演算処理等を行うC
PU23が接続され、このCPU23には欠陥検出画像
を映し出すCRT24や検査結果を出力するプリンタ2
5等が接続されている。
The third illuminating system is one or a plurality of side illuminating devices 18 disposed obliquely above the wafer W outside the illumination optical paths of the first and second illuminating systems. A third light source 19, such as a high-frequency fluorescent lamp, illuminates the wafer W obliquely from above, and is reflected in a direction away from the imaging camera 4 on a normal surface. The fourth illumination system is disposed at a position lower than the height of the first, second, and third illumination systems over the entire outer periphery of the wafer W, and emits light at a smaller inclination angle than other dark field illumination systems. A lighting device 20 for illuminating the wafer W by means of a ring-shaped fourth light source 20a such as a circular high-frequency fluorescent lamp or a low-angle large-diameter LED ring lighting. When W is illuminated, the light reflected on the normal surface is reflected in a direction away from the imaging camera 4. Further, a light-shielding reflection plate 27 is provided on the entire back surface of the fourth light source 20a so that the irradiation light of the fourth light source 20a does not enter the imaging camera 4.
Therefore, in the present embodiment, the bright-field illumination system 8 including one type of illumination device and the four types of illumination devices 12, 16, 1
And a dark-field illumination system 9 consisting of 8, 20 as appropriate.
Alternatively, a plurality of wafers W are simultaneously illuminated. The high-definition image pickup element 6 of the imaging camera 4 is connected to a defect detection circuit 22 having a plurality of image memories in a defect detection control means 21 as shown in FIG. Various defects on the wafer W, such as scratches, dust, dirt, and pinholes, are detected based on the obtained image signals by, for example, correlation processing of signal patterns and images, and the like. C is for performing arithmetic processing such as specifying the position of a defect on the wafer W.
A PU 23 is connected, and the CPU 23 has a CRT 24 for displaying a defect detection image and a printer 2 for outputting an inspection result.
5 etc. are connected.

【0013】本実施の形態による外観検査装置1は上述
のように構成されており、次にこれらの明暗視野照明系
を用いたウエーハWの欠陥検査方法について説明する。
まず、ウエーハW上の平面的または凹凸の小さい欠陥で
ある汚れやピンホール等の有無を検査するには、図2に
示す明視野照明系8を用いてウエーハWの外観検査が行
われる。明視野照明系8において、明視野光源10の照
射光は白色板11に照射され、白色板11の反射面の微
細な凹凸のために散乱させられて、明視野光源10のム
ラは解消され、均一な明るさになる。そのため、ウエー
ハW上に写った白色板の像には光源ムラは表れない。こ
れに加えて、本撮像光学系では焦点深度を浅くしてウエ
ーハWの全面にピントが合うようにしたので、白色板の
像はピンぼけ状態となり、白色板11の細かい肌荒れや
ゴミ等のムラが出ずに、焦点が合っているウエーハWの
正常な鏡面が均一な明視野下で、全面にピントが合った
状態の画像を撮像できる。ウエーハWの表面は、検査面
である鏡面の法線に対して白色板11の反対側斜め方向
に配置された撮像カメラ4により、レンズ5を含む撮像
光学系を介して高精細度撮像子6上に結像させられる。
その際、レンズ5の長軸aと平行にウエーハWの鏡面と
高精細度撮像子6の結像面とが配設されているから、ウ
エーハWの表面全体に焦点が合っており、同時に高精細
度撮像子6の結像面上にウエーハ全体が結像させられ
る。その際、撮像画面上に光源ムラ等が写されることも
ない。
The appearance inspection apparatus 1 according to the present embodiment is configured as described above. Next, a description will be given of a method of inspecting a defect of a wafer W using these bright and dark field illumination systems.
First, the appearance of the wafer W is inspected using the bright-field illumination system 8 shown in FIG. In the bright-field illumination system 8, the irradiation light of the bright-field light source 10 is radiated to the white plate 11 and scattered due to minute irregularities on the reflection surface of the white plate 11, so that the unevenness of the bright-field light source 10 is eliminated. The brightness becomes uniform. Therefore, the light source unevenness does not appear in the image of the white plate reflected on the wafer W. In addition to this, in the present imaging optical system, the depth of focus is made shallow, so that the entire surface of the wafer W is in focus. It is possible to capture an image in which the entire mirror is in focus and the entire surface of the wafer W is in focus and the normal mirror surface is in a uniform bright field. The surface of the wafer W is imaged by a high-definition image sensor 6 via an imaging optical system including a lens 5 by an imaging camera 4 arranged obliquely on the opposite side of the white plate 11 with respect to a normal line of a mirror surface as an inspection surface. Imaged on top.
At this time, since the mirror surface of the wafer W and the image forming surface of the high-definition image pickup device 6 are arranged in parallel with the long axis a of the lens 5, the entire surface of the wafer W is in focus, and The entire wafer is imaged on the image plane of the definition image pickup element 6. At that time, the light source unevenness and the like are not displayed on the imaging screen.

