JPH1132442A - Method and apparatus for estimating residual capacity of storage battery - Google Patents

Method and apparatus for estimating residual capacity of storage battery

Info

Publication number
JPH1132442A
JPH1132442A JP18489097A JP18489097A JPH1132442A JP H1132442 A JPH1132442 A JP H1132442A JP 18489097 A JP18489097 A JP 18489097A JP 18489097 A JP18489097 A JP 18489097A JP H1132442 A JPH1132442 A JP H1132442A
Authority
JP
Japan
Prior art keywords
storage battery
current
impedance
voltage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18489097A
Other languages
Japanese (ja)
Inventor
Noboru Nomura
登 野村
Masahiro Takada
雅弘 高田
Akira Ishida
明 石田
Hirotaka Ishihara
広隆 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18489097A priority Critical patent/JPH1132442A/en
Publication of JPH1132442A publication Critical patent/JPH1132442A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope

Abstract

PROBLEM TO BE SOLVED: To accurately estimate the residual capacity of a storage battery, even when charging and discharging are repeated in a condition in which there is no standard of the residual capacity of the battery in a hybrid electric vehicle or the like. SOLUTION: To digitally process the charging and discharging voltage and current of a load 1 such as a motor and a storage battery, the voltage and current are converted into digital signals with an A/D converter 5 and an A/D converter 6 respectively and subsequently converted into a compound spectrum with a frequency converter (FFT) 7 for voltage and another frequency converter (FFT) 8 for current. From these complex spectra of the voltage and current so obtained with the storage battery in use, impedance is calculated with an impedance calculating part 9 to obtain a radius (rj), a characteristic amount of impedance, from the storage battery in operation. This radius (rj) is compared with the radius (rj) which has been obtained beforehand and stored in a battery residual capacity calculating part 10, so that the residual capacity of the storage battery is estimated from the interrelation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車などに
使用される蓄電池の電圧、電流や電池の温度を充電時及
び放電時に計測し、蓄電池の残容量を推定する方法及び
蓄電池の残容量を推定するシステムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the remaining capacity of a storage battery by measuring the voltage, current and battery temperature of a storage battery used in an electric vehicle and the like at the time of charging and discharging, and determining the remaining capacity of the storage battery. It relates to a system for estimating.

【0002】[0002]

【従来の技術】今世紀の終盤から21世紀初頭にかけ
て、電気自動車の需要が始まり、石油供給の逼迫に対応
して電気自動車が本格的に普及すると予測されている。
電気自動車は、蓄電池に蓄えられた電気エネルギで走行
するため、蓄電池の残容量指示は、走行可能距離を知る
上で、また、蓄電池の充放電量を制御する上で大変重要
である。
2. Description of the Related Art From the end of this century to the beginning of the 21st century, demand for electric vehicles starts, and it is predicted that electric vehicles will become popular in response to the tight supply of oil.
Since an electric vehicle travels with electric energy stored in a storage battery, the remaining capacity indication of the storage battery is very important in knowing the possible travel distance and in controlling the charge / discharge amount of the storage battery.

【0003】(第1の従来例の構成)以下図面を参照し
ながら、上記した従来の蓄電池残容量表示装置の一例に
ついて説明する。図11は、従来からの蓄電池残量表示
装置を示すものである。110は駆動モータ、112は
蓄電池、114はメータ、116はスイッチ装置、11
8はモータ始動用スイッチ、120はスイッチ作動手
段、122は増幅器、124は検出器、126は論理回
路を示す。第1の従来例の蓄電池残容量表示装置は、蓄
電池112の残容量を指示するメータ114と、該メー
タを蓄電池に接続するスイッチ装置116と、該スイッ
チ装置を作動する手段120が設けられている。
(Configuration of First Conventional Example) An example of the above-described conventional storage battery remaining capacity display device will be described with reference to the drawings. FIG. 11 shows a conventional storage battery remaining amount display device. 110 is a drive motor, 112 is a storage battery, 114 is a meter, 116 is a switch device, 11
8 is a motor start switch, 120 is a switch actuating means, 122 is an amplifier, 124 is a detector, and 126 is a logic circuit. The storage battery remaining capacity display device of the first conventional example is provided with a meter 114 for indicating the remaining capacity of the storage battery 112, a switch device 116 for connecting the meter to the storage battery, and means 120 for operating the switch device. .

【0004】(第1の従来例の動作)以上のように構成
された第1の従来例の蓄電池残容量表示装置について、
以下その動作について説明する。スイッチ装置作動手段
120は、蓄電池112より負荷110に供給される電
流の大きさを検出器124で検出して、該電流の大きさ
が予め定められた範囲内にある時のみメータ114を蓄
電池112に接続し、それ以外の時はメータ114を蓄
電池112から切り放すようにスイッチ装置を作動させ
る。この蓄電池残容量表示装置では、電池残容量は、標
準負荷に電流を流し測定された蓄電池の端子電圧を表示
する時と同様の精度でメータに表示できる(特公昭56
−30514号公報)。また、直流を用いる方法でな
く、交流信号を蓄電池の充放電電流波形に重畳させ、求
めたミリオームオーダーのインピーダンスの値より蓄電
池の充電状態を推定する方法も研究されている(クラシ
ミール・ネノフ、ステファン・リプカ、エレクトロケミ
カル・ソサイアティ・プロシーディングス、Vol.9
2−5,P.374)。
(Operation of First Conventional Example) Regarding the storage battery remaining capacity display device of the first conventional example configured as described above,
The operation will be described below. The switch device operating means 120 detects the magnitude of the current supplied from the storage battery 112 to the load 110 with the detector 124 and switches the meter 114 only when the magnitude of the current is within a predetermined range. Otherwise, the switch device is operated to disconnect the meter 114 from the storage battery 112 at other times. In this storage battery remaining capacity display device, the remaining battery capacity can be displayed on a meter with the same accuracy as when a measured current is applied to a standard load and the measured terminal voltage of the storage battery is displayed.
305514). Also, instead of using a DC method, a method of superposing an AC signal on the charge / discharge current waveform of the storage battery and estimating the state of charge of the storage battery from the obtained milliohm-order impedance value has been studied (Kracimir Nenov, Stefan -Lipka, Electrochemical Society Proceedings, Vol. 9
2-5, p. 374).

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、以下に述べる問題点を有していた。たと
えば、直流電流を用いる充放電特性により蓄電池残容量
を推定する場合、電気自動車においては、上り坂と下り
坂或いは平坦地を走行する際に、モータの駆動負荷が異
なり、また、充放電特性にヒステリシスが有るため、蓄
電池残容量が一意的に定まらず、蓄電池の電圧特性のみ
から電池残容量を推定することは困難であった。また、
ハイブリッド自動車の蓄電池の容量は、電気自動車の蓄
電池の容量の1/10程度と小さく、より精度の高い推
定方法が要求されるが、直流を用いる方法ではそれを満
たすことは困難であった。交流信号を充放電電流に重畳
させる場合、直流を用いる場合に比べ、精度よく蓄電池
残容量を推定できることが考えられるが、インバータノ
イズやイグニッションノイズ等の影響により、正確なイ
ンピーダンスの測定が困難であった。また、ハイブリッ
ド電気自動車では、電池の残容量の基準である残容量1
00%に対応する満充電や残容量0%に対応する零充電
のない中間状態で走行し、さらに走行中に充放電を繰り
返すので、電池残容量の絶対基準がない。そのため、電
気自動車の場合と異なり、走行時の蓄電池の電圧特性か
ら電池残容量を推定することは、基本的に困難であっ
た。また、電池の反応抵抗、温度補正やヒステリシスな
どモデルによる定式化が難しく蓄電池残容量をリアルタ
イムに推定することは困難であった。
However, the above configuration has the following problems. For example, when estimating the remaining capacity of the storage battery using charge / discharge characteristics using a direct current, in an electric vehicle, when driving on an uphill and downhill or on a flat ground, the driving load of the motor differs, and Because of the hysteresis, the remaining capacity of the storage battery was not uniquely determined, and it was difficult to estimate the remaining battery capacity only from the voltage characteristics of the storage battery. Also,
The capacity of the storage battery of a hybrid vehicle is as small as about 1/10 of the capacity of the storage battery of an electric vehicle, and a more accurate estimation method is required. However, it has been difficult to satisfy this by a method using direct current. When the AC signal is superimposed on the charge / discharge current, it is considered that the remaining battery capacity can be estimated more accurately than when DC is used.However, accurate impedance measurement is difficult due to the influence of inverter noise and ignition noise. Was. In a hybrid electric vehicle, the remaining capacity 1 which is a reference of the remaining capacity of the battery is 1
Since the vehicle runs in an intermediate state without full charge corresponding to 00% or zero charge corresponding to 0% of the remaining capacity, and charging and discharging are repeated during running, there is no absolute reference for the remaining battery capacity. Therefore, unlike the case of an electric vehicle, it is basically difficult to estimate the remaining battery capacity from the voltage characteristics of the storage battery during traveling. In addition, it is difficult to formulate a model such as battery reaction resistance, temperature correction and hysteresis, and it is difficult to estimate the remaining capacity of the storage battery in real time.

