JPH11323476A - Cold rolled steel sheet small in plane anisotropy and excellent in deep drawability - Google Patents
Cold rolled steel sheet small in plane anisotropy and excellent in deep drawabilityInfo
- Publication number
- JPH11323476A JPH11323476A JP14043398A JP14043398A JPH11323476A JP H11323476 A JPH11323476 A JP H11323476A JP 14043398 A JP14043398 A JP 14043398A JP 14043398 A JP14043398 A JP 14043398A JP H11323476 A JPH11323476 A JP H11323476A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- oxides
- steel
- value
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、面内異方性が小さ
く深絞り性に優れた冷延鋼板に関するものである。The present invention relates to a cold-rolled steel sheet having a small in-plane anisotropy and excellent in deep drawability.
【0002】[0002]
【従来の技術】近年、自動車用鋼板に要求される材料特
性は年々高度になっている。特に自動車のフェンダーや
オイルパン等については、極めて過酷なプレス成形がな
されることから、深絞り性および延性についてはより一
層の向上が期待されてきた。折から、RHやDHなどの
真空脱ガス技術の発展にともない鋼中の固溶元素を低減
し深絞り性を向上させた極低炭素鋼が開発され、それま
で使用されてきた低炭素Alキルド鋼に代わって用いら
れるようになった。さらに最近ではTi、Nb等によっ
て鋼中の固溶C、Nをscavengingすることで
飛躍的に深絞り性を向上させた鋼として、特開平1−2
25727号公報、特開平2−34722号公報等に開
示されているInterstitial atoms
freesteel(以下IF鋼)が、広く用いられる
ようになっている。2. Description of the Related Art In recent years, the material properties required for steel sheets for automobiles have been increasing year by year. Particularly for automobile fenders and oil pans, since extremely severe press molding is performed, further improvement in deep drawability and ductility has been expected. Since then, with the development of vacuum degassing technologies such as RH and DH, ultra-low carbon steel with reduced solid solution elements in steel and improved deep drawability has been developed. Used instead of steel. More recently, as a steel in which deep-drawing properties have been dramatically improved by scavenging solid solution C and N in the steel with Ti, Nb, etc.
No. 25727, Japanese Patent Application Laid-Open No. 2-34722, and other interstitial atoms.
Freesteel (hereinafter IF steel) has been widely used.
【0003】一方、最近では、一般消費者の自動車に対
するニーズは多様化し、そのシルエットは機能よりもデ
ザインがより重要視されるようになってきている。その
ため、自動車の構成部品の形状はより複雑化し、従来の
鋼板では成形が困難な部品も増加してきている。従って
さらなる深絞り性の向上が強く要望されているが、成形
部品の均一性、プレス時の割れ防止等の観点からは、平
均ランクフォード値(以下rm:ただし、r0、r45
およびr90はそれぞれ圧延方向に対して0°方向、4
5°方向および90°方向のランクフォード値であり、
rm=(r0+2×r45+r90)/4)だけでな
く、面内の塑性異方性の値(以下Δr:ただし、Δr=
(r0−2×r45+r90)/2)を改善することが
非常に重要である。もし、r値の面内異方性が顕著であ
ると深絞りの要素が含まれるプレス成形を行った場合、
特定方向のr値が低いために十分に材料の流れ込みが起
こらず耳と呼ばれる方向が現れ、その部位において割れ
が発生する。On the other hand, in recent years, the needs of ordinary consumers for automobiles have been diversified, and their silhouettes have become more important in design than in function. As a result, the shapes of the components of the automobile have become more complicated, and the number of components that are difficult to form with conventional steel plates has been increasing. Therefore, there is a strong demand for further improvement in deep drawability. However, from the viewpoint of uniformity of molded parts, prevention of cracking during pressing, and the like, the average Rankford value (hereinafter, rm: r0, r45
And r90 are 0 ° direction with respect to the rolling direction, 4
Rankford values in 5 ° and 90 ° directions,
Not only rm = (r0 + 2 × r45 + r90) / 4) but also the value of in-plane plastic anisotropy (hereinafter Δr: Δr =
It is very important to improve (r0−2 × r45 + r90) / 2). If the in-plane anisotropy of the r value is notable and the press forming including the element of deep drawing is performed,
Since the r-value in the specific direction is low, the material does not flow sufficiently and a direction called an ear appears, and a crack is generated at that portion.