【0014】高精細度撮像子6で得られたウエーハW表
面の画像信号は制御手段21内の複数の画像メモリーを
有する欠陥検出回路22で画像信号処理等により欠陥が
検出される。明視野照明下の撮像画像では、ウエーハW
表面に欠陥などがない正常な鏡面の部分は入射光が正反
射して均一な照度を以て高精細度撮像子6で受光される
のに対して、汚れやピンホールなど凸部の小さい欠陥が
あると、この部分で正常反射しなくなり高精細度撮像子
6への入射光量が少なくなるため撮像画像上での明るさ
が小さく、図4に示すように欠陥部が暗い像として表
れ、欠陥として検出される。
An image signal on the surface of the wafer W obtained by the high-definition image pickup device 6 is detected by a defect detection circuit 22 having a plurality of image memories in the control means 21 by image signal processing or the like. In the captured image under bright-field illumination, the wafer W
A normal mirror surface portion having no defect on the surface is specularly reflected by the incident light and received by the high-definition image pickup device 6 with uniform illuminance, but has a small defect such as dirt or a pinhole. In this case, normal reflection does not occur at this portion, and the amount of light incident on the high-definition image pickup element 6 is reduced, so that the brightness on the captured image is small. As shown in FIG. 4, the defective portion appears as a dark image and is detected as a defect. Is done.

【0015】ウエーハWの表面の汚れ、ピンホールなど
の欠陥は、明視野照明系下では高精細度撮像子6への入
光量の差によって比較的容易に検出できる。尚、図4に
示す撮像画像において、m1は汚れ、m2は指紋、m3
はキズである。しかしながら、ゴミやキズなどのウエー
ハ表面から突出する凸部のある立体的な欠陥は、表面で
光が乱反射する際、その一部は撮像カメラ4に入射する
ために撮像画面上のコントラストが小さく、画像上で明
瞭な欠陥の像を得るのが比較的難しい。しかもキズやゴ
ミの大きさによって検出の度合いが相違するために明瞭
な検出は行われ難い。但し、正常部よりは暗く写るので
正常面ではない(何らかの異常部である)ことを検知す
る事は容易である。得られた各画像は、ウエーハWの表
面上における欠陥の合成画像として、または個別の画像
毎にCRT24で表示される。
Defects such as dirt and pinholes on the surface of the wafer W can be relatively easily detected under a bright-field illumination system due to the difference in the amount of light entering the high-definition image pickup device 6. In the captured image shown in FIG. 4, m1 is a stain, m2 is a fingerprint, m3
Is a scratch. However, three-dimensional defects having projections protruding from the wafer surface, such as dust and scratches, have a small contrast on the imaging screen because part of the light is incident on the imaging camera 4 when light is irregularly reflected on the surface. It is relatively difficult to obtain a clear defect image on the image. Moreover, since the degree of detection differs depending on the size of scratches or dust, clear detection is difficult to perform. However, since the image is darker than the normal portion, it is easy to detect that the image is not a normal surface (some sort of abnormal portion). Each of the obtained images is displayed on the CRT 24 as a composite image of a defect on the surface of the wafer W or for each individual image.