【0006】本発明は上記問題点に鑑み、ハイブリッド
電気自動車など、電池残容量の基準のない状態で充放電
を繰り返す場合においても、蓄電池の電池残容量をリア
ルタイムで精度よく推定することを発明の目的とし、蓄
電池残容量推定方法およびそのシステムを提供するもの
である。
The present invention has been made in view of the above-described problems, and is intended to accurately estimate the remaining battery capacity of a storage battery in real time even when charging and discharging are repeated without a reference for the remaining battery capacity, such as in a hybrid electric vehicle. An object of the present invention is to provide a storage battery remaining capacity estimation method and a system thereof.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
め、本発明の蓄電池残容量推定方法は、負荷に接続され
た蓄電池の充放電時の電圧と電流信号を測定し、測定さ
れた電圧と電流信号を各々周波数領域に写像し、所定の
周波数領域の電圧と電流信号よりインピーダンスの特徴
量を算出し、予め求めたインピーダンスの特徴量と該蓄
電池の残容量との関係式に基づいて、蓄電池残容量を推
定する方法である。
In order to solve the above problems, a method for estimating a remaining capacity of a storage battery according to the present invention measures a voltage and a current signal of a storage battery connected to a load during charging and discharging, and measures the measured voltage. Each current signal is mapped to a frequency domain, and a characteristic amount of an impedance is calculated from a voltage and a current signal in a predetermined frequency region.Based on a relational expression between the characteristic amount of the impedance obtained in advance and the remaining capacity of the storage battery, This is a method for estimating the remaining battery capacity.

【0008】本発明は上記した構成によって、ハイブリ
ッド電気自動車などに用いられている蓄電池の電池残容
量を、充放電の動作中、特に走行中のインピーダンスを
計算し、予め測定しておいた蓄電池の電池残容量のイン
ピーダンスと比較することによって、蓄電池残容量を推
定することとなる。また、動作中のデータなどの負荷
が、特徴となる周波数において動作しない場合には、信
号発生器(充放電電流基準波形生成装置)を用い、蓄電
池残容量の特徴となる所定の周波数の信号を充放電電流
に重畳し、所定の周波数以外の交流信号を除去し、重畳
した周波数のみによるインピーダンスを計算し、予め測
定しておいた蓄電池の電池残容量のインピーダンスと比
較することによって、蓄電池残容量を推定することとな
る。また、走行中または停車中の各充放電電流電圧状態
情報および負荷状態情報を取り込み、実際の運用を通し
て蓄積された経験データに基づく各種事例をアルゴリズ
ムによって予め学習させた知識データを有し、与えられ
る各状態情報を処理して、予め学習させた知識データを
もとに蓄電池残容量を推定することとなる。
According to the present invention, with the above-described configuration, the remaining battery capacity of a storage battery used in a hybrid electric vehicle or the like is calculated during charging / discharging operation, particularly during running, and the impedance of the storage battery is measured beforehand. By comparing with the impedance of the remaining battery capacity, the remaining battery capacity is estimated. When a load such as data during operation does not operate at the characteristic frequency, a signal of a predetermined frequency characteristic of the remaining capacity of the storage battery is generated by using a signal generator (a charge / discharge current reference waveform generation device). By superimposing on the charging / discharging current, removing an AC signal having a frequency other than a predetermined frequency, calculating an impedance based only on the superimposed frequency, and comparing the calculated impedance with the impedance of the remaining battery capacity of the storage battery, which is measured in advance. Will be estimated. In addition, it is provided with knowledge data obtained by preliminarily learning various cases based on empirical data accumulated through actual operation by using various charge / discharge current voltage state information and load state information during traveling or stopping. Each state information is processed, and the remaining capacity of the storage battery is estimated based on knowledge data learned in advance.

【0009】[0009]

【発明の実施の形態】以下本発明の一実施の形態の蓄電
池残容量推定方法およびシステムについて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method and system for estimating a remaining battery capacity according to an embodiment of the present invention will be described below.

【0010】本発明は、(a)負荷に接続された蓄電池
の充放電時の電圧と電流信号を測定し、(b)測定され
た電圧と電流信号を各々周波数領域に複素スペクトルと
して写像し、(c)所定の周波数領域の電圧と電流の複
素スペクトルからインピーダンスとインピーダンス特徴
量を求め、(d)予め求めたインピーダンスの特徴量と
該蓄電池の残容量との関係式に基づいて、上記インピー
ダンス特徴量から、蓄電池残容量を推定する方法から構
成される。
According to the present invention, (a) a voltage and a current signal at the time of charging and discharging of a storage battery connected to a load are measured, and (b) the measured voltage and current signals are respectively mapped as complex spectra in a frequency domain. (C) calculating an impedance and an impedance characteristic amount from a complex spectrum of a voltage and a current in a predetermined frequency region; and (d) determining the impedance characteristic based on a relational expression between the impedance characteristic amount obtained in advance and the remaining capacity of the storage battery. It consists of a method of estimating the remaining battery capacity from the amount.

【0011】予め広い周波数領域で、蓄電池のインピー
ダンスを算出し、虚数部Im(Z(w))と実数部Re
(Z(w))から描かれる1つ又は複数の円の半径と蓄
電池残容量の関係を調べる。これより、特徴量となる円
の半径を求めるとともに、この特徴量を与える交流信号
の周波数を求める。ここで、選択される交流信号は、1
又は2以上が望ましい。
The impedance of the storage battery is calculated in a wide frequency range in advance, and the imaginary part Im (Z (w)) and the real part Re are calculated.
The relationship between the radius of one or more circles drawn from (Z (w)) and the remaining battery capacity is examined. Thus, the radius of the circle serving as the feature value is obtained, and the frequency of the AC signal that provides the feature value is obtained. Here, the selected AC signal is 1
Or two or more are desirable.

【0012】上記測定された電圧と電流信号は、A/D
変換後、周波数変換装置(FFT)により、電圧と電流
を複素スペクトルへとそれぞれ変換される。得られた各
周波数における電圧と電流の値より複素インピーダンス
を算出する。さらに、複素平面上にインピーダンスを表
示することにより、実数部Re(Z(w))と虚数部I
m(Z(w))で描かれる1つ又は複数の円を得る。こ
れより、特徴量である円の半径を算出する。
The measured voltage and current signals are A / D
After the conversion, the voltage and current are respectively converted into complex spectra by a frequency converter (FFT). The complex impedance is calculated from the obtained voltage and current values at each frequency. Further, by displaying the impedance on a complex plane, the real part Re (Z (w)) and the imaginary part I
Obtain one or more circles drawn by m (Z (w)). From this, the radius of the circle, which is the feature amount, is calculated.

【0013】(第1の実施の形態の構成)図1は本発明
の実施の形態における蓄電池残容量推定システムのブロ
ックダイアグラムを示すものである。図1において、1
は負荷、2は電池、5は電圧のA/D変換器、6は電流
のA/D変換器、7は電圧の周波数変換器(FFT:Fa
stFourier Transform)、8は電流の周波数変換器(F
FT)、9は除算演算器、10はインピーダンス計算
部、11は電池残容量計算部、12は電池温度計、13
は電池残容量温度補正部である。
(Configuration of First Embodiment) FIG. 1 is a block diagram of a storage battery remaining capacity estimation system according to an embodiment of the present invention. In FIG. 1, 1
Is a load, 2 is a battery, 5 is a voltage A / D converter, 6 is a current A / D converter, and 7 is a voltage frequency converter (FFT: Fa).
stFourier Transform), 8 is a current frequency converter (F
FT), 9 is a division calculator, 10 is an impedance calculator, 11 is a remaining battery charge calculator, 12 is a battery thermometer, 13
Denotes a battery remaining capacity temperature correction unit.

【0014】以上のように構成された蓄電池残容量推定
システムについて、以下図1、図2及び図3を用いてそ
の動作を説明する。
The operation of the storage battery remaining capacity estimating system configured as described above will be described below with reference to FIGS. 1, 2 and 3.

【0015】(第1の実施の形態の動作)まず、図2は
蓄電池のインピーダンスZ(w)の測定結果を示すもの
である。蓄電池使用時の電圧Vと電流Iの複素スペクト
ルSv(w)、Si(w)を各々求め、その比Sv
(w)/Si(w)を蓄電池のインピーダンスZ(w)と
して計算し、その結果を縦軸を虚数部Im(Z
(w))、横軸を実数部Re(Z(w))として複素平
面上に示す。予め、広い周波数領域で、インピーダンス
を算出し、蓄電池残容量と描かれる円の半径の関係を調
べ、特徴量を与える周波数領域を求める。次に、上記角
周波数W0、W1、---、Wi、---、Wnの実数部Re
(Z(wi))と虚数部Im(Z(wi))から描かれ
る円の大きさから特徴量である半径riを予め求める。
(Operation of the First Embodiment) First, FIG. 2 shows the measurement result of the impedance Z (w) of the storage battery. The complex spectra Sv (w) and Si (w) of the voltage V and the current I when the storage battery is used are obtained, and the ratio Sv
(W) / Si (w) is calculated as the impedance Z (w) of the storage battery, and the ordinate represents the imaginary part Im (Z
(W)), and the horizontal axis is shown on the complex plane as a real part Re (Z (w)). The impedance is calculated in advance in a wide frequency range, the relationship between the remaining capacity of the storage battery and the radius of the drawn circle is examined, and the frequency range in which the characteristic amount is given is obtained. Next, the real part Re of the angular frequencies W0, W1,..., Wi,.
A radius ri, which is a feature quantity, is obtained in advance from the size of a circle drawn from (Z (wi)) and the imaginary part Im (Z (wi)).

