JPH11325828A - Center position measuring method of concave surface, eccentric amount measuring method and measuring apparatus - Google Patents

Center position measuring method of concave surface, eccentric amount measuring method and measuring apparatus

Info

Publication number
JPH11325828A
JPH11325828A JP13847798A JP13847798A JPH11325828A JP H11325828 A JPH11325828 A JP H11325828A JP 13847798 A JP13847798 A JP 13847798A JP 13847798 A JP13847798 A JP 13847798A JP H11325828 A JPH11325828 A JP H11325828A
Authority
JP
Japan
Prior art keywords
center position
concave surface
optical component
circle
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13847798A
Other languages
Japanese (ja)
Other versions
JP4028082B2 (en
Inventor
Masahiko Watanabe
昌彦 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP13847798A priority Critical patent/JP4028082B2/en
Publication of JPH11325828A publication Critical patent/JPH11325828A/en
Application granted granted Critical
Publication of JP4028082B2 publication Critical patent/JP4028082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable quantitative measurement of center position with high precision, in the case of an optical component having a large radius of curvature, by measuring coordinates of a specified number of points on a circle surrounded by a plane formed by cutting the periphery of a concave surface of an optical component, and calculating the center position of the circle from the coordinates. SOLUTION: An optical component 10 in which the periphery of a concave surface A is cut and a plane 26 is formed is mounted on a moving table 22, and observed with a differential interference microscope 21. The concave surface A and the plane 26 are discriminated and seen. The boundary of the concave surface A and the plane 26 can be visually recognized as a circle 27. The moving table 22 is moved, at least three arbitrary points on the circle 27, e.g. four points, are made to coincide with the point of intersection of a cross line fitted to an eyepiece, and coordinates of the four points A1 -A4 are obtained. The coordinates are inputted in operating equipment 24. By starting a software for center position calculation which is stored in the operating equipment 24, the center position C1 of the circle 27 is calculated. Calculated results and the inputted coordinates A1 -A4 are outputted by a printer 25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は例えば凹面レン
ズ、或は凹面鏡等の光学部品の凹面の中心位置を特定
し、正しい中心位置を測定する凹面の中心位置測定方
法、偏心量測定方法及びこれらの測定方法に用いる測定
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the center position of a concave surface, a method for measuring the amount of eccentricity, and a method for specifying the center position of a concave surface of an optical component such as a concave lens or a concave mirror and measuring the correct center position. The present invention relates to a measuring device used for a measuring method.

【0002】[0002]

【従来の技術】図5に従来の心出し、心取加工装置を示
す。凹面Aを具備した光学部品10をパイプ状のベルチ
ャック11によって挟み付け、ベルチャック11に対し
て光学部品10をベルチャック11の軸線12とは直交
する方向に滑らせてベルチャック11の先端が凹面Aに
対して均一に接触する状態を探す。ベルチャック11の
先端が凹面Aに対して均一に接触する状態を検出するこ
とにより、その状態ではベルチャック11に挟まれてい
る光学部品10の厚みが表裏方向に対して均一になって
いることを意味し、凹面Aの軸心がベルチャック11の
軸線に一致したことを意味する。
2. Description of the Related Art FIG. 5 shows a conventional centering and centering apparatus. The optical component 10 having the concave surface A is sandwiched by a pipe-shaped bell chuck 11, and the optical component 10 is slid with respect to the bell chuck 11 in a direction orthogonal to the axis 12 of the bell chuck 11 so that the tip of the bell chuck 11 is Search for a state of uniform contact with the concave surface A. By detecting a state in which the tip of the bell chuck 11 makes uniform contact with the concave surface A, in that state, the thickness of the optical component 10 sandwiched between the bell chuck 11 is uniform in the front and back directions. Which means that the axis of the concave surface A coincides with the axis of the bell chuck 11.