【0016】また、ウエーハW上のキズやゴミ等を明確
に検査するには、図3に示す暗視野照明系9を用いてウ
エーハWの外観検査が行われる。暗視野照明系9におい
て、第一乃至第四照明系を選択的にまたは全部を用いて
照明する。例えば第一乃至第四照明光学系の全てを用い
る場合、投光型照明装置12の第一光源13からコンデ
ンサレンズ15を介してほぼ真下のウエーハWに照明光
を落射照明してウエーハWを照射し、その反射光は撮像
カメラ4には入射せずに別の方向に放射される。また、
面照明装置16においても、パネル型の第二光源17か
らの照射光がほぼ真上からウエーハWに照射され、更に
サイド照明装置18でも第三光源19によって斜め上方
からウエーハWに照明光が照射され、第四光源20によ
ってより小さい傾斜角度の照明光がウエーハWに投光さ
れ、各反射光は撮像カメラ4から外れた対向する斜め上
方に反射する。
Further, in order to clearly inspect the wafer W for scratches, dust and the like, an external appearance inspection of the wafer W is performed using the dark field illumination system 9 shown in FIG. In the dark field illumination system 9, the first to fourth illumination systems are selectively or entirely illuminated. For example, when all of the first to fourth illumination optical systems are used, the illumination light is incident and illuminated from the first light source 13 of the floodlighting illumination device 12 to the wafer W almost directly below via the condenser lens 15 to irradiate the wafer W. Then, the reflected light is emitted in another direction without entering the imaging camera 4. Also,
In the surface illumination device 16 as well, the irradiation light from the panel-type second light source 17 is applied to the wafer W from almost directly above, and further in the side illumination device 18 the illumination light is applied to the wafer W from obliquely above by the third light source 19. Then, the fourth light source 20 emits illumination light having a smaller inclination angle to the wafer W, and each reflected light is reflected obliquely upward and away from the imaging camera 4.

【0017】このような暗視野照明下で、ウエーハWの
表面は撮像カメラ4で撮像され、レンズ5を含む撮像光
学系を介して高精細度撮像子6にウエーハWの像が結像
させられる。この時、撮像カメラ4ではウエーハWの表
面全体に焦点が合っており、高精細度撮像子6の結像面
上に結像させられる。この場合、暗視野照明下で得られ
る撮像画像では、図5に示すように、ウエハW表面に欠
陥などがなく正常な鏡面の部分ではウエーハW上での反
射光は撮像カメラ4に入射されないために画像上では暗
黒となるが、このようなウエーハW上にキズ、ゴミなど
の欠陥があると、乱反射して一部の反射光が撮像カメラ
4に入射されるため、キズやゴミなどが明るい像として
識別できる。尚、図5において、n1はキズである。特
にゴミやキズなどの欠陥が立体的であると暗視野照明下
で大きなS/N比を有する撮像画像として得られる。ピ
ンホール欠陥については、ピンホールの周囲に撮像カメ
ラ4に入射する反射面が部分的に表れている場合には、
その反射面での反射光を撮像カメラ4で受光して識別で
きるが、この暗視野照明での反射光が少ない場合には識
別が難しくなる。明視野照明で比較的明瞭に識別できる
平面的な欠陥である汚れや、凹凸の小さいピンホールな
どは暗視野照明では識別が比較的困難となる。
Under such dark-field illumination, the surface of the wafer W is imaged by the imaging camera 4, and an image of the wafer W is formed on the high-definition imaging device 6 via the imaging optical system including the lens 5. . At this time, the imaging camera 4 focuses on the entire surface of the wafer W, and forms an image on the imaging plane of the high-definition imaging element 6. In this case, in a captured image obtained under dark-field illumination, as shown in FIG. 5, the reflected light on the wafer W is not incident on the imaging camera 4 in a normal mirror surface portion without a defect or the like on the surface of the wafer W. However, if there is a defect such as a scratch or dust on the wafer W, the wafer W is irregularly reflected and a part of the reflected light is incident on the imaging camera 4, so that the scratch or dust is bright. Can be identified as an image. In FIG. 5, n1 is a flaw. In particular, when a defect such as dust or a scratch is three-dimensional, it can be obtained as a captured image having a large S / N ratio under dark-field illumination. Regarding the pinhole defect, when the reflection surface incident on the imaging camera 4 partially appears around the pinhole,
Although the light reflected by the reflecting surface can be received and identified by the imaging camera 4, the identification becomes difficult when the light reflected by the dark-field illumination is small. Dirt, which is a planar defect that can be relatively clearly identified by bright-field illumination, and pinholes with small irregularities, are relatively difficult to identify by dark-field illumination.