【0016】図3は、図2で求めた半径riと蓄電池残
容量の関係の測定結果を示すものである。半径riと蓄
電池残容量の関係を電池残容量計算部11に記憶させて
おく。
FIG. 3 shows the measurement results of the relationship between the radius ri obtained in FIG. 2 and the remaining capacity of the storage battery. The relationship between the radius ri and the remaining battery charge is stored in the remaining battery charge calculator 11.

【0017】次に、本発明の実施の形態における蓄電池
残容量推定システムを、図1のブロックダイアグラムを
用いて説明する。図1において、ハイブリッド電気自動
車などでは、例えば、走行中または停車中にモータなど
の負荷1と蓄電池2で充放電を繰り返しているが、測定
された電圧と電流から、この電圧と電流をデジタル処理
可能とするために、A/D変換器5とA/D変換器6で
デジタル信号に変換する。さらに、電圧の周波数変換器
(FFT:Fast Fourier Transform)7と電流の周波数
変換器(FFT)8で電流と電圧を複素スペクトルに変
換する。求めた蓄電池使用時の電圧Vと電流Iの複素ス
ペクトルSv(w)、Si(w)から、その比Sv
(w)/Si(w)を蓄電池のインピーダンスZ(w)
としてインピーダンス計算部9で計算し、所定の角周波
数W0、W1、---、Wj、---、Wnの実数部Re(Z
(wj))と虚数部Im(Z(wj))の大きさを、充
放電を繰り返す動作中の蓄電池から求める。そして、特
徴量を与える角周波数領域における半径rjを求める。
この半径rjと、予め求めて電池残容量計算部11に記
憶しておいた半径riとを比較し、相互の関係から蓄電
池残容量を計算する。蓄電池残容量の計算は、半径rj
と半径riの差の最小二乗法やスプライン関数を用いて
計算し、残容量を推定する。
Next, a battery remaining capacity estimation system according to an embodiment of the present invention will be described with reference to the block diagram of FIG. In FIG. 1, in a hybrid electric vehicle or the like, for example, charging or discharging is repeated between a load 1 such as a motor and a storage battery 2 while the vehicle is running or stopped, and the voltage and current are digitally processed based on the measured voltage and current. To make it possible, the digital signal is converted by the A / D converter 5 and the A / D converter 6. Further, the current and voltage are converted into a complex spectrum by a voltage frequency converter (FFT: Fast Fourier Transform) 7 and a current frequency converter (FFT) 8. From the obtained complex spectra Sv (w) and Si (w) of the voltage V and the current I when the storage battery is used, the ratio Sv
(W) / Si (w) is the impedance Z (w) of the storage battery
, Wj,..., Wn, and the real part Re (Z) of the predetermined angular frequencies W0, W1,.
(Wj)) and the magnitude of the imaginary part Im (Z (wj)) are obtained from the storage battery that is repeatedly charged and discharged. Then, a radius rj in the angular frequency domain for providing the feature amount is obtained.
The radius rj is compared with the radius ri obtained in advance and stored in the remaining battery capacity calculator 11, and the remaining battery capacity is calculated from the mutual relationship. The calculation of the remaining battery capacity is performed by using the radius rj
Is calculated using the least squares method or the spline function of the difference between the radius and the radius ri, and the remaining capacity is estimated.

【0018】蓄電池残容量は、蓄電池の温度によって変
化するため、12の電池温度計によって電池温度を測定
し、電池残容量温度補正部13で推定した電池残容量を
補正して表示部に表示する。また、ニッケル水素電池な
どの蓄電池においては、同じ電池残容量でもヒステリシ
スがあるため、充電時と放電時では電池残容量の計測値
が異なる。この場合、求める蓄電池使用時の電圧Vと電
流Iの複素スペクトルSv(w)、Si(w)を充電時
のものと放電時のものから、各々充電時のスペクトル比
Sv(w)/Si(w)、放電時のスペクトル比Sv
(w)/Si(w)を蓄電池の充電時インピーダンスZj
(w)、放電時インピーダンスZh(w)としてインピ
ーダンス計算部9で計算し、所定の角周波数W0、W
1、---、Wj、-、Wnの実数部Re(Zj(wj)、Z
h(wj))と虚数部Im(Zj(wj)、Zh(w
j))の大きさを充放電を繰り返す動作中の蓄電池から
求める。以下は、前述と同様の方法によって、充電時の
残容量推定値と放電時の残容量推定値を求め、総合的に
蓄電池残容量を求めることが出来る。
Since the remaining capacity of the storage battery changes depending on the temperature of the storage battery, the battery temperature is measured by the 12 battery thermometers, and the remaining battery capacity estimated by the remaining battery temperature correction unit 13 is corrected and displayed on the display unit. . Also, in a storage battery such as a nickel-metal hydride battery, there is hysteresis even with the same remaining battery capacity, so that the measured value of the remaining battery capacity differs between charging and discharging. In this case, the complex spectrums Sv (w) and Si (w) of the voltage V and the current I when the storage battery is used are determined from those at the time of charging and those at the time of discharging, respectively, and the spectrum ratio Sv (w) / Si ( w), the spectral ratio Sv at the time of discharge
(W) / Si (w) is the impedance Zj when charging the storage battery.
(W), calculated by the impedance calculator 9 as the discharge impedance Zh (w) and given angular frequencies W0, W
1, ---, Wj,-, real part Re (Zj (wj), Z of Wn
h (wj)) and the imaginary part Im (Zj (wj), Zh (w
The magnitude of j)) is obtained from the storage battery during the operation of repeating charge and discharge. Hereinafter, by the same method as described above, the remaining capacity estimation value at the time of charging and the remaining capacity estimation value at the time of discharging can be obtained, and the remaining capacity of the storage battery can be obtained comprehensively.

【0019】以上のように本実施の形態によれば、充放
電を繰り返す蓄電池使用時の電圧Vと電流Iの複素スペ
クトル求め、蓄電池のインピーダンスを計算し、所定の
角周波数wjにおける実数部Re(Z(wj))と虚数部
Im(Z(wj))から描かれる円の大きさから、特徴
量である半径rjを求める。この半径rjと、予め求めて
電池残容量計算部11に記憶しておいた半径riとを比
較し、蓄電池残容量を推定することにより、従来、推定
精度の低かった動作中の電気自動車などの蓄電池残容量
を高い精度で推定することができる。
As described above, according to the present embodiment, the complex spectrum of the voltage V and the current I when the battery is repeatedly charged and discharged is obtained, the impedance of the battery is calculated, and the real part Re () at a predetermined angular frequency wj is calculated. From the size of a circle drawn from Z (wj)) and the imaginary part Im (Z (wj)), a radius rj as a feature amount is obtained. By comparing the radius rj with the radius ri obtained in advance and stored in the remaining battery capacity calculation unit 11, and estimating the remaining battery capacity, it is possible to reduce the estimation accuracy of an operating electric vehicle or the like that has conventionally had a low estimation accuracy. The remaining capacity of the storage battery can be estimated with high accuracy.

【0020】以下本発明の第2の実施の形態について図
面を参照しながら説明する。
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.

【0021】(第2の実施の形態の構成)図4は本発明
の第2の実施の形態における蓄電池残容量推定システム
のブロックダイアグラムを示すものである。図4におい
て、1は負荷、2は電池、3は電圧のノイズ除去装置、
4は電流のノイズ除去装置、5は電圧のA/D変換器、
6は電流のA/D変換器、7は電圧の周波数変換器(F
FT)、8は電流の周波数変換器(FFT)、9は除算
演算部、10はインピーダンス計算部、11は電池残容
量計算部、12は電池温度計、13は電池残容量温度補
正部、14はエンジン部、15は充電器、16は信号発
生器である。
(Configuration of Second Embodiment) FIG. 4 is a block diagram of a storage battery remaining capacity estimation system according to a second embodiment of the present invention. In FIG. 4, 1 is a load, 2 is a battery, 3 is a noise eliminator for voltage,
4 is a current noise removing device, 5 is a voltage A / D converter,
6 is a current A / D converter, 7 is a voltage frequency converter (F
FT), 8 is a current frequency converter (FFT), 9 is a division operation section, 10 is an impedance calculation section, 11 is a remaining battery capacity calculation section, 12 is a battery thermometer, 13 is a remaining battery temperature correction section, 14 Denotes an engine unit, 15 denotes a charger, and 16 denotes a signal generator.

【0022】以上のように構成された蓄電池残容量推定
システムについて、以下図4、図5及び図6を用いてそ
の動作を説明する。
The operation of the storage battery remaining capacity estimating system configured as described above will be described below with reference to FIGS. 4, 5 and 6.