【0004】r値の面内異方性の改善の方策として以下
の既知技術がある。特公昭62―161919号公報に
は、熱間圧延でスラブ加熱温度を低温にし、巻取り温度
を高温にすることにより適当なAlNを析出させた異方
性の小さな熱延鋼板を85〜93%の高冷延率で冷延
し、再結晶焼鈍することによって異方性を小さくする技
術が報告されている。しかしながら、上記の技術は、異
方性改善のために85%以上という高い冷延率が必要と
なり、冷間圧延の負荷が高くなるという問題点がある。As a measure for improving the in-plane anisotropy of the r value, there is the following known technique. Japanese Patent Publication No. Sho 62-161919 discloses a hot-rolled steel sheet having a low anisotropy in which a suitable AlN is precipitated by lowering the slab heating temperature by hot rolling and raising the winding temperature to 85-93%. A technique for reducing anisotropy by cold rolling at a high cold rolling rate and recrystallization annealing has been reported. However, the above technique requires a high cold rolling rate of 85% or more to improve anisotropy, and has a problem that the load of cold rolling increases.
【0005】特開平5―117758号公報には、T
i、Nb、BおよびAlを適正量含有させた極低炭素鋼
片を素材として、その製造工程において特に熱延および
焼鈍条件を適正化することによって、r値の面内異方性
が少ない深絞り用冷延薄鋼板を製造する技術が開示され
ている。しかしながら、上記既知技術のような方法は、
(Ti、Nb)Cおよび(Ti、Al)Nの複合析出物
を巻取りおよび焼鈍時に適切なタイミングで析出させな
ければならないので、安定して材質をつくり込むことが
難しい。[0005] JP-A-5-117758 discloses that T
By using a very low carbon steel slab containing appropriate amounts of i, Nb, B and Al as a raw material, by appropriately optimizing hot rolling and annealing conditions in the manufacturing process, a depth with less in-plane anisotropy of r value is obtained. A technique for manufacturing a cold-rolled thin steel sheet for drawing is disclosed. However, methods such as the above-mentioned known art,
Since the composite precipitate of (Ti, Nb) C and (Ti, Al) N must be precipitated at an appropriate timing during winding and annealing, it is difficult to stably produce a material.
【0006】特公平7―110976号公報には、熱延
後に、冷延と焼鈍を二回づつ行い、そのそれぞれの冷延
率と焼鈍温度を最適に制御することによってr値の面内
異方性を小さくする発明が提案されている。。しかしな
がら、上記の方法は、冷延、焼鈍を二回づつ行ってお
り、生産に手間がかかり従ってコストがかかるという問
題点がある。Japanese Patent Publication No. 7-110977 discloses that after hot rolling, cold rolling and annealing are performed twice, and the respective cold rolling rates and annealing temperatures are optimally controlled to thereby provide an in-plane anisotropy of the r value. An invention for reducing the performance has been proposed. . However, the above-mentioned method has a problem in that cold rolling and annealing are performed twice, and production is troublesome and therefore costly.
【0007】特開平7―188854号公報には、T
i、Nbを含有しない極低炭素窒素鋼のC、Mnおよび
B量を調整することにより、r値の面内異方性の小さい
冷延鋼板を提供する技術が開示されている。しかしなが
ら、上記の技術は、Ti、Nb等のCを固定する元素が
添加されていないため、鋼板中に固溶Cが存在し、耐時
効性が劣るという問題点がある。[0007] Japanese Patent Application Laid-Open No. 7-188854 discloses T
There is disclosed a technique of providing a cold-rolled steel sheet having a small in-plane anisotropy of an r value by adjusting the amounts of C, Mn, and B of an ultra-low carbon nitrogen steel containing no i or Nb. However, the above-mentioned technology has a problem that since the elements fixing C, such as Ti and Nb, are not added, solute C is present in the steel sheet and the aging resistance is poor.