【0018】暗視野照明下の撮像においては、指向性の
ある欠陥は一方向からの照明では検出しにくい場合があ
るので、回転テーブル3を回転させることでウエーハW
に対して照射光が異なる方向から照射され、これらの像
を撮像することでより確実に欠陥を検知することが出来
る。そして複数の画像メモリーを有する欠陥検出回路2
2で各画像の検出された欠陥とウエーハWの回転位置と
の関係で、CPU23で検出された欠陥のウエーハW上
の位置を演算して検出でき、より確実に欠陥の位置や大
きさや種類等を検知できる。欠陥の検出された画像デー
タは、CPU23においてウエーハWの表面上における
欠陥の合成画像として合成されて、または各画像毎に選
択的にCRT24等で表示される。そして、明視野照明
下で得られた撮像画像と暗視野照明下で得られた撮像画
像とで総合的に検出された各種の欠陥を評価判定し、合
成してCRT24上等でウエーハW上に表示することと
してもよい。また、暗視野照明に関しては、第一乃至第
四照明系のいずれか又は複数を選択的に用いて特定の欠
陥を検出することもできる。
In imaging under dark-field illumination, it is sometimes difficult to detect a directional defect by illumination from one direction.
Is irradiated from different directions, and by capturing these images, the defect can be detected more reliably. And a defect detection circuit 2 having a plurality of image memories.
In step 2, the position of the defect detected on the wafer W can be calculated and detected by the CPU 23 based on the relationship between the detected defect of each image and the rotational position of the wafer W, and the position, size, type, etc. of the defect can be more reliably determined. Can be detected. The image data in which the defect is detected is synthesized by the CPU 23 as a synthetic image of the defect on the surface of the wafer W, or is selectively displayed for each image on the CRT 24 or the like. Then, various types of defects that are comprehensively detected from the captured image obtained under the bright-field illumination and the captured image obtained under the dark-field illumination are evaluated and determined, synthesized, and placed on the wafer W on the CRT 24 or the like. It may be displayed. As for dark field illumination, a specific defect can be detected by selectively using any one or a plurality of the first to fourth illumination systems.

【0019】上述のように本実施の形態によれば、撮像
光学系のレンズ5及び高精細度撮像子6がウエーハWの
鏡面(撮像面)とそれぞれ平行に位置して合焦位置に配
設されているから、ウエーハW全体に亘って鮮明な撮像
画像が得られる。しかも白色板11を用いた明視野照明
系8でウエーハWの表面である鏡面を明瞭に撮像でき、
その際にウエーハWの鏡面にピントが合わされ、白色板
11が写る鏡面では撮像画像に光源ムラ等が写ることが
なく特に汚れやピンホールなどの平面度の高い欠陥を識
別する画像を撮像することができる。また本実施の形態
による外観検査装置1によれば、照明光学系として明視
野照明系8と暗視野照明系9とを選択的に用いて撮像す
ることで、撮像画像から汚れやピンホールなどの平面的
な欠陥やゴミやキズ等の立体的な欠陥を良好に検出する
ことができる。
As described above, according to the present embodiment, the lens 5 and the high-definition image pickup element 6 of the image pickup optical system are disposed in parallel with the mirror surface (image pickup surface) of the wafer W, and are disposed at the in-focus position. Therefore, a clear captured image can be obtained over the entire wafer W. In addition, the bright field illumination system 8 using the white plate 11 can clearly image the mirror surface, which is the surface of the wafer W,
At this time, the mirror surface of the wafer W is focused on, and the mirror surface on which the white plate 11 is projected does not show unevenness of the light source or the like in the captured image. Can be. Further, according to the appearance inspection device 1 of the present embodiment, by picking up an image by selectively using the bright-field illumination system 8 and the dark-field illumination system 9 as the illumination optical system, it is possible to remove dirt and pinholes from the captured image. Planar defects and three-dimensional defects such as dust and scratches can be detected favorably.