【0023】(第2の実施の形態の動作)まず、第1の
実施の形態と同様、図5は蓄電池のインピーダンスZ
(w)の測定結果を計算し、縦軸を虚数部Im(Z
(w))、横軸を実数部Re(Z(w))として表す。
充放電電圧および電流にインバータノイズやイグニッシ
ョンノイズが多い場合には、所定の周波数以外の交流信
号をノイズ除去装置(3,4)で除去する。所定の角周
波数W0、W1、---、Wi、---、Wnの実数部Re
(Z(wi))と虚数部Im(Z(wi))から描かれる
円の大きさから特徴となる半径riを予め求める。しか
し、動作中のモータなどの負荷が、特徴となる角周波数
において常に動作するとは限らず、図5に示すように、
w0、w1、w2、w3の周波数領域では、データが不
足し、蓄電池残容量を高い精度で推定出来ないことがあ
る。第2の実施例では、蓄電池残容量の特徴量を与える
所定の周波数に対応した信号を動作中の充放電電流に重
畳し、蓄電池残容量の特徴に対応した周波数のインピー
ダンスZ(w)の測定を可能とし、蓄電池残容量を常に
高い精度で推定するものである。
(Operation of the Second Embodiment) First, as in the first embodiment, FIG. 5 shows the impedance Z of the storage battery.
(W) is calculated, and the vertical axis is the imaginary part Im (Z
(W)), and the horizontal axis represents the real part Re (Z (w)).
If the charging / discharging voltage and current include a large amount of inverter noise or ignition noise, AC signals having a frequency other than a predetermined frequency are removed by the noise removing devices (3, 4). Real part Re of predetermined angular frequencies W0, W1, ---, Wi, ---, Wn
A characteristic radius ri is obtained in advance from the size of a circle drawn from (Z (wi)) and the imaginary part Im (Z (wi)). However, a load such as a motor during operation does not always operate at the characteristic angular frequency, and as shown in FIG.
In the frequency ranges of w0, w1, w2, and w3, data may be insufficient, and it may not be possible to estimate the remaining capacity of the storage battery with high accuracy. In the second embodiment, a signal corresponding to a predetermined frequency giving a characteristic amount of the remaining capacity of the storage battery is superimposed on the charging / discharging current during operation, and the impedance Z (w) of the frequency corresponding to the characteristic of the remaining capacity of the storage battery is measured. And the remaining battery capacity is always estimated with high accuracy.

【0024】次に、本発明の第2の実施の形態における
蓄電池残容量推定システムを、図4のブロックダイアグ
ラムを用いて説明する。図4において、ハイブリッド電
気自動車などでは、例えば、モータなどの負荷1、蓄電
池2および充電器14で充放電を繰り返している。蓄電
池の電圧と電流を、ノイズ除去装置を通し、所定の周波
数以外の交流信号を除去し、A/D変換器5とA/D変
換器6で変換した後に、周波数変換器(FFT)7と周
波数変換器(FFT)8で電流と電圧の複素スペクトル
を求め、電圧Vと電流IのスペクトルSv(w)、Si
(w)から、その比Sv(w)/Si(w)を蓄電池の
インピーダンスZ(w)としてインピーダンス計算部1
0で計算する。所定の角周波数W0、W1、---、wj、
---、Wnの実数部Re(Z(wj))と虚数部Im(Z
(wj))の大きさを充放電を繰り返す動作中の蓄電池
から求める。しかし、動作中のモータなどの負荷では、
充放電電流にw0、w1、w2、w3の周波数領域の信
号がない場合がある。そのときは、予め求めて電池残容
量計算部10に記憶してあるw0、w1、w2、w3の
周波数領域の信号がないことを検知し、信号発生器15
にフィードバックして、特徴となる各周波数wjにおけ
る充放電電流を動作中の蓄電池充放電電流に重畳させ
る。図6に充放電電流波形と重畳した正弦波を示した。
このようにして、特徴となる各周波数wjにおけるイン
ピーダンスの実数部Re(Z(wj))と虚数部Im
(Z(wj))が求められる。そして、第1の実施の形
態と同様、特徴量である半径rjを求める。この半径rj
と、予め求めて電池残容量計算部11に記憶しておいた
半径riとを比較し、相互の関係から蓄電池残容量を計
算し、残容量を推定する。
Next, a battery remaining capacity estimating system according to a second embodiment of the present invention will be described with reference to the block diagram of FIG. 4, in a hybrid electric vehicle or the like, for example, charging / discharging is repeated by a load 1, such as a motor, a storage battery 2, and a charger 14. The voltage and current of the storage battery are passed through a noise elimination device to remove an AC signal having a frequency other than a predetermined frequency, and are converted by an A / D converter 5 and an A / D converter 6. The frequency converter (FFT) 8 obtains the complex spectrum of the current and the voltage, and obtains the spectrum Sv (w), Si of the voltage V and the current I.
(W), the ratio Sv (w) / Si (w) is defined as the impedance Z (w) of the storage battery,
Calculate with 0. Predetermined angular frequencies W0, W1, ---, wj,
---, the real part Re (Z (wj)) and the imaginary part Im (Z
The magnitude of (wj)) is obtained from the storage battery during the operation of repeating charge and discharge. However, with a load such as a running motor,
In some cases, the charge / discharge current does not include signals in the frequency range of w0, w1, w2, and w3. At that time, it is detected that there is no signal in the frequency domain of w0, w1, w2, and w3, which is obtained in advance and stored in the remaining battery capacity calculation unit 10, and the signal generator 15
To superimpose the charging / discharging current at each characteristic frequency wj on the operating battery charging / discharging current. FIG. 6 shows a sine wave superimposed on the charge / discharge current waveform.
In this way, the real part Re (Z (wj)) and the imaginary part Im of the impedance at each characteristic frequency wj
(Z (wj)) is obtained. Then, similarly to the first embodiment, a radius rj which is a feature amount is obtained. This radius rj
Is compared with the radius ri obtained in advance and stored in the remaining battery capacity calculation unit 11, the remaining battery capacity is calculated from the mutual relationship, and the remaining capacity is estimated.

【0025】以上のように本実施の形態によれば、充放
電を繰り返す蓄電池使用時の電圧Vと電流Iの複素スペ
クトルを、所定周波数以外の交流信号を除去した後に求
め、蓄電池のインピーダンスを計算し、所定の角周波数
wjにおける実数部Re(Z(wj))と虚数部Im(Z
(wj))から描かれる円の大きさから、特徴量である
半径rjを求める。この半径rjと、予め求めて電池残容
量計算部11に記憶しておいた半径riとを比較し、蓄
電池残容量を推定することにより、従来、推定精度の低
かった動作中のハイブリッド電気自動車などの蓄電池残
容量を高い精度で推定することができる。
As described above, according to the present embodiment, the complex spectrum of the voltage V and the current I at the time of using the storage battery which repeats charging and discharging is obtained after removing the AC signal other than the predetermined frequency, and the impedance of the storage battery is calculated. Then, the real part Re (Z (wj)) and the imaginary part Im (Z) at a predetermined angular frequency wj
From the size of the circle drawn from (wj)), a radius rj, which is a feature quantity, is obtained. By comparing the radius rj with the radius ri obtained in advance and stored in the remaining battery capacity calculation unit 11, and estimating the remaining battery capacity, an operating hybrid electric vehicle or the like that has conventionally had a low estimation accuracy can be obtained. Can be estimated with high accuracy.

【0026】以下本発明の第3の実施の形態について図
面を参照しながら説明する。
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.

【0027】(第3の実施の形態の構成)図7は本発明
の第3の実施の形態における蓄電池残容量推定システム
のブロックダイアグラムを示すものである。図7におい
て、1は負荷、2は電池、15は充電器、16は信号発
生器、17は電池残容量推定部、18は入力手段、19
は演算部、20は出力手段、12は電池温度計、21は
電池残容量表示部である。
(Configuration of Third Embodiment) FIG. 7 is a block diagram showing a storage battery remaining capacity estimation system according to a third embodiment of the present invention. In FIG. 7, 1 is a load, 2 is a battery, 15 is a charger, 16 is a signal generator, 17 is a battery remaining capacity estimating unit, 18 is input means, 19
Denotes an arithmetic unit, 20 denotes an output unit, 12 denotes a battery thermometer, and 21 denotes a battery remaining capacity display unit.

【0028】以上のように構成された蓄電池残容量推定
システムについて、以下図7、図8及び図9を用いてそ
の動作を説明する。 (第3の実施の形態の動作)第3の実施の形態では、推
定部にニューラルネットワークを用いる場合について説
明する。まず、第2の実施の形態と同様に、負荷1、電
池2、充電器15、信号発生器16、電池温度計12な
どから、推定のための演算に必要な情報(必要に応じ
て、自動車のアクセル開度や登坂、降坂などの情報も)
を状態情報として、電池残容量推定部17の入力手段1
8に入力する。この状態情報をベクトルで表す。このベ
クトル量がニューラルネットワークなどの演算部19の
入力情報となる。ニューラルネットワークなどの演算部
19は、たとえば、図8に示すような多層構造のモデル
を想定する。入力信号は、入力層から中間層を経て、出
力層へと伝搬する。いま、入力情報中に、登坂中に加速
し、電池残容量がたとえば40%を切っていたとすれ
ば、発電機を全開にして、蓄電池2と負荷1に十分な電
流量を供給したいとする。学習は、望みの出力(教師デ
ータ)と、今出てきた出力の誤差が零になるように、バ
ックプロパゲーション(BP:逆伝搬)法によりシナプ
ス結合の値を変える。BPの場合は、出力層から入力層
へと逆方向にシナプス結合の値を変えていく。このプロ
セスを、全ての入力情報、たとえば、蓄電池温度、アク
セル開度、充放電の各状態について望ましい出力が得ら
れるようになるまで繰り返す。考えられる全ての入力情
報について、教師データとNN(ニューラルネットワー
ク)出力との誤差が許容値以下となるような望ましい出
力が得られるようになれば学習は終了する。
The operation of the storage battery remaining capacity estimating system configured as described above will be described below with reference to FIGS. 7, 8 and 9. (Operation of Third Embodiment) In the third embodiment, a case where a neural network is used for the estimating unit will be described. First, similarly to the second embodiment, information necessary for an operation for estimation (e.g., an automobile, if necessary) is obtained from the load 1, the battery 2, the charger 15, the signal generator 16, the battery thermometer 12, and the like. Information on accelerator opening, climbing, descending, etc.)
Input means 1 of the remaining battery capacity estimating unit 17
Enter 8 This state information is represented by a vector. This vector amount becomes input information of the arithmetic unit 19 such as a neural network. The arithmetic unit 19 such as a neural network assumes a multi-layer structure model as shown in FIG. 8, for example. The input signal propagates from the input layer to the output layer via the intermediate layer. Now, assuming that the input information accelerates while climbing a hill and the remaining battery capacity is less than, for example, 40%, it is assumed that the generator is fully opened to supply a sufficient amount of current to the storage battery 2 and the load 1. In the learning, the value of the synaptic connection is changed by the back propagation (BP: back propagation) method so that the error between the desired output (teacher data) and the output that has just come out becomes zero. In the case of BP, the value of the synaptic connection is changed in the reverse direction from the output layer to the input layer. This process is repeated until a desired output is obtained for all the input information, for example, the battery temperature, the accelerator opening, and the charge / discharge state. For all possible input information, learning ends when a desired output is obtained such that the error between the teacher data and the NN (Neural Network) output is equal to or less than an allowable value.