【0008】[0008]
【発明が解決しようとする課題】本発明は、深絞り成形
に好適な冷延鋼板に関するもので、r値の面内異方性を
改善するために微細な分散粒子のサイズ、分布等を最適
化して再結晶焼鈍時のr値の面内異方性を顕著にする方
位の核生成、粒成長を抑制してr値の面内異方性を改善
するように集合組織を最適化した冷延鋼板を提供しよう
とするものである。The present invention relates to a cold-rolled steel sheet suitable for deep drawing, in which the size and distribution of fine dispersed particles are optimized in order to improve the in-plane anisotropy of the r value. Nucleation in an orientation that makes the in-plane anisotropy of the r-value remarkable during recrystallization annealing, and a cold-structure optimized to suppress grain growth and improve the in-plane anisotropy of the r-value It is intended to provide a rolled steel sheet.
【0009】[0009]
【課題を解決するための手段】本発明の要旨とするとこ
ろは、 (1)質量%にて、C≦0.005%、Si=0.00
5〜0.1%、Mn=0.01〜0.5%、P≦0.0
5%、S≦0.02%、Al≦0.004%、Mg=
0.0001〜0.01%、O=0.001〜0.01
%、N=0.001〜0.01%、を含有し、さらに 0.05>Ti>3.42N+1.5S 、 かつ(Ti−3.42N−1.5S)/48−C/12>0 満足し、残部がFe及び不可避的不純物から成ることを
特徴とする面内異方性が小さく深絞り性に優れた冷延鋼
板。 (2)さらに、質量%で 0.05>Nb>93{C/12−(Ti−3.42N−1.5S)/48} を満足することを特徴とする前記(1)記載の面内異方
性が小さく深絞り性に優れた冷延鋼板。 (3)さらに、質量%にて、B=0.0003〜0.0
02%を含むことを特徴とする前記(1)又は(2)記
載の面内異方性が小さく深絞り性に優れた冷延鋼板。 (4)平均粒子径で0.005μm以上0.1μm以下
であるMgとTiの酸化物および/または複合酸化物を
鋼中に含有することを特徴とする前記(1)(3)のい
ずれか1項に記載の面内異方性が小さく深絞り性に優れ
た冷延鋼板。 (5)鋼中に含有するMgとTiの酸化物および/また
は複合酸化物の面密度が40〜1000個/mm2以上
であることを特徴とする前記(4)記載の面内異方性が
小さく深絞り性に優れた冷延鋼板。にある。The gist of the present invention is as follows: (1) In terms of mass%, C ≦ 0.005%, Si = 0.
5 to 0.1%, Mn = 0.01 to 0.5%, P ≦ 0.0
5%, S ≦ 0.02%, Al ≦ 0.004%, Mg =
0.0001-0.01%, O = 0.001-0.01
%, N = 0.001 to 0.01%, and 0.05>Ti> 3.42N + 1.5S and (Ti-3.42N-1.5S) / 48-C / 12> 0. A cold-rolled steel sheet having a small in-plane anisotropy and excellent in deep drawability, characterized by being satisfied and the balance being Fe and unavoidable impurities. (2) The in-plane surface according to (1), further satisfying 0.05>Nb> 93 {C / 12- (Ti-3.42N-1.5S) / 48} by mass%. Cold rolled steel sheet with low anisotropy and excellent deep drawability. (3) Further, in mass%, B = 0.0003 to 0.0
The cold-rolled steel sheet having a small in-plane anisotropy and excellent in deep drawability according to the above (1) or (2), wherein the cold-rolled steel sheet contains 0.2%. (4) The steel according to any of (1) to (3), wherein the steel contains an oxide and / or a composite oxide of Mg and Ti having an average particle diameter of 0.005 μm or more and 0.1 μm or less. 2. A cold-rolled steel sheet having a small in-plane anisotropy according to item 1 and excellent in deep drawability. (5) The in-plane anisotropy according to (4), wherein the areal density of the oxides and / or composite oxides of Mg and Ti contained in the steel is 40 to 1000 / mm 2 or more. A cold rolled steel sheet that is small and has excellent deep drawability. It is in.
