JPH11324885A - Compressed air producing device with gravity of weight and buoyancy of wave - Google Patents

Compressed air producing device with gravity of weight and buoyancy of wave

Info

Publication number
JPH11324885A
JPH11324885A JP11036177A JP3617799A JPH11324885A JP H11324885 A JPH11324885 A JP H11324885A JP 11036177 A JP11036177 A JP 11036177A JP 3617799 A JP3617799 A JP 3617799A JP H11324885 A JPH11324885 A JP H11324885A
Authority
JP
Japan
Prior art keywords
disk
air
floating body
weight
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11036177A
Other languages
Japanese (ja)
Inventor
Kotaro Samejima
晃太郎 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11036177A priority Critical patent/JPH11324885A/en
Publication of JPH11324885A publication Critical patent/JPH11324885A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

PROBLEM TO BE SOLVED: To provide clean energy, for example, compressed air for power, enough for practical use using earth's gravity and wave force. SOLUTION: Between a fork-like column 9a, (9b) built on a rigid table 10 in a sea such as a breakwater, a disk 1 having the outer periphery and lower teeth is rotatably provided, a chain is hung on this, and on its one end a weight 4 is hoisted not to touch water, and on its another end a floating body 5 with mass sufficiently larger than that is hoisted so as to float on a sea. Rotating motion of the disk caused by vertical motion of wave is transformed to reciprocating motion of a piston pump 20 from the lower teeth 6 of the disk through gears 3a, 3b, and compressed air is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】工業用に使う圧縮空気は電動
機や内燃機関の動力で、ポンプ等の空気圧縮機を動かし
て空気を空気タンクに送って圧縮し、さらに空気圧清浄
機や制御器を通して利用されている。この発明はモータ
ーやエンジンでポンプを動かすような動力を、重力、浮
力のような自然力を利用して得る装置についてである。
したがって、空圧油圧関係分野から逆にエネルギーを得
る、いわば、新エネルギー開発分野についてである。
BACKGROUND OF THE INVENTION Compressed air used for industrial purposes is driven by an electric motor or an internal combustion engine. An air compressor such as a pump is operated to send air to an air tank for compression, and then used through an air pressure cleaner or a controller. Have been. The present invention relates to a device for obtaining power for moving a pump by a motor or an engine by utilizing natural forces such as gravity and buoyancy.
Therefore, energy is obtained from the pneumatic and hydraulic fields, that is, the new energy development field.

【0002】[0002]

【従来の技術】空気を圧縮するために圧縮機を動かすの
は従来、先にも述べたように内燃機関や電動機を動かし
てやっていたので、結局、石油や原子力で得た熱エネル
ギーが大部分で、水力のような自然エネルギーの利用は
少数でとうてい需要を満たし得ない。水力以外の自然エ
ネルギーで、風力利用、波力利用等でも若干のものはあ
るようであるが、いずれも石油等に比べて問題にならぬ
程非力すぎる。太陽光発電などでも、その材料を作るの
に膨大な石油等が要るという。また、自然力から得た空
気エネルギーを大量に蓄積しておいて、必要な時に利用
するというような技術が見あたらない。
2. Description of the Related Art Conventionally, since a compressor is operated to compress air by operating an internal combustion engine or an electric motor as described above, most of the heat energy obtained from petroleum or nuclear power is used. And the use of renewable energy, such as hydropower, is rarely enough to meet demand. It seems that there are some types of natural energy other than hydropower, such as wind power and wave power, but they are all too weak compared to petroleum, etc. It is said that huge amounts of petroleum, etc. are needed to make the materials even for solar power generation. Also, there is no technology that stores a large amount of air energy obtained from natural forces and uses it when needed.

【0003】[0003]

【発明が解決しようとする課題】自然力を利用して実用
に見合う程度のクリーンなエネルギーを得るのに イ.地球の重力と水の浮力および波の上下運動を利用す
る。 ロ.波の上下運動のエネルギーを出来るだけ取り入れ
て、ポンプを動かす歯車の回転運動に変える。 ハ.ポンプは大気から空気を時に応じて空気タンクに圧
入し、所望の圧力、所望の量の空気がタンク内に貯蔵さ
れて行くようにする。 ニ.空気タンクの圧縮空気を放出して空気タービンを動
かし発電等に利用できるようにする。 ホ.装置全体が簡単で安価にでき、したがって多数の装
置が容易にできるようにする。
[Problems to be Solved by the Invention] To use natural power to obtain clean energy that is practical. Utilizes the Earth's gravity, the buoyancy of water, and the vertical motion of waves. B. It takes in as much of the energy of the wave's up-and-down motion as possible and converts it into rotational motion of the gears that move the pump. C. The pump presses air from the atmosphere into the air tank from time to time, so that a desired pressure and a desired amount of air are stored in the tank. D. The compressed air in the air tank is released to operate the air turbine so that it can be used for power generation and the like. E. The whole device is simple and inexpensive, so that a large number of devices can easily be made.