【0029】図9に蓄電池の電池残容量と開放電圧との
関係を示した。図に示すように、電池残容量に対する開
放電圧の差は、電池残容量80〜20%でほとんどな
く、単純な状態情報を入力情報とするのでは十分な精度
の電池残容量推定は困難である。第2の実施の形態と同
様に、たとえば、図5に示す蓄電池のインピーダンスZ
(w)の測定結果を計算し、所定の角周波数W0、W
1、---、Wi、---、Wnの実数部Re(Z(wi))と
虚数部Im(Z(wi))から描かれる円の大きさから
特徴量である半径riを予め求める。そして、蓄電池残
容量の特徴量を与える所定の角周波数に対応した信号を
動作中の充放電電流に重畳し、蓄電池残容量の特徴に対
応した周波数のインピーダンスZ(w)の測定を可能と
し、ニューラルネットワーク演算の入力情報ベクトル量
の一部とする。
FIG. 9 shows the relationship between the remaining battery capacity of the storage battery and the open circuit voltage. As shown in the figure, the difference between the open voltage and the remaining battery capacity is almost 80% to 20% of the remaining battery capacity, and it is difficult to estimate the remaining battery capacity with sufficient accuracy by using simple state information as input information. . As in the second embodiment, for example, the impedance Z of the storage battery shown in FIG.
The measurement result of (w) is calculated, and predetermined angular frequencies W0 and W
The radius ri which is a feature quantity is obtained in advance from the size of a circle drawn from the real part Re (Z (wi)) and the imaginary part Im (Z (wi)) of 1, ---, Wi, ---, Wn. . Then, a signal corresponding to a predetermined angular frequency that gives the characteristic amount of the storage battery remaining capacity is superimposed on the charging / discharging current during operation, and the impedance Z (w) of the frequency corresponding to the characteristic of the storage battery remaining capacity can be measured. Let it be a part of the input information vector amount of the neural network operation.

【0030】次に、本発明の第3の実施の形態における
蓄電池残容量推定システムを、図7のブロックダイアグ
ラムを用いて説明する。図7において、ハイブリッド電
気自動車などでは、例えば、モータなどの負荷1、蓄電
池2および充電器15で充放電を繰り返している。負荷
1、電池2、充電器15、信号発生器16、電池温度計
12などから、推定のための演算に必要な情報(必要に
応じて、自動車のアクセル開度や登坂、降坂などの情報
も)を状態情報として、電池残容量推定部17の入力手
段18に入力する。また、第2の実施の形態と同様に、
蓄電池の電圧と電流を、ノイズ除去装置を通し、所定の
周波数以外の交流信号を除去し、入力手段18に設けた
A/D変換器で変換した後に、周波数変換器で電流と電
圧の複素スペクトルを求め、電圧Vと電流Iの複素スペ
クトルSv(w)、Si(w)から、その比Sv(w)
/Si(w)を蓄電池のインピーダンスZ(w)として
入力手段18で求める。所定の角周波数W0、W1、--
-、Wj、---、Wnの実数部Re(Z(wj))と虚数部
Im(Z(wj))の大きさを充放電を繰り返す動作中
の蓄電池から求める。しかし、動作中のモータなどの負
荷では、充放電電流にw0、w1、w2、w3の周波数
領域の信号がない場合がある。そのときは、特徴量を与
える各周波数wjにおける充放電電流を動作中の蓄電池
充放電電流に重畳させる。このようにして、各周波数w
jにおけるインピーダンスの実数部Re(Z(wj))と
虚数部Im(Z(wj))が求められる。そして、第2
の実施の形態と同様、特徴量である半径rjを求める。
この半径rjを、ニューラルネットワーク演算の入力情
報ベクトル量の一部とする。考えられる全ての入力情報
に対して、望ましい出力が得られる。求められた出力で
ある電池残容量を出力手段20から出力する。
Next, a storage battery remaining capacity estimation system according to a third embodiment of the present invention will be described with reference to the block diagram of FIG. 7, in a hybrid electric vehicle or the like, for example, charge / discharge is repeated by a load 1, such as a motor, a storage battery 2, and a charger 15. From the load 1, the battery 2, the charger 15, the signal generator 16, the battery thermometer 12, and the like, information necessary for the calculation for the estimation (information such as the accelerator opening degree of the vehicle, climbing, descending, etc., as necessary) ) Is input to the input means 18 of the remaining battery capacity estimating unit 17 as state information. Also, as in the second embodiment,
The voltage and the current of the storage battery are passed through a noise eliminator to remove an AC signal having a frequency other than a predetermined frequency, and are converted by an A / D converter provided in the input means 18. Then, the complex spectrum of the current and the voltage is converted by the frequency converter. From the complex spectra Sv (w) and Si (w) of the voltage V and the current I, and the ratio Sv (w)
/ Si (w) is obtained by the input means 18 as the impedance Z (w) of the storage battery. Predetermined angular frequencies W0, W1,-
The magnitudes of the real part Re (Z (wj)) and the imaginary part Im (Z (wj)) of-, Wj, ..., Wn are obtained from the storage battery that is repeatedly charged and discharged. However, in the case of a load such as an operating motor, the charge / discharge current may not have a signal in the frequency range of w0, w1, w2, and w3. At that time, the charge / discharge current at each frequency wj that gives the characteristic amount is superimposed on the active battery charge / discharge current. Thus, each frequency w
The real part Re (Z (wj)) and the imaginary part Im (Z (wj)) of the impedance at j are obtained. And the second
In the same manner as in the embodiment, the radius rj, which is the feature amount, is obtained.
This radius rj is used as a part of the input information vector amount for the neural network operation. Desired outputs are obtained for all possible input information. The output means 20 outputs the obtained remaining battery capacity.

【0031】以上のように本実施の形態によれば、充放
電を繰り返す蓄電池使用時の電圧Vと電流Iの複素スペ
クトル求め、蓄電池のインピーダンスを計算し、所定の
角周波数域wjにおける実数部Re(Z(wj))と虚数
部Im(Z(wj))から描かれる円の大きさから、特
徴量である半径rjを求める。この半径rjを、ニューラ
ルネットワーク演算の入力情報ベクトル量の一部とす
る。全ての入力情報、たとえば、蓄電池温度、アクセル
開度、充放電の各状態について望ましい出力が得られる
ようになるまで繰り返す。考えられる全ての入力情報に
ついて、望ましい出力が得られるようになれば学習は終
了する。予め求めて電池残容量計算部11に記憶してお
いた半径riとを比較し、蓄電池残容量を推定すること
により、従来、推定精度の低かった動作中のハイブリッ
ド電気自動車などの蓄電池残容量を高い精度で推定する
ことがができる。
As described above, according to the present embodiment, the complex spectrum of the voltage V and the current I when the battery is repeatedly charged and discharged is obtained, the impedance of the battery is calculated, and the real part Re in a predetermined angular frequency range wj is calculated. From the size of a circle drawn from (Z (wj)) and the imaginary part Im (Z (wj)), a radius rj which is a feature amount is obtained. This radius rj is used as a part of the input information vector amount for the neural network operation. This is repeated until desired output can be obtained for all input information, for example, storage battery temperature, accelerator opening, and charging / discharging states. Learning is completed when desired output can be obtained for all conceivable input information. By comparing the calculated remaining radius with the radius ri previously obtained and stored in the remaining battery capacity calculator 11, the remaining battery capacity of an operating hybrid electric vehicle or the like, which has conventionally been estimated with low accuracy, can be calculated. It can be estimated with high accuracy.