【0020】尚、上述の実施の形態では、暗視野照明系
9として第一乃至第四照明光学系からなる4種が配設さ
れているが、これらの照明系の一部のみが備えられてい
てもよい。また、明視野照明系8に明視野光源10の白
色板11を用いたが、これに変わって均一な面発光体を
用いても良い。
In the above-described embodiment, four types of first to fourth illumination optical systems are provided as the dark-field illumination system 9, but only some of these illumination systems are provided. You may. Further, although the white plate 11 of the bright field light source 10 is used for the bright field illumination system 8, a uniform surface light emitter may be used instead.

【0021】[0021]

【発明の効果】以上説明したように、本発明に係る鏡面
体外観検査装置は、鏡面体の鏡面の法線に対して斜め方
向に位置する撮像レンズを有する撮像カメラによって鏡
面が撮像素子に結像されるように配置され、撮像レンズ
と鏡面と撮像素子が互いに平行に配設されていると共
に、鏡面の法線に対して撮像レンズと反対側に、鏡面に
映る明るい均一面が配置されてなるから、鏡面体の鏡面
について全体に合焦状態の画像データが得られ、光源の
像等が撮像画像に投影されずS/N比が良好で、鏡面体
の鏡面全体の画像データが鮮明に得られ、被検査体上に
欠陥がある場合には汚れやピンホール等の平面度の高い
欠陥は正常な鏡面部分とのコントラストが大きく明瞭に
検出できる。
As described above, the specular body appearance inspection apparatus according to the present invention has the mirror surface connected to the image sensor by the imaging camera having the imaging lens positioned obliquely to the normal of the mirror surface of the mirror body. The imaging lens, the mirror surface, and the image sensor are arranged in parallel with each other, and a bright uniform surface reflected on the mirror surface is arranged on the opposite side of the imaging lens with respect to the normal line of the mirror surface. Therefore, image data of the entire mirror surface of the mirror can be obtained in an in-focus state, the image of the light source is not projected on the captured image, the S / N ratio is good, and the image data of the entire mirror surface of the mirror is clear. As a result, when there is a defect on the object to be inspected, a defect having a high flatness such as a stain or a pinhole can be clearly detected with a large contrast with a normal mirror portion.

【0022】また、本発明による鏡面体外観検査装置
は、鏡面体が撮像レンズを有する撮像カメラによって撮
像素子に撮像されるように配置されていて、撮像レンズ
と鏡面体と撮像素子が互いに平行に配設されていると共
に、照明系として暗視野照明系と明視野照明系とが配設
されていて、暗視野照明系と明視野照明系のいずれかの
照明光を選択的に用いて撮像された照明の異なる複数の
画像から異常部を検出するようにしたから、明視野照明
系による撮像画像に加えて、暗視野照明系を用いて鏡面
体を種々の角度から照明した画像からゴミやキズ等の凸
部のある立体的な欠陥を明瞭に識別できるから、判別す
べき欠陥の種類等に応じて明視野照明系と暗視野照明系
との画像の相互関係を評価して、各種の欠陥の判別及び
判定が容易に行える。
Further, the specular body appearance inspection apparatus according to the present invention is arranged so that the specular body is picked up by the image pickup device by the image pickup camera having the image pickup lens, and the image pickup lens, the mirror body, and the image pickup element are parallel to each other. A dark-field illumination system and a bright-field illumination system are arranged as illumination systems, and an image is captured by selectively using either the dark-field illumination system or the bright-field illumination system. Abnormal parts are detected from multiple images with different illuminations, and in addition to images captured by the bright-field illumination system, dust and scratches can be detected from images obtained by illuminating the specular body from various angles using the dark-field illumination system. The three-dimensional defect with a convex part such as can be clearly identified, and the correlation between the images of the bright-field illumination system and the dark-field illumination system is evaluated according to the type of defect to be determined, and various types of defects are evaluated. Can be easily determined and determined