【0004】[0004]

【課題を解決するための手段】上記を解決する手段とし
て、本発明は防波堤等、海中の堅固な土台(10)の上
に又状の堅固な支柱(図4(9a),(9b))を建
て、その真ん中に、回転する上下に歯(7),(6)を
持つ、水車様の大きな円盤(1)をつるし、円盤の上の
歯(7)にはチエーン(12)をかける。チエーンでな
くても、滑らなければ丈夫なケーブルでもよい。その場
合は、上歯(7)は要らない。チエーンの両端にそれぞ
れ重り(4)と浮体(5)をつるし、浮体は波に浮か
べ、重りは空中につるした状態にあるようにする。ま
た、このとき円盤(1)の下の歯(6)は土台(10)
の上に並列に据え付けられた2台の同じ大きさのポンプ
(20a),(20b)のそれぞれのピストンの回転軸
が固着した歯車(3a),(3b)に噛み合って、チエ
ーンが上下に動いて円盤(1)が回転するとき、その分
だけピストンの回転軸がまわり、請求項2で述べたピス
トンの最初の設置の仕方から一方のシリンダーは大気か
ら吸気し、他方はそのシリンダー内の空気を、その圧力
が空気タンク内の空気圧より高ければ、空気タンク内に
排気圧入する。時間が経つにつれてタンク内の空気圧は
所望のものまで高まっていく。
As a means for solving the above-mentioned problems, the present invention provides a fork-shaped solid support (FIG. 4 (9a), (9b)) on a solid underwater base (10) such as a breakwater. In the middle, a large wheel (1) like a water wheel with rotating teeth (7) and (6) is hung, and a chain (12) is put on the teeth (7) on the disk. Even if it is not a chain, a strong cable may be used if it does not slip. In that case, the upper teeth (7) are not required. A weight (4) and a floating body (5) are hung on both ends of the chain, so that the floating body floats on the waves and the weight is hung in the air. At this time, the teeth (6) below the disk (1) are attached to the base (10).
The rotation shafts of the pistons of two pumps (20a) and (20b) of the same size installed in parallel on the gear mesh with the fixed gears (3a) and (3b), and the chain moves up and down. When the disk (1) rotates, the rotation axis of the piston rotates by that amount, and one of the cylinders takes in air from the atmosphere and the other receives the air in the cylinder from the first installation method of the piston described in claim 2. Is exhausted into the air tank if the pressure is higher than the air pressure in the air tank. Over time, the air pressure in the tank increases to the desired one.

【0005】[0005]

【発明の実施の形態】ピストンの回転軸の回転力が同じ
時、口径の大きいピストンでは多量の空気を一度に圧縮
できるが弱い空気圧しかできない。一方、口径の小さい
ピストンでは一度に圧縮できる空気量は少量だが空気圧
は高くできる。ところで、ピストンの回転軸の回転力は
円盤の回転力から受ける。円盤の回転力は、周期とか高
さとかの波の状況と、重り、浮体、円盤などの質量など
と関係している。これは状況によつていろんな種類の装
置が要るということである。ここでは、実施の形態の、
先述したような一般的説明を繰り返したあと、上述の理
由を、「0011」から「0035」の項にかけて説明
する。これらについては友人の物理学者の援助を得た。
BEST MODE FOR CARRYING OUT THE INVENTION When the rotational force of a rotating shaft of a piston is the same, a large-diameter piston can compress a large amount of air at a time, but can only generate a weak air pressure. On the other hand, a piston with a small diameter can compress a small amount of air at a time, but can increase the air pressure. By the way, the rotational force of the rotating shaft of the piston is received from the rotational force of the disk. The rotational force of the disk is related to the wave conditions such as the period and height, and the mass of the weight, floating body, disk, and the like. This means that different situations require different types of equipment. Here, in the embodiment,
After repeating the general description as described above, the above-mentioned reason will be described from “0011” to “0035”. These were supported by a friend's physicist.

【0006】海中の適当な幅の防波堤等の堅固な台(1
0)の上に、上端でつながった支柱(9a),(9b)
を台(10)の幅方向にまたがるように建てる(図
4)。
A solid base such as a breakwater of an appropriate width in the sea (1)
0) on the upper end connected to the support (9a), (9b)
Is built so as to extend in the width direction of the table (10) (FIG. 4).