【0032】なお、第1の実施の形態において、特徴量
を与える所定の角周波数wjにおけるインピーダンスの
実数部Re(Z(wj))と虚数部Im(Z(wj))か
ら描かれる円の大きさから半径rjを求め、予め求めて
電池残容量計算部に記憶しておいた半径riとを比較
し、蓄電池残容量を推定するとしたが、特徴量である半
径riは複素インピーダンス、複素インピーダンスの絶
対値、複数の複素インピーダンスの絶対値としてもよ
い。また、特徴量が円を描く1つまたは複数の複素イン
ピーダンスの円の中心座標と絶対値、円を描く1つまた
は複数の複素インピーダンスの円の中心座標、円を描く
1つまたは複数の複素インピーダンスの円の交点座標と
複素インピーダンスの絶対値としてもよい。
In the first embodiment, the size of the circle drawn from the real part Re (Z (wj)) and the imaginary part Im (Z (wj)) of the impedance at a predetermined angular frequency wj giving the characteristic amount. From the above, the radius rj is obtained, and the obtained value is compared with the radius ri previously obtained and stored in the battery remaining capacity calculation unit to estimate the storage battery remaining capacity. It may be an absolute value or an absolute value of a plurality of complex impedances. In addition, the center coordinate and absolute value of one or a plurality of complex impedance circles in which the feature quantity draws a circle, the center coordinate of one or more complex impedance circles in which one or more complex impedances draw a circle, one or more complex impedances in which a circle is drawn And the absolute value of the complex impedance of the circle.

【0033】また、第2の実施の形態では、正弦波の充
放電電流基準波形と充放電電流波形とを重畳し求めた蓄
電池の走行中のインピーダンスの特徴量を比較し、蓄電
池残容量を推定するとしたが、正弦波の充放電電流基準
波形は矩形波、鋸歯状波としてもよい。また、第2の実
施の形態では、正弦波の充放電電流基準波形と充放電電
流波形とを重畳し求めた蓄電池の走行中のインピーダン
スの特徴量を比較し、蓄電池残容量を推定するとした
が、走行中及び停車中に充放電電流波形と正弦波の充放
電電流基準波形とを重畳してもよい。さらに、正弦波の
充放電電流基準波形が、複数の異なる周波数の正弦波で
あり、順次、各周波数の正弦波を充放電電流波形と重畳
してもよい。
In the second embodiment, the characteristic value of the impedance of the storage battery during running obtained by superimposing the charge / discharge current reference waveform of the sine wave and the charge / discharge current waveform is compared to estimate the remaining capacity of the storage battery. However, the sinusoidal charge / discharge current reference waveform may be a rectangular wave or a sawtooth wave. Further, in the second embodiment, the storage battery remaining capacity is estimated by comparing the characteristic amount of the impedance during running of the storage battery obtained by superimposing the charge / discharge current reference waveform of the sine wave and the charge / discharge current waveform. Alternatively, the charge / discharge current waveform and the sinusoidal charge / discharge current reference waveform may be superimposed during running and stopping. Further, the charge / discharge current reference waveform of the sine wave may be a sine wave of a plurality of different frequencies, and the sine waves of each frequency may be sequentially superimposed on the charge / discharge current waveform.

【0034】また、第3の実施の形態では、特徴量であ
る半径rjを、ニューラルネットワーク演算の入力情報
ベクトル量の一部とし、蓄電池残容量を推定するとした
が、蓄電池残容量を推定する推定部がファジー推論や重
回帰演算を用いてもよい。
In the third embodiment, the remaining capacity of the storage battery is estimated by using the radius rj, which is a feature quantity, as a part of the input information vector quantity of the neural network operation. The unit may use fuzzy inference or multiple regression calculation.

【0035】[0035]

【発明の効果】以上のように本発明は、蓄電池と該蓄電
池に接続された負荷で構成された装置に接続する蓄電池
残容量推定方法およびシステムであって、予め求めた各
蓄電池残容量に対応する各温度、各充放電電流、走行状
態に応じた蓄電池のインピーダンスの特徴量と、走行中
に求めた蓄電池のインピーダンスの特徴量を比較し、蓄
電池残容量を推定することにより、従来、推定精度の低
かった走行中に充放電を繰り返すハイブリッド電気自動
車などの絶対基準がない蓄電池残容量を高い精度で推定
することができる。また、充放電特性にヒステリシスが
有るため、蓄電池残容量が一意的に定まらず、また、電
池の反応抵抗、温度補正やヒステリシスなどモデルによ
る定式化が難しくリアルタイムに推定することは困難で
あった蓄電池残容量を高い精度で推定することができ
る。
As described above, the present invention relates to a method and a system for estimating the remaining capacity of a storage battery connected to a device comprising a storage battery and a load connected to the storage battery. By comparing the characteristic value of the impedance of the storage battery according to each temperature, each charging / discharging current, and the traveling state with the characteristic amount of the impedance of the storage battery obtained during traveling, and estimating the remaining capacity of the storage battery, the estimation accuracy has been conventionally known. It is possible to highly accurately estimate the remaining capacity of the storage battery that has no absolute reference, such as a hybrid electric vehicle that repeatedly charges and discharges while traveling. In addition, since there is hysteresis in the charge / discharge characteristics, the remaining capacity of the storage battery cannot be uniquely determined. The remaining capacity can be estimated with high accuracy.

【0036】図10は、蓄電池残容量を従来の標準負荷
に電流を流し測定された蓄電池の端子電圧を表示する場
合の測定値(A)と、ニューラルネットワーク演算用い
て蓄電池残容量を推定したときの測定値(B)を示し
た。従来の測定値(A)では、推定精度は低く、動作中
のハイブリッド電気自動車などの蓄電池残容量を推定す
ることが困難であるのに対して、特徴量によるニューラ
ルネットワーク演算を用いて推定したときの測定値
(B)では、高い精度で推定することができる。
FIG. 10 shows a measured value (A) when a current is applied to a conventional standard load to display the terminal voltage of the storage battery, and the remaining battery capacity is estimated using neural network calculations. (B) is shown. With the conventional measurement value (A), the estimation accuracy is low, and it is difficult to estimate the remaining battery capacity of an operating hybrid electric vehicle or the like. Can be estimated with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態における蓄電池残
容量推定システムのブロックダイアグラムである。
FIG. 1 is a block diagram of a storage battery remaining capacity estimation system according to a first embodiment of the present invention.

【図2】 第1の実施の形態における動作説明のための
蓄電池残容量推定システムのインピーダンス測定結果を
示している。
FIG. 2 shows an impedance measurement result of the storage battery remaining capacity estimation system for explaining the operation in the first embodiment.

【図3】 第1の実施の形態における蓄電池残容量と特
徴量であるインピーダンスの測定結果を示している。
FIG. 3 shows a measurement result of a remaining capacity of a storage battery and an impedance which is a feature amount in the first embodiment.

【図4】 本発明の第2の実施の形態における蓄電池残
容量推定システムのブロックダイアグラムである。
FIG. 4 is a block diagram of a storage battery remaining capacity estimation system according to a second embodiment of the present invention.

【図5】 第2の実施の形態における蓄電池残容量と特
徴量のインピーダンス測定結果を示している。
FIG. 5 shows a result of impedance measurement of a storage battery remaining capacity and a feature quantity in the second embodiment.

【図6】 正弦波を重畳した充放電電流波形を示してい
る。
FIG. 6 shows a charge / discharge current waveform on which a sine wave is superimposed.

【図7】 本発明の第3の実施の形態における蓄電池残
容量推定システムのブロックダイアグラムを示してい
る。
FIG. 7 shows a block diagram of a storage battery remaining capacity estimation system according to a third embodiment of the present invention.

【図8】 多層構造(入力層、中間層、出力層の3層構
造)のニューラルネットワーク演算部を示している。
FIG. 8 shows a neural network operation unit having a multilayer structure (three-layer structure including an input layer, an intermediate layer, and an output layer).

【図9】 蓄電池の電池残容量と開放電圧との関係図で
ある。
FIG. 9 is a relationship diagram between the remaining battery capacity of the storage battery and the open circuit voltage.

【図10】 蓄電池残容量を従来の標準負荷に電流を流
し測定された蓄電池の端子電圧を表示する場合の測定値
(A)と、ニューラルネットワーク演算用いて蓄電池残
容量を推定したときの測定値(B)を示している。
FIG. 10 shows a measured value (A) when a current is applied to a conventional standard load to display the terminal voltage of a storage battery and a measured value when the remaining battery capacity is estimated by using a neural network operation. (B) is shown.

【図11】 第1の従来例の蓄電池残容量表示装置を示
している。
FIG. 11 shows a storage battery remaining capacity display device of a first conventional example.