【0010】ここで、MgとTiの酸化物および複合酸
化物とはMgOのようなMg単独およびTiO、Ti2
O3,TiO2のようなTi単独の酸化物粒子およびそ
の複合酸化物粒子だけでなく、それら以外の酸化物およ
びTiC、TiN、MnS等の析出物が含まれるような
複合粒子のことを指す。Here, oxides and composite oxides of Mg and Ti are Mg alone such as MgO and TiO, Ti2
This refers to not only oxide particles of Ti alone such as O3 and TiO2 and composite oxide particles thereof, but also composite particles containing other oxides and precipitates such as TiC, TiN and MnS.
【0011】耳の発生する方向および高さは、r値の面
内異方性と密接な関係があり、Δrの絶対値(以下:|
Δr|)が小さいほど耳の高さが小さくなる。r90≧
r0>r45のV字分布ならば、圧延方向より0°およ
び90°方向に耳が発生し、r45>r90≧r0の逆
V字分布ならば、45°方向に耳が発生する。The direction and height at which the ear is generated are closely related to the in-plane anisotropy of the r value, and the absolute value of Δr (hereinafter: |
The ear height decreases as Δr |) decreases. r90 ≧
If the V-shape distribution is r0> r45, ears are generated in the 0 ° and 90 ° directions from the rolling direction, and if the inverse V-shape distribution is r45> r90 ≧ r0, the ears are generated in the 45 ° direction.
【0012】r値の面内異方性は、集合組織に起因して
いる。例えば、「鉄と鋼」第57年(1971)113
4〜1154ページによれば、{110}〈100〉方
位が強い場合は、r90≧r0>r45のV字分布の異
方性を示し、{100}〈110〉方位が強い場合に
は、r45>r90≧r0の逆V字分布を示す。従っ
て、r値の面内異方性を改善ためには、再結晶焼鈍時の
{110}〈100〉方位および{100}〈110〉
方位の核生成または、粒成長を抑制すればよい。The in-plane anisotropy of the r value is due to the texture. For example, "Iron and Steel", 57 (1971) 113
According to pages 4 to 1154, when the {110} <100> orientation is strong, the anisotropy of the V-shaped distribution of r90 ≧ r0> r45 is shown, and when the {100} <110> orientation is strong, r45 > R90 ≧ r0. Therefore, in order to improve the in-plane anisotropy of the r value, the {110} <100> orientation and {100} <110>
The nucleation of the orientation or the grain growth may be suppressed.
【0013】本発明者らは、現在通常に採用されている
工業的規模の連続焼鈍設備または連続溶融亜鉛めっき設
備による製造を念頭において冷延鋼板のr値の面内異方
性を改善すべく鋭意研究を重ねた結果、焼鈍後の結晶粒
径が同等であってもMgを添加すると|Δr|が小さく
なることを新規に知見した。そして、更に詳細に調査し
た結果、鋼板中のMgとTiの酸化物および/または複
合酸化物の大きさと|Δr|の間に強い相関があること
を見出し、MgとTiの酸化物および/または複合酸化
物の大きさおよび分布を最適化すれば、rmは十分に高
く、かつ成形後に発生する耳の高さが事実上ほとんど問
題とならない|Δr|≦0.2という鋼板を製造できる
ことを新規に知見した。また、上記の本発明は、溶融亜
鉛めっき鋼板にも適用可能である。The present inventors have attempted to improve the in-plane anisotropy of the r-value of a cold-rolled steel sheet with a view to production by an industrial-scale continuous annealing equipment or a continuous hot-dip galvanizing equipment which is currently generally employed. As a result of intensive studies, it has been newly found that | Δr | decreases when Mg is added even if the crystal grain sizes after annealing are the same. Further, as a result of further detailed investigation, it was found that there was a strong correlation between the size of Mg and Ti oxides and / or composite oxides in the steel sheet and | Δr |, and Mg and Ti oxides and / or By optimizing the size and distribution of the composite oxide, it is possible to produce a steel sheet having a sufficiently high rm and | Δr | ≦ 0.2 in which the height of the ears generated after forming is practically negligible. I found out. The present invention described above is also applicable to hot-dip galvanized steel sheets.