【0007】支柱(9a),(9b)の中央にまたい
で、円盤(8)の回転軸(8)を架け、(8)の中心点
に、そこを回転の中心とする、半径の大きい適当な厚さ
の歯付き円盤(1)をつり、容易に回転出来るようにす
る。(1)は上半円の上部四分の一が上歯(7)を、下
半円の下部四分の一は下歯(6)を備えている。上歯
(7)はチエーン(12)と噛み合うように、下歯
(6)はピストンの回転軸付き歯車(3a),(3b)
と噛み合うように作る。(3a),(3b)はそれぞれ
のポンプの外につきだしている。前にも述べたが、すべ
らなければチエーンの代わりに丈夫なケーブルでもよい
し、その時は上歯(7)は不要である。円盤(1)の半
径は円盤が海に突き出て、多少のことでは浮体が台にふ
れない程度の大きさは必要である。
A rotating shaft (8) of a disk (8) is spanned over the centers of the columns (9a) and (9b), and an appropriate radius of a large radius is set at the center point of (8) with the center of rotation as the center. A toothed disk (1) having a large thickness is suspended so that it can be easily rotated. In (1), the upper quarter of the upper semicircle has upper teeth (7), and the lower quarter of the lower semicircle has lower teeth (6). The upper teeth (7) are engaged with the chain (12), and the lower teeth (6) are gears (3a), (3b) with a rotating shaft of a piston.
Make it to mesh with. (3a) and (3b) are outside the respective pumps. As mentioned before, if there is no slip, a strong cable may be used instead of the chain, in which case the upper teeth (7) are unnecessary. The radius of the disk (1) needs to be large enough that the disk protrudes into the sea and the floating body does not touch the table in some cases.

【0008】ピストンの回転軸付き歯車(図2(3
a),(3b))をそれぞれ備えたポンプは全く同種同
大のもので並行して台上に備え付けられている。そし
て、各シリンダー内で、ピストン(15a)が最上の位
置にあるときはピストン(15b)は最下の位置にある
というように、常に両ピストンが正反対に動くように、
歯(3a),(3b)が歯(6)と噛み合うようにす
る。尚、両ピストンの半径、両シリンダー部の長さ、両
ピストンの回転軸付き歯車の半径、両ピストンの回転軸
の腕(21a),(21b)の長さ、両ピストンの連接
棒(19a),(19b)の長さ等々は、シリンダーか
ら空気タンクに一度に圧入するときの、所望の空気圧、
空気量に従って、円盤の回転エネルギーを出来るだけ効
率よく取れるように機械工学的に決定すればよい。
A gear with a rotating shaft of a piston (FIG. 2 (3)
Pumps provided with a) and (3b)) are of exactly the same type and of the same size, and are mounted on a table in parallel. In each cylinder, when the piston (15a) is at the uppermost position, the piston (15b) is at the lowermost position, so that both pistons always move in opposite directions,
The teeth (3a), (3b) engage with the teeth (6). In addition, the radius of both pistons, the length of both cylinder parts, the radius of gears with rotating shafts of both pistons, the length of arms (21a) and (21b) of rotating shafts of both pistons, connecting rod (19a) of both pistons , (19b) length, etc., is the desired air pressure at the time of press-fitting from the cylinder into the air tank,
The rotational energy of the disk may be determined mechanically according to the amount of air so that the rotational energy of the disk can be obtained as efficiently as possible.

【0009】円柱形の浮体(5)と重り(4)をチエー
ン(12)でつなぎ、チエーンは円盤(1)の上歯
(7)に架け、重りは下がっても水に届かないように、
浮体は波に浮かぶようにチエーンの長さを調整する。ま
た、重りや浮体が飛び上がった時、チエーンが外れない
ように、図1,図4のように、支柱(9a),(9b)
に固定し、回転円盤(1)をある幅で挟むような固定枠
(22)をもうける。
[0009] The cylindrical floating body (5) and the weight (4) are connected by a chain (12), and the chain is hung on the upper teeth (7) of the disk (1).
The floating body adjusts the length of the chain so that it floats on the waves. Also, as shown in FIGS. 1 and 4, the columns (9a) and (9b) are used to prevent the chain from coming off when the weight or the floating body jumps up.
And a fixed frame (22) is provided so as to sandwich the rotating disk (1) with a certain width.

【0010】浮体は中に、液体や固体等を重しとして詰
めるが、浮体が動くとき、変形したり、移動したりしな
いようにしないと、浮き方が変わり、浮力が変化して役
にたたなくなる。波がないときは常に水平に復元するよ
うなものでなければならない。
The floating body is filled with a liquid, solid, or the like as a weight, but if the floating body is not deformed or moved when it moves, the way of floating changes and the buoyancy changes, which is useful. I will not be. When there is no wave, it must be such that it always restores horizontally.

【0011】さてここで、先に「0005」項で述べた
ことについての理論的背景を説明する。図5に示すよう
に、波のない場合の海面(平均海面)を座標の原点に
とる。波は近似的に振幅aの正弦波と仮定し、時刻tで
の海面位置の座標Zは次の数1式で表されるとする。
Now, the theoretical background of what has been described in the section "0005" will be described. As shown in FIG. 5, the sea surface without waves (average sea surface) is taken as the origin of the z coordinate. Waves approximately assuming sine wave with an amplitude a, coordinate Z w sea location at time t is assumed to be expressed by equation (1) below.