【符号の説明】[Explanation of symbols]

1 負荷 2 電池 3 電圧のノイズ除去装置 4 電流のノイズ除去装置 5 電圧のA/D変換器 6 電流のA/D変換器 7 電圧の周波数変換器(FFT:Fast Fourier Trans
form) 8 電流の周波数変換器(FFT) 9 除算演算器 10 インピーダンス計算部 11 電池残容量計算部 12 電池温度計 13 電池残容量温度補正部 14 エンジン部 15 充電器 16 信号発生器 17 電池残容量推定部 18 入力手段 19 ニューラルネットワークなどの演算部 20 出力手段 21 電池残容量表示部
DESCRIPTION OF SYMBOLS 1 Load 2 Battery 3 Voltage noise eliminator 4 Current noise eliminator 5 Voltage A / D converter 6 Current A / D converter 7 Voltage frequency converter (FFT: Fast Fourier Transformer)
form) 8 Current frequency converter (FFT) 9 Division calculator 10 Impedance calculator 11 Battery remaining capacity calculator 12 Battery thermometer 13 Battery remaining capacity temperature correction unit 14 Engine unit 15 Charger 16 Signal generator 17 Battery remaining capacity Estimation unit 18 Input unit 19 Operation unit such as neural network 20 Output unit 21 Battery remaining capacity display unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 広隆 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hirotaka Ishihara 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 (a)負荷に接続された蓄電池の充放電
時の電圧と電流信号を測定し、 (b)測定された電圧と電流信号を各々周波数領域に複
素スペクトルとして写像し、 (c)所定の周波数領域の電圧と電流の複素スペクトル
からインピーダンスとインピーダンスの特徴量を求め、 (d)予め求めたインピーダンスの特徴量と該蓄電池の
残容量との関係式に基づいて、 上記インピーダンスの特徴量から、蓄電池残容量を推定
することを特徴とする作動中の蓄電池の残容量推定方
法。
(A) measuring voltage and current signals during charging and discharging of a storage battery connected to a load; (b) mapping the measured voltage and current signals as complex spectra in the frequency domain, respectively; And (d) calculating impedance and impedance characteristic amounts from complex spectra of voltage and current in a predetermined frequency region; and (d) determining impedance characteristics based on a relational expression between the previously determined impedance characteristic amounts and the remaining capacity of the storage battery. A method for estimating a remaining capacity of an operating storage battery, comprising estimating a remaining capacity of the storage battery from the amount.
【請求項2】 インピーダンスの特徴量が、複素平面上
で周波数をパラメータとしてインピーダンスをプロット
した時、所定の周波数域で描かれる1つ又は複数の円の
半径であることを特徴とする請求項1記載の蓄電池残容
量推定方法。
2. The method according to claim 1, wherein the characteristic quantity of the impedance is a radius of one or more circles drawn in a predetermined frequency range when the impedance is plotted on a complex plane using frequency as a parameter. The remaining battery capacity estimation method described in the above.
【請求項3】 インピーダンスの特徴量を与える1kH
z以下の1又は2つ以上の周波数の異なる交流信号を、
蓄電池の充放電電流に重畳することを特徴とする請求項
1記載の蓄電池残容量推定方法。
3. 1 kHz for providing a characteristic amount of impedance
An AC signal having one or more different frequencies equal to or less than z,
2. The method according to claim 1, wherein the method is superimposed on the charge / discharge current of the storage battery.
【請求項4】 インピーダンス特徴量を与える以外の交
流信号をノイズ除去装置により除去することを特徴とす
る請求項1記載の蓄電池残容量推定方法。
4. The method for estimating a remaining capacity of a storage battery according to claim 1, wherein an AC signal other than providing an impedance characteristic amount is removed by a noise removing device.
【請求項5】 各蓄電池残容量に対応する各温度、各充
放電電流、走行状態に応じたインピーダンスの特徴量と
各蓄電池残容量の間の関係式を予め求め、走行中に求め
た充電時及び放電時の蓄電池のインピーダンスの特徴量
より、ニューラルネットワーク、ファジー理論あるいは
重回帰演算を用いて、蓄電池残容量を推定することを特
徴とする請求項1記載の残容量推定方法。
5. A relational expression between a characteristic amount of impedance corresponding to each temperature, each charge / discharge current, and a running state and a remaining capacity of each storage battery corresponding to each remaining capacity of the storage battery, and a charging time obtained during the running. 2. The remaining capacity estimation method according to claim 1, wherein the remaining capacity of the storage battery is estimated using a neural network, fuzzy logic, or multiple regression calculation from the characteristic amount of the impedance of the storage battery at the time of discharging.
【請求項6】 蓄電池と該蓄電池に接続された負荷、電
圧測定装置と電流測定装置、電圧と電流をそれぞれ周波
数変換する装置、蓄電池残容量推定手段からなり、上記
推定装置には、該蓄電池の両端の電圧測定手段、該蓄電
池に流れる電流測定手段を接続し、該電圧測定手段と該
電流測定手段で測定された電圧と電流を各々周波数領域
に写像する手段と、写像された電圧と電流からインピー
ダンスを計算する手段、該インピーダンスから蓄電池残
容量を推定する手段で構成される蓄電池残容量推定シス
テム。
6. A storage battery and a load connected to the storage battery, a voltage measuring device and a current measuring device, a device for frequency-converting the voltage and the current, respectively, and a storage battery remaining capacity estimating means. Voltage measuring means at both ends, means for connecting the current measuring means flowing to the storage battery, means for mapping the voltage and current measured by the voltage measuring means and the current measuring means to the frequency domain, respectively, from the mapped voltage and current A storage battery remaining capacity estimation system comprising means for calculating impedance and means for estimating remaining battery capacity from the impedance.
【請求項7】 蓄電池の両端に接続された電圧測定手段
と電流測定手段で測定された電圧と電流をノイズ除去装
置を用い、インピーダンスの特徴量を与える以外の周波
数成分を除去する手段と充放電電流基準波形生成装置で
生成させた充放電電流基準波形に応じて周波数領域に写
像し、写像された電圧と電流からインピーダンスを計算
する手段を有することを特徴とする請求項6記載の蓄電
池残容量推定システム。
7. A means for removing a frequency component other than providing a characteristic amount of impedance by using a noise removing device for a voltage and a current measured by voltage measuring means and a current measuring means connected to both ends of a storage battery, and charging and discharging. 7. The storage battery according to claim 6, further comprising means for mapping in a frequency domain according to the charge / discharge current reference waveform generated by the current reference waveform generation device, and calculating impedance from the mapped voltage and current. Estimation system.
【請求項8】 ノイズ除去装置が、バンドパスフィルタ
ーであることを特徴とする請求項7記載の蓄電池残容量
推定システム。
8. The system according to claim 7, wherein the noise removing device is a band-pass filter.
【請求項9】 電圧と電流をそれぞれ周波数変換する
時、A/D変換器と周波数変換器(FFT)を用いるこ
とを特徴とする請求項7記載の蓄電池残容量推定システ
ム。
9. The storage battery remaining capacity estimation system according to claim 7, wherein an A / D converter and a frequency converter (FFT) are used when frequency-converting the voltage and the current, respectively.
【請求項10】 インピーダンス特徴量を与える周波数
領域の信号がないことを検知し、該特徴量を与える周波
数に対応する信号を、充放電電流基準波形生成装置を用
いて充放電電流に重畳することを特徴とする請求項7記
載の蓄電池残容量推定システム。
10. Detecting the absence of a signal in a frequency domain that provides an impedance feature, and superimposing a signal corresponding to the frequency that provides the feature on a charge / discharge current using a charge / discharge current reference waveform generator. The storage battery remaining capacity estimation system according to claim 7, characterized in that:
【請求項11】 蓄電池残容量推定手段が、各充放電電
流電圧情報および負荷状態情報を取り込む入力手段と、
実際の運用を通して蓄積された経験データに基づく蓄電
池残容量を推定するための各種事例をアルゴリズムによ
って予め学習させた知識データを有し、この知識データ
をもとに前記入力手段より与えられる各情報を処理して
前記蓄電池残容量を推定する推定部と、この蓄電池残容
量推定部により推定された出力値に応じて発電機に指示
情報を与える出力手段とを備えたことを特徴とする請求
項6記載の蓄電池残容量推定システム。
11. An input means for inputting charge / discharge current / voltage information and load state information to the storage battery remaining capacity estimating means,
It has knowledge data in which various cases for estimating the remaining battery capacity based on the experience data accumulated through actual operation are learned in advance by an algorithm, and based on this knowledge data, each information provided from the input unit is obtained. 7. An estimating unit for performing processing to estimate the remaining battery capacity, and output means for providing instruction information to the generator according to the output value estimated by the remaining battery capacity estimating unit. A storage battery remaining capacity estimation system according to the above.
JP18489097A 1997-07-10 1997-07-10 Method and apparatus for estimating residual capacity of storage battery Pending JPH1132442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18489097A JPH1132442A (en) 1997-07-10 1997-07-10 Method and apparatus for estimating residual capacity of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18489097A JPH1132442A (en) 1997-07-10 1997-07-10 Method and apparatus for estimating residual capacity of storage battery

Publications (1)

Publication Number Publication Date
JPH1132442A true JPH1132442A (en) 1999-02-02

Family

ID=16161113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18489097A Pending JPH1132442A (en) 1997-07-10 1997-07-10 Method and apparatus for estimating residual capacity of storage battery

Country Status (1)