【0003】この状態で外径研削盤13を回転させ、光
学部品10の外周を切削することにより、光学部品10
の偏心部分を除去することができる。ここで光学部品1
0は例えばガラス等で形成される凹面レンズ或は凹面鏡
等とされる。図6は従来の凹面の中心位置測定方法の他
の例を示す。この例ではオートコリーメータ14と、こ
のオートコリーメータ14と同軸心上で回転する支持軸
15とを用い、支持軸15の先端にホットメルトワック
ス16等によって光学部品10を加熱して接着し、平行
光線を結像させ、十字線レティクル14Aを介して眼で
確認し、光学部品10を軸線12に対して直交する方向
に取付位置を移動させて光学部品10の光軸を調整し、
心出しを行なう。
In this state, the outer diameter grinding machine 13 is rotated to cut the outer periphery of the optical component 10 so that the optical component 10 is cut.
Can be removed. Here, the optical component 1
Reference numeral 0 denotes a concave lens or a concave mirror made of, for example, glass. FIG. 6 shows another example of a conventional method for measuring the center position of a concave surface. In this example, an autocollimeter 14 and a support shaft 15 rotating coaxially with the autocollimeter 14 are used, and the optical component 10 is heated and bonded to the tip of the support shaft 15 with hot melt wax 16 or the like, An image of a parallel light beam is formed and checked with the eyes via a crosshair reticle 14A, and the optical component 10 is adjusted in the direction perpendicular to the axis 12 by moving the mounting position to adjust the optical axis of the optical component 10.
Perform centering.

【0004】図7Aは心出し不完全な場合の光点MOの
軌跡を示す。図7Bは心出し完了後の光点MOの軌跡を
示す。心出し完了後は光学部品10を回転させても光点
MOは移動しない。
FIG. 7A shows the locus of the light spot MO when the centering is incomplete. FIG. 7B shows the trajectory of the light spot MO after the centering is completed. After the centering is completed, the light spot MO does not move even if the optical component 10 is rotated.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の心出し
方法によれば特に図5に示した心出し方法では光学部品
10に形成された凹面Aの曲率半径が大きい場合は心出
しが不可能であった。また、曲率半径が小さな光学部品
であっても、任意の量の偏心を設けることは不可能であ
った。更に、偏心量を定量的に計測することもできなか
った。
According to the above-described conventional centering method, centering cannot be performed particularly with the centering method shown in FIG. 5 if the radius of curvature of the concave surface A formed on the optical component 10 is large. Met. In addition, it is impossible to provide an arbitrary amount of eccentricity even for an optical component having a small radius of curvature. Furthermore, the amount of eccentricity could not be quantitatively measured.

【0006】また、図6に示した中心位置測定方法によ
れば凹面Aの曲率半径が数百mm程度まで対応できる。
然し乍ら曲率半径が数千mmの光学部品には対応できな
い。更に支持軸15と光学部品10との間をホットメル
トワックス16で接着する場合、その接着時に毎回平行
に貼り付けることは不可能に近く、傾き誤差が毎回入る
ため曲率半径が大きな光学部品10では心出しが収束せ
ず、発散してしまう場合が多い。
Further, according to the center position measuring method shown in FIG. 6, the radius of curvature of the concave surface A can be dealt with up to about several hundred mm.
However, it cannot cope with an optical component having a radius of curvature of several thousand mm. Further, when the support shaft 15 and the optical component 10 are bonded with the hot melt wax 16, it is almost impossible to bond the support shaft 15 and the optical component 10 in parallel each time at the time of bonding. In many cases, the centering does not converge and diverges.