【0012】[0012]

【数1】 (Equation 1)

【0013】時刻tでの浮体の底面の座標を平均海面か
ら測ってZとする。浮体の全質量はmとし、浮体の
底面積をSとする。重りの質量はmとする。mはm
よりずっと小さくなければならない。時刻tでの重り
の座標はZとする。また、円盤(1)の半径をr、そ
の回転軸に関する(1)の慣性能率をIとする。チエー
ン(ケーブル)(12)にかかる張力は図5に示すよう
に、T、Tとする。
[0013] The coordinates of the floating body of the bottom surface at time t measured from mean sea and Z f. The total mass of the floating body and m f, the bottom area of the floating body to S. Mass of the weight is set to m c. mc is m
Must be much smaller than f . Coordinates of the weight at time t is set to Z c. Also, let r be the radius of the disk (1) and I be the inertia coefficient of (1) with respect to its rotation axis. The tension applied to the chain (cable) (12) is T 1 and T 2 as shown in FIG.

【0014】力学的考察(チエーン等の質量は無視す
る)から、下に並べるように、数2、数3、数4、数
5、数6式を経て、浮体の運動を表す微分方程式、数7
式を得、これに数8、数9式の置き換えを行うと数7式
を見やすくした方程式、数10式を得る。
From the mechanical considerations (ignoring the mass of the chain, etc.), as shown below, through equations 2, 3, 4, 5, and 6, the differential equation representing the motion of the floating body, 7
Equations are obtained, and when equations 8 and 9 are replaced, equations 7 and 10 that make equation 7 easier to see are obtained.

【0015】[0015]

【数2】 (Equation 2)

【0016】[0016]

【数3】 (Equation 3)

【0017】[0017]

【数4】 (Equation 4)

【0018】[0018]

【数5】 (Equation 5)

【0019】[0019]

【数6】 (Equation 6)

【0020】[0020]

【数7】 (Equation 7)

【0021】[0021]

【数8】 (Equation 8)

【0022】[0022]

【数9】 (Equation 9)

【0023】[0023]

【数10】 (Equation 10)

【0024】上で述べた微分方程式、数10式から浮体
の運動についての性質が分かる。まず、原点を移して、
を数11式でZに置き換える。
The properties of the motion of the floating body can be understood from the above-mentioned differential equation and equation (10). First, shift the origin,
Z f is replaced with Z by equation (11).

【0025】[0025]

【数11】 [Equation 11]

【0026】数11式の右辺の第2項は、数8、数9式
より次のようになる。
The second term on the right side of Equation 11 is as follows from Equations 8 and 9.

【0027】[0027]

【数12】 (Equation 12)

【0028】一方、静止海水面で浮体を静止状態に置い
たとすれば、海水中に浸かっている部分の深さをHとす
ると次式が成り立つ。
On the other hand, assuming that the floating body is at rest on a still sea surface, the following equation is established when the depth of a portion immersed in sea water is H.

【0029】[0029]

【数13】 (Equation 13)

【0030】此の式から、数12式の左辺は−Hに等し
いことが分かる。すなわち、数12の左辺は浮体の静止
時の喫水線の位置である。
From this equation, it can be seen that the left side of Equation 12 is equal to -H. That is, the left side of Expression 12 is the position of the waterline when the floating body is at rest.

【0031】次に、振幅aの正弦波(数1)がある場合
を考える。数10式の中のZを数11式を使ってZで
表し、次式に変える。
Next, consider the case where there is a sine wave (equation 1) having an amplitude a. Using the equation (11) the Z f in the number 10 formula expressed as Z, changing the following equation.

【0032】[0032]

【数14】 [Equation 14]

【0033】これは静水時の浮体の喫水線の位置Z
(t)の運動(Zの運動と同じ)を表す方程式であ
る。この方程式の解はある程度の時間後には次式で表せ
る。
This is the position Z of the waterline of the floating body at the time of still water.
Is an equation representing motion (Z f exercise the same) of (t). After some time, the solution to this equation can be expressed as

【0034】[0034]

【数15】 (Equation 15)

【0035】 る。もし、ωωに近ければ共振のために浮体の上下動
は大きくなる。したがって、ωをωに近くとる程、装
置の能率はよくなるであろう。
[0035] You. If it is close to ω o ω, the vertical movement of the floating body increases due to resonance. Therefore, the closer the ω o is to ω, the better the efficiency of the device will be.