Country Link
JP (1) JPH1132442A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156248A (en) * 1998-11-19 2000-06-06 Korea Kumho Petrochem Co Ltd Characteristic factor digitizing method of electricity accumulating device using nonlinear equivalent circuit mode, and device therefor
KR20030013215A (en) * 2001-08-07 2003-02-14 주식회사 맥사이언스 Capacity Prediction and Screening Method of Battery Using Transient Response Function
KR100411865B1 (en) * 2001-08-16 2003-12-18 금호석유화학 주식회사 method to obtain performance of electrochemical power sources by multi-dimensional correlation of experimental observables
US7583059B2 (en) 2003-12-18 2009-09-01 Lg Chem, Ltd. Apparatus and method for estimating state of charge of battery using neural network
JP2010519691A (en) * 2007-04-20 2010-06-03 杭州高特電子設備有限公司 Expert diagnostic method for analyzing storage battery performance.
JP2011038857A (en) * 2009-08-07 2011-02-24 Sanyo Electric Co Ltd Capacity maintenance ratio determination device, battery system and electric vehicle provided with the same
US7965059B2 (en) * 2005-11-30 2011-06-21 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery parameter vector
US7969120B2 (en) 2003-11-20 2011-06-28 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
EP2472277A3 (en) * 2003-06-27 2012-10-17 The Furukawa Electric Co., Ltd. Method and device for measuring secondary cell internal impedance and judging deterioration
US8341449B2 (en) 2010-04-16 2012-12-25 Lg Chem, Ltd. Battery management system and method for transferring data within the battery management system
JP2013519893A (en) * 2010-02-17 2013-05-30 イエフペ エネルジ ヌヴェル In-situ battery diagnostic method by electrochemical impedance spectroscopy
KR101288647B1 (en) * 2011-01-13 2013-07-22 요코가와 덴키 가부시키가이샤 Secondary battery tester, secondary battery testing method, and manufacturing method of secondary battery
US8519675B2 (en) 2008-01-30 2013-08-27 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery cell module state
FR3002325A1 (en) * 2013-02-21 2014-08-22 Renault Sa IMPEDANCE ESTIMATION OF A MOTOR VEHICLE BATTERY
US8859119B2 (en) 2011-06-30 2014-10-14 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974928B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974929B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8993136B2 (en) 2011-06-30 2015-03-31 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
JP2015081800A (en) * 2013-10-21 2015-04-27 カルソニックカンセイ株式会社 Battery parameter estimation device and method
US9067504B1 (en) 2014-01-14 2015-06-30 Ford Global Technologies, Llc Perturbative injection for battery parameter identification
US9134381B2 (en) 2011-07-08 2015-09-15 International Busines Machines Corporation Predicting state of a battery
CN108535652A (en) * 2018-02-07 2018-09-14 丽水博远科技有限公司 Method based on charging response measurement rechargeable battery remaining capacity
JP2020021592A (en) * 2018-07-31 2020-02-06 トヨタ自動車株式会社 Battery information processing system, secondary battery capacity estimation method, assembled battery, and manufacturing method of assembled battery
JP2020020604A (en) * 2018-07-30 2020-02-06 トヨタ自動車株式会社 Battery data processing system, estimation method for secondary battery capacity, battery pack and method for manufacturing the battery pack
JP2020041917A (en) * 2018-09-11 2020-03-19 プライムアースEvエナジー株式会社 Battery state measuring method and battery state measuring device
CN111164822A (en) * 2017-07-25 2020-05-15 株式会社半导体能源研究所 Power storage system, electronic device, vehicle, and estimation method
CN113764749A (en) * 2021-08-31 2021-12-07 东风商用车有限公司 Power management method and system for vehicle-mounted storage battery
WO2024046569A1 (en) * 2022-09-01 2024-03-07 Hitachi Energy Ltd Method for monitoring the status of a plurality of battery cells in an energy storage system

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156248A (en) * 1998-11-19 2000-06-06 Korea Kumho Petrochem Co Ltd Characteristic factor digitizing method of electricity accumulating device using nonlinear equivalent circuit mode, and device therefor
KR20030013215A (en) * 2001-08-07 2003-02-14 주식회사 맥사이언스 Capacity Prediction and Screening Method of Battery Using Transient Response Function
KR100411865B1 (en) * 2001-08-16 2003-12-18 금호석유화학 주식회사 method to obtain performance of electrochemical power sources by multi-dimensional correlation of experimental observables
EP2472277A3 (en) * 2003-06-27 2012-10-17 The Furukawa Electric Co., Ltd. Method and device for measuring secondary cell internal impedance and judging deterioration
US7969120B2 (en) 2003-11-20 2011-06-28 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
US7583059B2 (en) 2003-12-18 2009-09-01 Lg Chem, Ltd. Apparatus and method for estimating state of charge of battery using neural network
US7965059B2 (en) * 2005-11-30 2011-06-21 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery parameter vector
JP2010519691A (en) * 2007-04-20 2010-06-03 杭州高特電子設備有限公司 Expert diagnostic method for analyzing storage battery performance.
US8519675B2 (en) 2008-01-30 2013-08-27 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery cell module state
JP2011038857A (en) * 2009-08-07 2011-02-24 Sanyo Electric Co Ltd Capacity maintenance ratio determination device, battery system and electric vehicle provided with the same
JP2013519893A (en) * 2010-02-17 2013-05-30 イエフペ エネルジ ヌヴェル In-situ battery diagnostic method by electrochemical impedance spectroscopy
US8341449B2 (en) 2010-04-16 2012-12-25 Lg Chem, Ltd. Battery management system and method for transferring data within the battery management system
KR101288647B1 (en) * 2011-01-13 2013-07-22 요코가와 덴키 가부시키가이샤 Secondary battery tester, secondary battery testing method, and manufacturing method of secondary battery
US9128166B2 (en) 2011-01-13 2015-09-08 Yokogawa Electric Corporation Secondary battery tester, secondary battery testing method, and manufacturing method of secondary battery
US8993136B2 (en) 2011-06-30 2015-03-31 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974928B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974929B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8859119B2 (en) 2011-06-30 2014-10-14 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US9134382B2 (en) 2011-07-08 2015-09-15 International Business Machines Corporation Predicting state of a battery
US9134381B2 (en) 2011-07-08 2015-09-15 International Busines Machines Corporation Predicting state of a battery
FR3002325A1 (en) * 2013-02-21 2014-08-22 Renault Sa IMPEDANCE ESTIMATION OF A MOTOR VEHICLE BATTERY
WO2014128395A1 (en) * 2013-02-21 2014-08-28 Renault S.A.S Method and device for estimating the impedance of a motor vehicle battery
WO2015059879A1 (en) * 2013-10-21 2015-04-30 カルソニックカンセイ株式会社 Battery parameter estimation device and parameter estimation method
JP2015081800A (en) * 2013-10-21 2015-04-27 カルソニックカンセイ株式会社 Battery parameter estimation device and method
US10175303B2 (en) 2013-10-21 2019-01-08 Calsonic Kansei Corporation Battery parameter estimation device and parameter estimation method
US9067504B1 (en) 2014-01-14 2015-06-30 Ford Global Technologies, Llc Perturbative injection for battery parameter identification
CN104779421A (en) * 2014-01-14 2015-07-15 福特全球技术公司 Perturbative injection for battery parameter identification
CN111164822A (en) * 2017-07-25 2020-05-15 株式会社半导体能源研究所 Power storage system, electronic device, vehicle, and estimation method
CN108535652A (en) * 2018-02-07 2018-09-14 丽水博远科技有限公司 Method based on charging response measurement rechargeable battery remaining capacity
CN108535652B (en) * 2018-02-07 2020-11-03 丽水博远科技有限公司 Method for measuring residual capacity of rechargeable battery based on charging response
JP2020020604A (en) * 2018-07-30 2020-02-06 トヨタ自動車株式会社 Battery data processing system, estimation method for secondary battery capacity, battery pack and method for manufacturing the battery pack
CN110783644A (en) * 2018-07-31 2020-02-11 丰田自动车株式会社 Battery information processing system, method for estimating capacity of secondary battery, battery pack, and method for manufacturing battery pack
JP2020021592A (en) * 2018-07-31 2020-02-06 トヨタ自動車株式会社 Battery information processing system, secondary battery capacity estimation method, assembled battery, and manufacturing method of assembled battery
CN110783644B (en) * 2018-07-31 2022-10-04 丰田自动车株式会社 Battery information processing system, method for estimating capacity of secondary battery, battery pack, and method for manufacturing battery pack
JP2020041917A (en) * 2018-09-11 2020-03-19 プライムアースEvエナジー株式会社 Battery state measuring method and battery state measuring device
CN113764749A (en) * 2021-08-31 2021-12-07 东风商用车有限公司 Power management method and system for vehicle-mounted storage battery
WO2024046569A1 (en) * 2022-09-01 2024-03-07 Hitachi Energy Ltd Method for monitoring the status of a plurality of battery cells in an energy storage system

Similar Documents

Publication Publication Date Title
JPH1132442A (en) Method and apparatus for estimating residual capacity of storage battery
CN110549876B (en) Energy output control method and device and hydrogen fuel hybrid electric vehicle
US5479085A (en) Method and apparatus for measuring residual capacity of an electric-vehicle battery
US5539318A (en) Residual capacity meter for electric car battery
CN104285157B (en) The charged state estimation unit of battery
JP5407758B2 (en) Vehicle power supply
JP7172838B2 (en) battery monitor
CN105378496A (en) Estimation device and estimation method
CN104833922B (en) The computational methods and device of battery charging and discharging current limit
JPH11326472A (en) Residual capacity meter of battery
JPH05166544A (en) Method and device for indicating battery residual capacity
US11360147B2 (en) Method of determining the state of charge of a battery used in an electric vehicle
JP2003346919A (en) Storage system
JP2010230469A (en) Device and method for determining state of health of secondary battery
CN111907373A (en) Charging method for dynamically adjusting charging current of electric automobile
JP2023086798A (en) Battery monitoring device
JPS58172565A (en) Method and device for measuring state of charge of electrochemical generator under operation
JP2006020401A (en) Battery managing system of hybrid vehicle
JP2006033970A (en) Battery management system of hybrid vehicle
JP2006030080A (en) Remaining capacity calculation device for electric power storage device
JP3750355B2 (en) Battery output detection device
US11909013B2 (en) Display system, vehicle, and method of display of status of secondary battery
Kim et al. Development of Aging Diagnosis Device Through Real-time Battery Internal Resistance Measurement
JPH09308117A (en) Battery residual capacity measuring device
JP4369688B2 (en) Method and apparatus for determining remaining capacity of storage battery mounted on vehicle