【0007】この発明の目的は従来の欠点を一掃し、曲
率半径が数千mmクラスの光学部品でも高精度に、かつ
定量的に中心位置を測定することができる凹面の中心位
置測定方法、偏心量測定方法及び測定装置を提供しよう
とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the conventional drawbacks, and to provide a method of measuring the center position of a concave surface capable of measuring the center position with high accuracy and quantitatively even with an optical component having a radius of curvature of several thousand mm class. An object of the present invention is to provide a method and an apparatus for measuring a quantity.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1では
凹面が形成された光学部品の凹面の周縁を切削して平面
を形成し、この平面で囲まれて形成された円上の少なく
とも3点の座標を測定し、この座標から円の中心位置を
算出し、この算出した円の中心位置を凹面の中心位置と
定める凹面の中心位置測定方法を提案する。
According to a first aspect of the present invention, a flat surface is formed by cutting a peripheral edge of a concave surface of an optical component having a concave surface, and at least three edges of a circle formed by the flat surface are formed. The coordinates of the point are measured, the center position of the circle is calculated from the coordinates, and a method of measuring the center position of the concave surface that determines the center position of the calculated circle as the center position of the concave surface is proposed.

【0009】この請求項1で提案した凹面の中心位置測
定方法によれば、凹面(球面の一部)の切り口は真円で
あることから、この真円上の座標を少なくとも3点測定
することにより、この凹面の中心位置を正確に算出する
ことができる。また、光学部品を移動台に載置し、移動
台の移動量を正確に測定して円上の座標を求めることに
より凹面の曲率半径が大きくても、その心位置を正確に
求めることができる。
According to the method for measuring the center position of a concave surface proposed in claim 1, since the cut surface of the concave surface (part of the spherical surface) is a perfect circle, at least three coordinates on the perfect circle are measured. Thus, the center position of the concave surface can be accurately calculated. In addition, even if the radius of curvature of the concave surface is large, the center position of the optical component can be accurately obtained by placing the optical component on the moving table, accurately measuring the moving amount of the moving table, and obtaining coordinates on a circle. .

【0010】この発明の請求項2では請求項1で提案し
た中心位置測定方法に加えて、光学部品の周縁の座標を
少なくとも3点測定し、光学部品の外縁の中心位置を算
出し、この中心位置と凹面の中心位置との偏差を求めて
偏心量を測定する。従ってこの請求項2によれば偏心量
も正確に求めることができるため、偏心部分を切除する
機械加工を正確に行なうことができる利点が得られる。
According to a second aspect of the present invention, in addition to the center position measuring method proposed in the first aspect, at least three coordinates of the peripheral edge of the optical component are measured, and the center position of the outer edge of the optical component is calculated. The deviation between the position and the center position of the concave surface is determined to measure the amount of eccentricity. Therefore, according to the second aspect, since the amount of eccentricity can be accurately obtained, there is an advantage that the machining for removing the eccentric portion can be performed accurately.

【0011】また、この発明の請求項4ではガラスのよ
うに透明体の表面に存在する凹凸を観測することができ
る微分干渉型顕微鏡と、移動量を正確に求めることがで
きる測距装置を具備した移動台とによって構成し、移動
台に光学部品を載置し、移動台を移動させることによっ
て凹面の外周に形成される円の座標を測定するから、円
の中心位置を正確に求めることができる。
According to a fourth aspect of the present invention, there is provided a differential interference microscope capable of observing irregularities existing on the surface of a transparent body such as glass, and a distance measuring device capable of accurately determining the amount of movement. The optical part is placed on the movable table, and the coordinates of the circle formed on the outer periphery of the concave surface are measured by moving the movable table, so that it is possible to accurately determine the center position of the circle. it can.

【0012】[0012]