【0036】[0036]

【実施例】実際に実験したわけではないが、状況に合わ
せて実施するには、どんな風に考え、どんな風に装置を
造ればよいか、その時、装置の円盤の回転エネルギーは
どのくらいになるかを、波高40cm、周期3秒の正弦
波の状況の時を例にとつてのべる。
[Example] Although we did not actually experiment, how to think about how to make the device and how to make the device, and how much the rotational energy of the disk of the device will be at that time to implement it according to the situation Let us take an example of a sine wave with a wave height of 40 cm and a period of 3 seconds.

【0037】 弦波(数1式)のωに適当に近くとることが大切であ
る。そこで浮体の底面の半径を1m、海水の密度を10
30(kg/m)、円盤の質量をmとするとき、次式
が成り立つ。ここに、m,m,r,I,S,P等は
「0013」項および数3式で説明したものと同じであ
る。
[0037] It is important to take a value close to ω 2 of the sine wave (Equation 1). Therefore, the radius of the bottom of the floating body is 1m and the density of seawater is 10
Assuming that the mass of the disk is 30 (kg / m 3 ) and the mass of the disk is m, the following equation is established. Here, m f , m c , r, I, S, P, etc. are the same as those described in the section “0013” and the equation (3).

【0038】[0038]

【数16】 (Equation 16)

【0039】[0039]

【数17】 [Equation 17]

【0040】波は先に述べたように波高40cm、周期
3秒で寄せているとする。海水の動きは海面下で波高と
同じ直径の円運動をしているとのことなので、浮体の喫
水の深さは平均海面下40cm以内におさめたほうがよ
かろう。そうすると数13式より喫水の深さHについて
次式が成り立つ。
It is assumed that the waves are approaching at a wave height of 40 cm and a period of 3 seconds as described above. Since the seawater moves in a circular motion with the same diameter as the wave height below the sea level, it is better to keep the draft of the floating body within 40 cm below the average sea level. Then, the following equation holds for the draft depth H from Equation (13).

【0041】[0041]

【数18】 これをもう少し深く−0.3m くらいにして次式を得
る。
(Equation 18) This is made a little deeper at about -0.3 m to obtain the following equation.

【0042】[0042]

【数19】 波の周期が3秒なので、2πを3で割って[Equation 19] Since the wave period is 3 seconds, divide 2π by 3

【0043】[0043]

【数20】 (Equation 20)

【0044】 M=6339 と出るからMは見やすく6300(k
g)位にしてみる。一方、数19式の右辺も1000
(kg)位にしてみる。すると次のような連立式ができ
る。
[0044] M = 6339, so M is easy to see 6300 (k
g) Try to place. On the other hand, the right side of Equation 19 is also 1000
(Kg) rank. Then, the following simultaneous formula is created.

【0045】[0045]

【数21】 (Equation 21)

【0046】数21式の中でm,m、mを適当に決
める。いま、m=1800(kg)、m=3200
(kg)、m=2200(kg) としてみる。 での回転エネルギーK(t)は物理学から次式で与えら
れている。ここに、
M, m f and mc are appropriately determined in the equation (21). Now, m = 1800 (kg), mf = 3200
(Kg), m c = 2200 (kg). Is given by the following equation from physics. here,

【0047】[0047]

【数22】 これに数15式をtで微分したものを代入すると(Equation 22) Substituting the equation (15) with the derivative of t

【0048】[0048]

【数23】 ω=2.09 を代入するとK(t)の値が次のように
分かる。
(Equation 23) By substituting ω = 2.09, the value of K (t) can be found as follows.

【0049】[0049]

【数24】 すなわち、最大、毎秒4.5キロワツトに相当するエネ
ルギーが円盤の回転を通してピストンの回転軸に伝わる
ことになる。
(Equation 24) That is, energy equivalent to a maximum of 4.5 kilowatts per second is transmitted to the rotation axis of the piston through the rotation of the disk.

【0050】以上、「0011」項以降長く述べてきた
ことは、現実にモデルを適用した机上の理屈であって、
実際は多くの実験をして造るべきだろう。また、コンピ
ユーター等でシミユレーシヨン出来るかもしれない。し
かし、それらに対しても何らかの参考になると思う。実
際は、波も正弦波だけとは限らないし、重りや浮体も飛
び跳ねて支柱や台にぶつかったりしよう。しかし、装置
が壊れない限り、激しく動く程、円盤は回転しピストン
は強く動き、タンク内の空気圧よりピストンの圧力が勝
れば空気は必ずタンク内に圧入され、タンク内には圧縮
された空気が貯まって行くはずである。壊れないように
するため装置の成る部分をシエルターで保護する必要も
あろう。これらは構造上の工学の問題である。
What has been described for a long time after the term “0011” is the theoretical reason for applying the model to the desk.
In fact, you should make many experiments. You may also be able to simulate with a computer. However, I think it will be helpful for them. In fact, waves are not limited to sine waves, and weights and floating bodies may jump and hit columns and supports. However, as long as the device is not broken, the harder it moves, the more the disk rotates and the piston moves more strongly.If the piston pressure exceeds the air pressure in the tank, the air will always be injected into the tank and the compressed air in the tank Should accumulate. It may also be necessary to protect parts of the device with a shelter to prevent breakage. These are structural engineering issues.