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態による鏡面体の外観検査装
置の要部構成図である。
FIG. 1 is a main part configuration diagram of a specular appearance inspection apparatus according to an embodiment of the present invention.

【図2】 図1に示す外観検査装置の撮像光学系のう
ち、明視野照明による撮像光学系を示す要部構成図であ
る。
FIG. 2 is a main part configuration diagram showing an imaging optical system using bright-field illumination in the imaging optical system of the appearance inspection apparatus shown in FIG. 1;

【図3】 図1に示す外観検査装置の撮像光学系のう
ち、暗視野照明による撮像光学系を示す要部構成図であ
る。
FIG. 3 is a main configuration diagram showing an imaging optical system using dark-field illumination in the imaging optical system of the appearance inspection apparatus shown in FIG. 1;

【図4】 明視野照明系の照明下で撮像したウエーハの
画像の部分平面図である。
FIG. 4 is a partial plan view of a wafer image captured under illumination of a bright field illumination system.

【図5】 暗視野照明系の照明下で撮像したウエーハの
画像の部分平面図である。
FIG. 5 is a partial plan view of a wafer image captured under illumination of a dark-field illumination system.

【符号の説明】[Explanation of symbols]

1 外観検査装置 4 撮像カメラ 5 レンズ(撮像レンズ) 6 高精細度撮像子(撮像素子) 8 明視野照明系 9 暗視野照明系 11 白色板(均一面) W 半導体ウエーハ(鏡面体) DESCRIPTION OF SYMBOLS 1 Appearance inspection apparatus 4 Imaging camera 5 Lens (imaging lens) 6 High-definition image sensor (imaging element) 8 Bright field illumination system 9 Dark field illumination system 11 White plate (uniform surface) W Semiconductor wafer (mirror body)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鏡面体の鏡面の法線に対して斜め方向に
位置する撮像レンズを有する撮像カメラによって前記鏡
面が撮像素子に結像されるように配置され、前記撮像レ
ンズと鏡面と撮像素子が互いに平行に配設されていると
共に、前記鏡面の法線に対して撮像レンズと反対側に、
前記鏡面に映る明るい均一面が配置されてなる鏡面体外
観検査装置。
1. An imaging camera having an imaging lens positioned obliquely to a normal line of a mirror surface of a mirror body, the mirror surface is arranged so as to form an image on an imaging device, and the imaging lens, the mirror surface, and the imaging device are arranged. Are arranged in parallel with each other, and on the opposite side of the imaging lens with respect to the normal of the mirror surface,
A specular body appearance inspection apparatus in which a bright uniform surface reflected on the mirror surface is arranged.
【請求項2】 鏡面体が撮像レンズを有する撮像カメラ
によって撮像素子に撮像されるように配置されていて、
前記撮像レンズと鏡面体と撮像素子が互いに平行に配設
されていると共に、照明系として暗視野照明系と明視野
照明系とが配設されていて、暗視野照明系と明視野照明
系のいずれかの照明光を選択的に用いて撮像された照明
の異なる複数の画像から異常部を検出するようにしてな
る鏡面体外観検査装置。
2. The image forming apparatus according to claim 1, wherein the mirror body is arranged to be imaged by an image pickup device by an image pickup camera having an image pickup lens.
The imaging lens, the mirror body, and the imaging device are arranged in parallel with each other, and a dark-field illumination system and a bright-field illumination system are arranged as illumination systems. A specular body appearance inspection apparatus configured to detect an abnormal portion from a plurality of images of different illuminations captured by selectively using any one of the illumination lights.
JP10155375A 1998-05-20 1998-05-20 Mirror surface body visual inspection device Withdrawn JPH11326228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10155375A JPH11326228A (en) 1998-05-20 1998-05-20 Mirror surface body visual inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10155375A JPH11326228A (en) 1998-05-20 1998-05-20 Mirror surface body visual inspection device