【発明の実施の形態】図1にこの発明による中心位置測
定装置と偏心量測定装置の構成を示す。この測定装置の
構成と動作を説明することにより、この発明による凹面
の中心位置測定方法と偏心量測定方法を合せて説明する
ことにする。図1において、21は微分干渉顕微鏡を示
す。この微分干渉顕微鏡21は周知のように測定工具顕
微鏡に十字線入り接眼レンズ21Aと、対物レンズ21
Bと、発光強度が強い光源21Cと、ポラライザ21D
と、アナライザ21Eと、ノマルスキプリズム21Fと
を付加して構成し、これらの構成を付加することによ
り、測定工具顕微鏡に微分干渉機能が得られる。この微
分干渉機能によればガラスのように透明体であっても、
その表面の凹凸を色の違い、色の濃淡等によって視認す
ることができる。
FIG. 1 shows the configuration of a center position measuring device and an eccentricity measuring device according to the present invention. By describing the configuration and operation of this measuring device, the method of measuring the center position of the concave surface and the method of measuring the amount of eccentricity according to the present invention will be described together. In FIG. 1, reference numeral 21 denotes a differential interference microscope. As is well known, the differential interference microscope 21 includes a measuring tool microscope and an eyepiece 21A with a crosshair and an objective lens 21.
B, a light source 21C having a high light emission intensity, and a polarizer 21D.
, An analyzer 21E, and a Nomarski prism 21F, and by adding these configurations, a differential interference function can be obtained in the measuring tool microscope. According to this differential interference function, even if it is transparent like glass,
The unevenness on the surface can be visually recognized by the difference in color, the shade of color, and the like.

【0013】22は移動台を示す。この例ではX方向に
移動する移動台22Xと、Y方向に移動する移動台22
Yとを具備して構成した2軸移動台を用いた場合を示
す。この移動台22の移動台22Xと22Yにはそれぞ
れに移動量を測定し、その移動量に対応した例えばパル
スを発信する測距装置23Xと23Yとが付設され、こ
れらの各測距装置23Xと23Yから発信される座標信
号をコンピュータによって構成される演算装置24に入
力する。25は演算装置24に接続したプリンタを示
す。
Reference numeral 22 denotes a moving table. In this example, the moving table 22X moving in the X direction and the moving table 22 moving in the Y direction
5 shows a case in which a two-axis moving table configured with Y is used. The moving tables 22X and 22Y of the moving table 22 are respectively provided with distance measuring devices 23X and 23Y for measuring a moving amount and transmitting, for example, a pulse corresponding to the moving amount. The coordinate signal transmitted from 23Y is input to an arithmetic unit 24 constituted by a computer. Reference numeral 25 denotes a printer connected to the arithmetic unit 24.

【0014】移動台22の上に光学部品10を載置し、
この光学部品10の面を微分干渉顕微鏡21によって観
測する。図2に凹面Aの外周に平面26を形成した光学
部品10の一例を示す。微分干渉顕微鏡21でその光学
部品10を観測すると、図2に示すように、凹面Aの部
分と平面26の部分が区別して視え、凹面Aと平面26
との境界を円27として視認することができる。図2に
示す符号28は接眼レンズ21Aに装着した十字線を示
す。
The optical component 10 is placed on the moving table 22,
The surface of the optical component 10 is observed by the differential interference microscope 21. FIG. 2 shows an example of the optical component 10 in which the flat surface 26 is formed on the outer periphery of the concave surface A. When the optical component 10 is observed with a differential interference microscope 21, as shown in FIG. 2, the concave surface A and the flat surface 26 can be distinguished from each other.
Can be visually recognized as a circle 27. Reference numeral 28 shown in FIG. 2 indicates a crosshair attached to the eyepiece 21A.

【0015】従って移動台22を移動させ円27上の任
意の少なくとも3点をそれぞれ十字線28の交点に合致
させ、そのときの座標を求める。この例では座標A1
2,A3 ,A4 の4点を求めた場合を示す。この4点
の座標A1 ,A2 ,A3 ,A 4 を演算装置24に入力す
ることにより、演算装置24に格納した中心位置算出用
ソフトウェア(最小2乗法により中心位置を算出する)
が起動され、円27の中心位置C1 を算出し、この算出
結果及び入力した各座標A1 ,A2 ,A3 ,A 4 をプリ
ンタ25に打ち出す。
Therefore, the movable table 22 is moved to
At least three points match the intersection of crosshairs 28
And determine the coordinates at that time. In this example, the coordinates A1,
ATwo, AThree, AFour4 shows the case where four points are obtained. These four points
Coordinates A1, ATwo, AThree, A FourIs input to the arithmetic unit 24.
The calculation of the center position stored in the arithmetic unit 24
Software (Calculate the center position by the least squares method)
Is activated and the center position C of the circle 27 is1And calculate this
Result and each input coordinate A1, ATwo, AThree, A FourPre
To the center 25.