【0051】[0051]

【発明の効果】空気は例えば、温度20度C、1気圧、
相対湿度65%の標準状態で、その容積を二分の一、三
分の一、十分の一等と圧縮(ポリトロープ指数例えば
1.2で)するとその圧力はそれぞれ、2.9気圧、
3.7気圧、14.8気圧等々と大きなエネルギーを持
つ。10気圧以上になれば工場でも色々の用途に利用さ
れている。此の発明は所望に応じた必要な圧力を持つ空
気の集積を海浪の持つ力を利用して得る一方法を拓いた
ということである。これが、次のような直接的、間接的
効果をもたらすことを期待する。
The air has a temperature of, for example, 20 ° C., 1 atm,
Under standard conditions of 65% relative humidity, when the volume is compressed to one-half, one-third, one-tenth, etc. (with a polytropic index of, for example, 1.2), the pressure becomes 2.9 atm.
It has a large energy of 3.7 atm, 14.8 atm and so on. If the pressure exceeds 10 atm, it is used for various purposes in factories. The present invention has pioneered a method for obtaining the accumulation of air having a required and desired pressure by utilizing the force of the seashore. We expect this to have the following direct and indirect effects.

【0052】圧縮空気を得るのに石油等によらず、自然
力によるので環境を汚さない。また、使用後も環境を害
さない。
The compressed air is obtained not by oil or the like but by natural force, so that the environment is not polluted. It does not harm the environment after use.

【0053】波の周期と波高等に影響され、一様に得ら
れるわけではないが、時間が経てば自然に、圧縮空気が
たまつていく。空気圧も空気量も空気タンクの安全弁の
設定の仕方やタンクの大きさで決める事が出来る。貯ま
った空気エネルギーは保存も利き、動力源として制御が
しやすく安価である。
Although it cannot be obtained uniformly depending on the wave period and wave height, the compressed air naturally accumulates over time. Both air pressure and air volume can be determined by the way of setting the safety valve of the air tank and the size of the tank. The stored air energy is good for preservation, easy to control as a power source, and inexpensive.

【0054】貯蔵された圧縮空気を噴出させて空気ター
ビンを回して発電が出来るであろう。空気タービンも現
在より多種多様になり低い空気圧でも利用可能な発電が
出来るようなものも開発されよう。
[0054] The stored compressed air may be spouted to turn the air turbine to generate electricity. Air turbines will also be more diverse and will be developed to generate electricity at lower air pressures.

【0055】この装置の効率は波の周期や波の高さに非
常に影響されることは先述した通りである。波の状況は
たえず変化するので対応が出来ないように見える。しか
し、固定された海域では、波の周期や高さを年間で統計
をとり、それに合わせて出来るだけ有利なように、装置
の種類やそれぞれの数を決めて装置群を造り一つの空気
タンクにつないでおく。そうすれば、その時時の波の周
期等に合った装置からの空気がタンクに入るであろう。
効果のない装置があっても構わない。そして、このよう
な装置群をいくつか備えたエネルギーの基地の建設も可
能であろう。
As described above, the efficiency of this device is greatly affected by the wave period and wave height. The waves seem to change constantly and seem to be unable to respond. However, in fixed sea areas, the frequency and height of waves are statistically collected annually, and the type of equipment and the number of each equipment are determined to form a group of equipment to create a single air tank so as to be as advantageous as possible. Keep connected. Then, the air from the device, which matches the wave cycle at that time, will enter the tank.
Some devices may not work. And it would be possible to build an energy base equipped with several such devices.

【0056】このような基地は波浪が年間を通じてある
程度あり、かつ波浪の状況の変化が激しくない海辺が適
しよう。その様なところにそのエネルギーを使う産業を
興せばよい。地方の振興になると思う。
Such a base is suitable for a seaside where waves are present to some extent throughout the year and the conditions of the waves do not change drastically. It is only necessary to start an industry that uses that energy in such places. I think it will be a local promotion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】装置を側面(防波堤等に直交する面)から、支
柱(9b)を取り除いて見た、縦断面図である。
FIG. 1 is a vertical cross-sectional view of the apparatus, in which a support (9b) is removed from a side surface (a surface orthogonal to a breakwater or the like).

【図2】図1のポンプの部分を円盤(1)の前面より見
た立面図である。
FIG. 2 is an elevational view of a portion of the pump in FIG. 1 as viewed from the front of a disk (1).