Publications (1)

Publication Number Publication Date
JPH11326228A true JPH11326228A (en) 1999-11-26

Family

ID=15604572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10155375A Withdrawn JPH11326228A (en) 1998-05-20 1998-05-20 Mirror surface body visual inspection device

Country Status (1)

Country Link
JP (1) JPH11326228A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049344A (en) * 2003-07-28 2005-02-24 Boeing Co:The System and method for identifying defect, foreign matter and debris when manufacturing composite structure
JP4643785B2 (en) * 2000-02-24 2011-03-02 株式会社トプコン Surface inspection device
CN112986257A (en) * 2021-02-07 2021-06-18 厦门威芯泰科技有限公司 Surface crack and scratch developing device and related detection equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643785B2 (en) * 2000-02-24 2011-03-02 株式会社トプコン Surface inspection device
JP2005049344A (en) * 2003-07-28 2005-02-24 Boeing Co:The System and method for identifying defect, foreign matter and debris when manufacturing composite structure
JP4615919B2 (en) * 2003-07-28 2011-01-19 ザ・ボーイング・カンパニー System and method for identifying defects and foreign objects and debris during the manufacture of composite structures
KR101102627B1 (en) * 2003-07-28 2012-01-04 더 보잉 컴파니 Systems and methods for identifying foreign objects and debrisfod and defects during fabrication of a composite structure
CN112986257A (en) * 2021-02-07 2021-06-18 厦门威芯泰科技有限公司 Surface crack and scratch developing device and related detection equipment
CN112986257B (en) * 2021-02-07 2024-05-03 厦门威芯泰科技有限公司 Surface crack and scratch imaging device and related detection equipment

Similar Documents

Publication Publication Date Title
JP3709426B2 (en) Surface defect detection method and surface defect detection apparatus
TWI617801B (en) Wafer inspection method and wafer inspection device
JP4847128B2 (en) Surface defect inspection equipment
TWI648534B (en) Inspection method for back surface of epitaxial wafer, inspection device for back surface of epitaxial wafer, lift pin management method for epitaxial growth device, and manufacturing method for epitaxial wafer
JP5481484B2 (en) Apparatus and method for optically converting a three-dimensional object into a two-dimensional planar image
JP2008298784A (en) Multiple illumination path system and method for detection of defect
JP2006138830A (en) Surface defect inspection device
JP2011208941A (en) Flaw inspection device and flaw inspection method
KR101001113B1 (en) Apparatus for Detecting Wafer Crack and Method for Detecting Wafer Defect
US20030117616A1 (en) Wafer external inspection apparatus
JP2006258778A (en) Method and device for inspecting surface defect
JP2006017685A (en) Surface defect inspection device
JP2001183301A (en) Apparatus and method for inspecting flaw
JP4216485B2 (en) Pattern inspection method and apparatus
JPH11326228A (en) Mirror surface body visual inspection device
JP3078784B2 (en) Defect inspection equipment
US20130215256A1 (en) Imaging system with defocused and aperture-cropped light sources for detecting surface characteristics
JPH10144747A (en) Macro inspection method for wafer and automatic wafer macro inspection device
JP2010190740A (en) Substrate inspection device, method, and program
KR100389967B1 (en) Automatized defect inspection system
JP2017138246A (en) Inspection device, inspection method, and image sensor
JP2000028535A (en) Defect inspecting device
JP7372173B2 (en) Board edge inspection equipment
JPS636679A (en) Method for detecting tilt of wire
JP3102362U (en) Mirror inspection equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802