【0016】更に、この発明では光学部品10の外周上
の任意の座標B1 ,B2 ,B3 ,B 4 を演算装置24に
入力し、光学部品10の中心位置M1 を求める。このよ
うに円27の中心位置C1 と光学部品10の中心位置M
1 の各座標が求められることにより、中心位置C1 と中
心位置M1 とを結ぶ線長が凹面Aの偏心量rとして求め
ることができる。また、この中心位置C1 とM1 を結ぶ
線と基準となる座標軸との交叉角θ(図2)を求めるこ
とにより、偏心方向を規定することができる。基準とな
る座標軸としては例えば中心位置M1 を原点とする直交
座標を設定し、この直交座標上の中心位置間を結ぶ線の
方向θを求めることにより偏心方向を定めることができ
る。
Further, according to the present invention, on the outer periphery of the optical
Arbitrary coordinates B of1, BTwo, BThree, B FourTo the arithmetic unit 24
Enter the center position M of the optical component 101Ask for. This
Central position C of sea urchin 271And the center position M of the optical component 10
1Are obtained, the center position C is obtained.1And inside
Heart position M1Is obtained as the eccentricity r of the concave surface A.
Can be In addition, this center position C1And M1Tie
Find the intersection angle θ between the line and the reference coordinate axis (Fig. 2).
Thus, the eccentric direction can be defined. Standard
For example, the center position M1Orthogonal with origin as
Set the coordinates, and set the
The eccentric direction can be determined by obtaining the direction θ.
You.

【0017】以上により心出作業が終了し、心取り加工
時にθ方向に偏心量rだけオフセットしてから外径研削
することにより光学部品10の外径と凹面Aの中心とを
一致させることができる。図3はこの発明による測定装
置の他の例を示す。この例では移動台22の何れか一
方、この例では移動台22Xを省略し、一方の移動台2
2Yの上にエアーベアリング22Cのような高精度な回
転テーブル22Cを用いて傾き誤差を減少させる。エア
ーベアリング22Cにはロータリエンコーダが付設さ
れ、現在の角度を角度表示器23Cに表示させることが
でき、また演算装置24に入力することができる。エア
ーベアリング22Cの回転軸心と同軸上に光学部品10
を保持するチャック29を設け、このチャック29に光
学部品10を保持して凹面Aと平面26の境界に表われ
る円26上の座標と光学部品10の外周上の座標を移動
台22Yとエアーベアリング22Cを移動させて測定
し、この測定した座標から各中心位置C1 とM1 を求め
ることができる。
The centering operation is thus completed, and the outer diameter of the optical component 10 is made to coincide with the center of the concave surface A by performing the outer diameter grinding after offsetting by the eccentric amount r in the θ direction during the centering processing. it can. FIG. 3 shows another example of the measuring device according to the present invention. In this example, one of the movable tables 22 is omitted. In this example, the movable table 22X is omitted.
A tilt error is reduced by using a high-precision rotary table 22C such as an air bearing 22C on the 2Y. A rotary encoder is attached to the air bearing 22C, and the current angle can be displayed on the angle display 23C, and can be input to the arithmetic unit 24. The optical component 10 is coaxial with the rotation axis of the air bearing 22C.
The optical component 10 is held on the chuck 29, and the coordinates on the circle 26 appearing at the boundary between the concave surface A and the plane 26 and the coordinates on the outer periphery of the optical component 10 are transferred to the moving table 22 </ b> Y and the air bearing. 22C to move the measured, it is possible to obtain the respective central positions C 1 and M 1 from the measured coordinates.

【0018】図4に図3に示した接眼レンズ21Aから
見た光学部品10の視認状況を示す。現実には図1の場
合も同じであるが顕微鏡には光学部品10の例えば凹面
Aの一部が見えるだけで図示するように光学部品10の
全形が見えるものではない。
FIG. 4 shows how the optical component 10 is viewed from the eyepiece 21A shown in FIG. In reality, the same applies to the case of FIG. 1, but the microscope only shows a part of the concave surface A of the optical component 10, for example, but does not show the entire shape of the optical component 10 as shown in the figure.