【図3】図2の右のポンプの側面からの縦断面図であ
る。
FIG. 3 is a vertical cross-sectional view from the side of the right pump in FIG. 2;

【図4】装置を防波堤等の外海側から見た縦立面図であ
る。
FIG. 4 is a vertical elevation view of the apparatus as viewed from the open sea side such as a breakwater.

【図5】モデルの理論の説明図FIG. 5 is an explanatory diagram of a model theory.

【符号の説明】[Explanation of symbols]

1. 歯付き円盤 2. シリンダー(a,b2つある) 3. ポンプのピストンの回転軸つき歯車(a,b2つ
ある) 4. 重り 5. 浮体(浮き) 6. 円盤の下歯 7. 円盤の上歯 8. 円盤の回転軸 9. 装置の支柱 (a,b 2つある) 10. 防波堤等 (海中に建つ土台) 11. 波 12. チエーン 13. 大気から吸気の方向 14. シリンダーから空気タンクへの排気圧入方向 15. ピストン (a,b2つある) 16. 一方向排気弁 (a,b2つある) 17. 吸気弁 (a,b2つある) 18. ピストンの回転軸 (a,b2つある 19. 連接棒 (a,b2つある) 20. ポンプ (a,b2つある) 21. ピストンの回転軸の腕 (a,b 2つある) 22. 円盤をとりまく固定枠
1. Toothed disk 2. 2. Cylinder (there are two a and b) 3. Gear with rotary shaft of pump piston (a and b). Weight 5 Floating body (floating) 6. Lower teeth of the disk 7. 7. Upper teeth of disk 8. Rotation axis of disk 10. Device support (There are two a and b) Breakwaters, etc. (underwater base) Wave 12. Chain 13. 13. Direction of intake from the atmosphere 14. Direction of exhaust pressure injection from cylinder to air tank Piston (There are two a and b) 16. One-way exhaust valve (There are two a and b) 17. Intake valve (a, b two) Piston rotation axis (a and b are two) 19. Connecting rod (a and b are two) 20. Pump (a and b are two) 21. Arm of piston rotation axis (a and b are two) 22. Disk Fixed frame surrounding

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】図1のような、防波堤等、海上の堅固な台
(10)の上に建てられた堅固な支柱図4(9a),
(9b)の中心に架かった棒を中心軸とし、それに架け
られた、上下に歯(7),(6)を持つ、大きい回転す
る円盤(1)と、この上歯(7)にチエーン(12)を
かけ、チエーンの一端に重り(4)を、チエーンの他端
に円柱形の浮体(5)を、重りは水に浸からないよう
に、浮体は水に浮かべて釣り合わす。重り、浮体、円盤
のそれぞれの質量および浮体の底面の半径は、波の周期
に対してなるべく円盤の回転力が出るように、後に述べ
る数式を参考に適切に定める。浮体や重りは他に衝突し
ても装置等を壊さないように、厚いゴムのような緩衝材
でくるむ。このような、重りの重力と波の浮力から円盤
の回転力を得る装置。
1. A solid support column 4 (9a) constructed on a solid shore (10) such as a breakwater as shown in FIG.
A large rotating disk (1) having a vertical axis as a center axis and having a tooth (7), (6) above and below the center axis of (9b), and a chain ( 12), the weight (4) is placed on one end of the chain, the cylindrical floating body (5) is placed on the other end of the chain, and the floating body is floated on water so that the weight is not immersed in water. The mass of each of the weight, the floating body and the disk, and the radius of the bottom surface of the floating body are appropriately determined with reference to a mathematical formula described later so that the rotating force of the disk is generated as much as possible with respect to the wave period. The floating body and the weight are wrapped with a thick rubber-like cushioning material so as not to break the device or the like even if they collide with another. Such a device that obtains the rotational force of a disk from the gravitational force of a weight and the buoyancy of a wave.
【請求項2】海上の堅固な台(10)上、図1のように
円盤(1)の下に並列に2個の同種のポンプ(20)を
並べ、その二つのピストンを動かす(連接棒、ピストン
の回転軸の腕を通じて)ピストンの回転軸(図2(18
a),(18b))が固着されている歯車(3a),
(3b)の歯を円盤(1)の下歯(6)に噛み合わせ
る。このとき、二つのポンプのピストンは円盤(1)が
回転するとき、互いに同時に正反対に動くように設置す
る。例えば、二つのポンプのピストンを一方は最下位
に、他方は最上位にそれぞれのシリンダー(2a),
(2b)の中で位置するするように、最初に設置する。
また、各シリンダーにある排気弁(16a),(16
b)は一方向の空気弁(ワンウエーチエック弁)で、そ
こから排気される空気は空気タンク(図省略)の中に入
った場合はもはやタンク外へは出られない。排気弁から
出る空気はすべて同じ空気タンクに入る。空気タンクは
用途に応じて大きさに制限はしない。また、空気タンク
には円盤(1)の回転に支障を起こさないように、タン
ク内の圧力を調整する安全弁をつける。各シリンダーの
吸気弁(17a),(17b)は大気を吸入するもの
で、普通のバネ付き弁でもよい。ただ、大気が吸気弁に
入る前にフィルターを通すようにした方がよい。以上の
ような、円盤(1)の回転力を利用した圧縮空気製造装
置。
2. Two pumps (20) of the same type are arranged in parallel on a solid platform (10) at sea and below the disk (1) as shown in FIG. 1, and the two pistons are moved (connecting rod). , Through the arm of the piston rotation shaft) (FIG. 2 (18)
a), (18b)) to which gears (3a),
The teeth of (3b) are engaged with the lower teeth (6) of the disk (1). At this time, the pistons of the two pumps are installed so that when the disk (1) rotates, they move in opposite directions simultaneously. For example, the pistons of two pumps, one at the bottom and the other at the top, each cylinder (2a),
First, it is installed so as to be located in (2b).
Also, the exhaust valves (16a), (16
b) is a one-way air valve (one-way check valve), and the air exhausted therefrom can no longer escape outside the tank when it enters an air tank (not shown). All air leaving the exhaust valve goes into the same air tank. The size of the air tank is not limited according to the application. The air tank is provided with a safety valve for adjusting the pressure in the tank so as not to hinder the rotation of the disk (1). The intake valves (17a) and (17b) of each cylinder are for sucking air, and may be ordinary spring-loaded valves. However, it is better to let the air pass through the filter before entering the intake valve. As described above, the compressed air producing apparatus utilizing the rotational force of the disk (1).
JP11036177A 1998-03-16 1999-01-06 Compressed air producing device with gravity of weight and buoyancy of wave Pending JPH11324885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11036177A JPH11324885A (en) 1998-03-16 1999-01-06 Compressed air producing device with gravity of weight and buoyancy of wave