【0019】[0019]

【発明の効果】以上説明したように、この発明によれば
光学部品10の凹面A側に一時的に平面26を形成し、
この光学部品10の面を微分干渉顕微鏡21により観測
することにより凹面Aと平面26との境界を円27とし
て視認することができ、この円27上の任意の3点の座
標を測定することにより凹面Aの中心位置C1 を求める
ことができる。
As described above, according to the present invention, the flat surface 26 is temporarily formed on the concave surface A side of the optical component 10,
By observing the surface of the optical component 10 with the differential interference microscope 21, the boundary between the concave surface A and the plane 26 can be visually recognized as a circle 27, and the coordinates of any three points on the circle 27 can be measured. it is possible to obtain the center position C 1 of the concave surface a.

【0020】更に光学部品10の外周上の3点の座標を
測定すれば光学部品10の中心位置M1 を求めることが
できる。この結果中心位置C1 と中心位置M1 との間の
偏心量rと、基準とする直交座標軸上の角度θを求める
ことにより偏心量rと偏心方向θを求めることができ
る。これらの偏心量rと偏心方向θを求めることによ
り、心取り作業時は光学部品10の中心位置M1 から偏
心方向θに偏心量rだけ移動させた中心位置C1 を中心
に心取り作業を行なえばよく、簡単且つ確実に心取り作
業を行なうことができる。
Further, by measuring the coordinates of three points on the outer periphery of the optical component 10, the center position M 1 of the optical component 10 can be obtained. As a result, the eccentricity r and the eccentric direction θ can be obtained by obtaining the eccentricity r between the center position C 1 and the center position M 1 and the angle θ on the orthogonal coordinate axis as a reference. By calculating the eccentricity r and the eccentric direction θ, the centering operation can be performed around the center position C 1 moved by the eccentric amount r in the eccentric direction θ from the center position M 1 of the optical component 10 during the centering operation. The centering operation can be performed easily and reliably.

【0021】更に、この発明によれば凹面Aの曲率半径
が大きくても中心位置を正確に求めることができる利点
が得られる。また、この発明によれば偏心量rを定量的
に算出することができるから、逆に光軸を任意の量だけ
偏心させた位置に設定することもできる。更に、光学部
品の外形は円形に限らず任意の形状の場合でも中心位置
1 とM1 を求めることができ、その効果は実用に供し
て頗る大である。
Further, according to the present invention, there is obtained an advantage that the center position can be accurately obtained even if the radius of curvature of the concave surface A is large. Further, according to the present invention, the amount of eccentricity r can be calculated quantitatively, and conversely, the optical axis can be set at a position decentered by an arbitrary amount. Furthermore, the outer shape of the optical component can obtain the center position C 1 and M 1 even if any shape not limited to a circle, its effect is extremely large and practically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の測定装置の一例を説明するための側
面図。
FIG. 1 is a side view for explaining an example of a measuring apparatus according to the present invention.

【図2】図1の動作を説明するための平面図。FIG. 2 is a plan view for explaining the operation of FIG. 1;

【図3】この発明による測定装置の他の例を示す側面
図。
FIG. 3 is a side view showing another example of the measuring device according to the present invention.

【図4】図3の動作を説明するための平面図。FIG. 4 is a plan view for explaining the operation of FIG. 3;

【図5】従来の技術を説明するための側面から見た断面
図。
FIG. 5 is a sectional view seen from a side for explaining a conventional technique.

【図6】従来の技術の他の例を説明するための側面から
見た断面図。
FIG. 6 is a sectional view seen from a side for explaining another example of the related art.

【図7】図6の動作を説明するための図。FIG. 7 is a view for explaining the operation of FIG. 6;

【符号の説明】[Explanation of symbols]

10 光学部品 A 凹面 21 微分干渉顕微鏡 22 移動台 23X,23Y 測距装置 24 演算装置 25 プリンタ 26 平面 DESCRIPTION OF SYMBOLS 10 Optical component A Concave surface 21 Differential interference microscope 22 Moving table 23X, 23Y Distance measuring device 24 Computing device 25 Printer 26 Plane

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 凹面が形成された光学部品の上記凹面の
周縁を切削して平面を形成し、この平面で囲まれて形成
された円上の少なくとも3点の座標を測定し、この座標
から上記円の中心位置を算出し、この算出した中心位置
を上記凹面の中心位置と定める凹面の中心位置測定方
法。
1. A flat surface is formed by cutting the periphery of the concave surface of an optical component having a concave surface, and coordinates of at least three points on a circle formed by being surrounded by the flat surface are measured. A method of measuring the center position of the concave surface, which calculates the center position of the circle and determines the calculated center position as the center position of the concave surface.
【請求項2】 凹面が形成された光学部品の上記凹面の
周縁を切削して平面を形成し、この平面で囲まれて形成
された円上の少なくとも3点の座標を測定し、この座標
から上記円の中心位置を算出し、この算出した中心位置
を上記凹面の中心位置と定めると共に、上記光学部品の
外周の少なくとも3点の座標を測定し、この座標から上
記光学部品の中心位置を算出し、この外周の中心位置と
上記円の中心位置との間の距離を偏心量と定めることを
特徴とする偏心量測定方法。
2. A flat surface is formed by cutting the periphery of the concave surface of the optical component having the concave surface, and the coordinates of at least three points on a circle formed by being surrounded by the flat surface are measured. The center position of the circle is calculated, the calculated center position is determined as the center position of the concave surface, the coordinates of at least three points on the outer periphery of the optical component are measured, and the center position of the optical component is calculated from the coordinates. The distance between the center position of the outer circumference and the center position of the circle is defined as the amount of eccentricity.
【請求項3】 請求項2記載の偏心量測定方法におい
て、上記光学部品の外周の中心位置と上記円の中心位置
を結ぶ線の方向を偏心方向と定めることを特徴とする偏
心量測定方法。
3. The eccentricity measuring method according to claim 2, wherein a direction of a line connecting a center position of an outer periphery of the optical component and a center position of the circle is defined as an eccentric direction.
【請求項4】 A.透明部材の表面の凹凸を区別して視
認することができる微分干渉顕微鏡と、 B.この微分干渉顕微鏡で観測する部材をX方向及びY
方向に概知の量だけ移動させることができる移動台と、 C.この移動台の移動位置を座標信号として出力する測
距装置と、 D.この測距装置が発生する座標信号を取り込んで上記
円の中心位置及び上記外周の中心位置を算出する演算装
置と、によって構成したことを特徴とする測定装置。
4. A. B. a differential interference microscope capable of distinguishing and visually recognizing irregularities on the surface of the transparent member; The members observed by the differential interference microscope are defined in the X direction and the Y direction.
B. a carriage that can be moved in known directions by a known amount; D. a distance measuring device that outputs the moving position of the moving table as a coordinate signal; A measuring device configured to obtain a center position of the circle and a center position of the outer periphery by taking in a coordinate signal generated by the distance measuring device.
JP13847798A 1998-05-20 1998-05-20 Concave surface center position measuring method, eccentricity measuring method and measuring apparatus Expired - Lifetime JP4028082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13847798A JP4028082B2 (en) 1998-05-20 1998-05-20 Concave surface center position measuring method, eccentricity measuring method and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13847798A JP4028082B2 (en) 1998-05-20 1998-05-20 Concave surface center position measuring method, eccentricity measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JPH11325828A true JPH11325828A (en) 1999-11-26
JP4028082B2 JP4028082B2 (en) 2007-12-26

Family

ID=15222995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13847798A Expired - Lifetime JP4028082B2 (en) 1998-05-20 1998-05-20 Concave surface center position measuring method, eccentricity measuring method and measuring apparatus