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-106850 1998-03-16
JP10685098 1998-03-16
JP11036177A JPH11324885A (en) 1998-03-16 1999-01-06 Compressed air producing device with gravity of weight and buoyancy of wave

Publications (1)

Publication Number Publication Date
JPH11324885A true JPH11324885A (en) 1999-11-26

Family

ID=26375221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11036177A Pending JPH11324885A (en) 1998-03-16 1999-01-06 Compressed air producing device with gravity of weight and buoyancy of wave

Country Status (1)

Country Link
JP (1) JPH11324885A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076962A3 (en) * 2008-10-22 2010-08-26 Won Yong Ho Power generator using wave power
WO2011063733A1 (en) * 2009-11-26 2011-06-03 Song Weichang Wave energy collection device
CN114483429A (en) * 2022-01-14 2022-05-13 高春龙 Tidal power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076962A3 (en) * 2008-10-22 2010-08-26 Won Yong Ho Power generator using wave power
WO2011063733A1 (en) * 2009-11-26 2011-06-03 Song Weichang Wave energy collection device
CN114483429A (en) * 2022-01-14 2022-05-13 高春龙 Tidal power generation system

Similar Documents

Publication Publication Date Title
US9309860B2 (en) Wave energy conversion device
RU2430264C2 (en) Power system built around float-type pump
RU2353797C2 (en) Power system based on float pump
US7735317B2 (en) Buoyancy pump power system
US20050169774A1 (en) Buoyancy pump device
JP2010507042A (en) Wave energy converter
US20100025999A1 (en) Ocean wave electricity generation
CN1253610A (en) System for conversion of wave energy
US11566610B2 (en) Wave-powered generator
US3952517A (en) Buoyant ram motor and pumping system
JP2021046858A (en) Vibration float type wave power generation device having offset inertia body
AU2016357633B2 (en) An apparatus for power generation from the surface ocean waves in deep seas
US9624907B2 (en) Velocity gradient floating turbine and power generation system and methods thereof
GB2430471A (en) Variable volume buoyancy engine
Do et al. Effects of non-vertical linear motions of a hemispherical-float wave energy converter
JPH11324885A (en) Compressed air producing device with gravity of weight and buoyancy of wave
CN106246452B (en) A kind of flexible anchor Dinghai wave electric generating apparatus
CN100430595C (en) Wheel cable type sea wave energy conversion apparatus
WO2011031515A2 (en) Displacement drive
RU2715612C1 (en) Modular unit for converting wave energy into electric energy
JPS6394081A (en) Power generating device utilizing waveforce energy
CN206694179U (en) Wave-power device
Liang et al. Hydrodynamic research of a novel floating type pendulum wave energy converter based on simulations and experiments
JPH09119370A (en) Power generating device using the range of tide of seawater
JP2003206845A (en) Wave force energy converter