Country Status (1)

Country Link
JP (1) JP4028082B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139200A (en) * 2007-12-05 2009-06-25 Fujinon Corp Method and apparatus for measuring position variation of rotation center line
JP2010504777A (en) * 2006-09-29 2010-02-18 カール ツァイス メディテック アクチエンゲゼルシャフト Device and method for material processing using transmissive contact members
US7946325B2 (en) 2004-02-20 2011-05-24 Hoya Corporation Device and method for blocking optical lens
CN111649701A (en) * 2020-06-30 2020-09-11 长春博信光电子有限公司 Method and device for detecting eccentricity value of toric mirror
CN114087989A (en) * 2021-11-19 2022-02-25 江苏理工学院 Method and system for measuring three-dimensional coordinates of circle center of workpiece positioning hole of automobile cylinder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946325B2 (en) 2004-02-20 2011-05-24 Hoya Corporation Device and method for blocking optical lens
JP2010504777A (en) * 2006-09-29 2010-02-18 カール ツァイス メディテック アクチエンゲゼルシャフト Device and method for material processing using transmissive contact members
JP2009139200A (en) * 2007-12-05 2009-06-25 Fujinon Corp Method and apparatus for measuring position variation of rotation center line
CN111649701A (en) * 2020-06-30 2020-09-11 长春博信光电子有限公司 Method and device for detecting eccentricity value of toric mirror
CN111649701B (en) * 2020-06-30 2021-10-29 长春博信光电子有限公司 Method and device for detecting eccentricity value of toric mirror
CN114087989A (en) * 2021-11-19 2022-02-25 江苏理工学院 Method and system for measuring three-dimensional coordinates of circle center of workpiece positioning hole of automobile cylinder
CN114087989B (en) * 2021-11-19 2023-09-22 江苏理工学院 Method and system for measuring three-dimensional coordinates of circle center of positioning hole of automobile cylinder workpiece

Also Published As

Publication number Publication date
JP4028082B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP4001576B2 (en) Automatic or semi-automatic deburring device for spectacle lenses
US5727987A (en) Apparatus for the grinding of at least the peripheral edge of eyeglass lenses and method
JP4926180B2 (en) How to determine the virtual tool center point
JP2000094283A (en) Machining device for spectacle lens
JP3786941B2 (en) Device for automatically determining the characteristics of a spectacle lens with a device for automatically positioning a centering drive pin
US7405388B2 (en) Video centerscope for machine alignment
US6301007B1 (en) Machine tool locator
JP4145012B2 (en) Glasses lens processing method and lens meter
JP4733105B2 (en) Method for centering a spectacle lens in a centering-blocking device and associated centering-blocking device
JPH11325828A (en) Center position measuring method of concave surface, eccentric amount measuring method and measuring apparatus
JP3293830B2 (en) Apparatus and method for measuring and calculating geometric parameters of an object
JPH0914921A (en) Non-contact three-dimensional measuring instrument
US7561260B2 (en) System for verifying the accuracy of lens holder attachment, lens attachment stage, and lens processing system
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JPH07229811A (en) Eccentricity measuring apparatus for aspherical lens
JP2005214879A (en) Instrument and method for measuring eccentricity of non-spherical face, and aspheric lens used therefor
JP7172029B2 (en) Alignment device
JPS63243708A (en) Measuring apparatus for shape of object
JPH11337320A (en) Automatic projector inspecting device for in traocular lens and method for inspecting intraoccular lens using the same device
JP2565771B2 (en) Method and apparatus for detecting inclination of work surface
JP6928982B1 (en) Non-contact roundness and diameter measurement method
JPS6110739A (en) Method and apparatus for detecting position of optical lens
TWI546884B (en) Method for determining the position of an axis of rotation
JP2004223596A (en) Method for simply adjusting multi-shaft of three-dimensional laser machine, and measurement method on machine by guide laser
JP4309727B2 (en) Measuring jig and three-dimensional shape measuring method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term