【0014】[0014]
【発明の実施の形態】以下、本発明の基礎となった実験
結果について述べる。まず、焼鈍後の鋼板の結晶粒度と
|Δr|の関係をMgを添加したものと添加しないもの
について比較した。0.002%C―0.02%Si―
0.2%Mn―0.01%P―0.003%S―0.0
03%Al―0.05%Tiの成分の鋼をベースとし
て、純Mg金属(99%以上)を鉄箔で包んで添加した
Mg含有鋼とMgを添加しないMg無添加鋼を50kg
の実験室溶解にてそれぞれ溶製した。得られた鋳塊を1
230℃で1時間加熱後、仕上温度(FT)900〜9
30℃で熱間圧延し、600〜700℃で巻取った。酸
洗後、圧延率80%で冷間圧延を施し、焼鈍炉で780
〜860℃で1分間焼鈍後、冷却速度20℃/Sで冷却
し、さらに1%のスキンパス圧延を行った。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experimental results on which the present invention is based will be described. First, the relationship between the grain size of the annealed steel sheet and | Δr | was compared between the case where Mg was added and the case where Mg was not added. 0.002% C-0.02% Si-
0.2% Mn-0.01% P-0.003% S-0.0
50 kg of Mg-containing steel with pure Mg metal (99% or more) wrapped in iron foil and Mg-free steel with no Mg added, based on steel with a composition of 03% Al-0.05% Ti
In the laboratory. The obtained ingot is 1
After heating at 230 ° C for 1 hour, finishing temperature (FT) 900 to 9
It was hot rolled at 30C and wound up at 600-700C. After the pickling, cold rolling is performed at a rolling ratio of 80%, and 780 in an annealing furnace.
After annealing at 8860 ° C. for 1 minute, cooling was performed at a cooling rate of 20 ° C./S, and 1% skin pass rolling was performed.
【0015】このようにして得られた鋼板の結晶粒径と
|Δr|との関係を調査した。ただし、得られた鋼板の
平均結晶粒径は、圧延方向と平行な断面で測定し、JI
S G 0522記載の切断法にて粒度番号にて整理し
た。また、r値は、JIS Z 2201記載の5号試
験片にて、15%の引張変化の前後における板厚の変化
量を板幅の変化量で除した値と定義し、r0、r45お
よびr90のそれぞれを測定し、|Δr|を得た。図1
に粒子径(粒度番号)と|Δr|との関係を示す。この
ように、Mgを含有させた場合には、含有させない場合
と比較して顕著に|Δr|を小さくできることが分かっ
た。The relationship between the crystal grain size of the steel sheet thus obtained and | Δr | was investigated. However, the average grain size of the obtained steel sheet was measured in a cross section parallel to the rolling direction,
It was arranged by the particle size number by the cutting method described in SG0522. Further, the r value is defined as a value obtained by dividing the change in the thickness of the test piece before and after the 15% tensile change by the change in the width of the test piece on the No. 5 test piece described in JIS Z 2201, and r0, r45 and r90. Were measured to obtain | Δr |. FIG.
Shows the relationship between the particle size (particle size number) and | Δr |. Thus, it was found that when Mg was contained, | Δr | could be significantly reduced as compared with the case where Mg was not contained.
【0016】次に鋼板中のMgとTiの酸化物および/
または複合酸化物の大きさとrmおよび|Δr|の関係
を調査した。0.002%C―0.02%Si―0.2
%Mn―0.01%P―0.003%S―0.003%
Al―0.05%Ti―0.0005%Mgの成分の鋼
をベースとし、脱酸剤であるAl、Si、TiおよびM
g等の添加順序、添加間隔等を製鋼工程にてさまざまに
変化させ得られた鋼片を1230℃で1時間加熱後、仕
上温度(FT)920℃で熱間圧延し、650℃で巻取
った。酸洗後、圧延率80%で冷間圧延を施し、焼鈍炉
で810℃で1分間焼鈍後、冷却速度20℃/Sで冷却
し、さらに1%のスキンパス圧延を行った。Next, oxides of Mg and Ti in the steel sheet and / or
Alternatively, the relationship between the size of the composite oxide and rm and | Δr | was investigated. 0.002% C-0.02% Si-0.2
% Mn-0.01% P-0.003% S-0.003%
Al-0.05% Ti-0.0005% Mg based steel, deoxidizers Al, Si, Ti and M
The slab obtained by changing the order of addition of g, the addition interval, etc. in the steelmaking process in various ways is heated at 1230 ° C. for 1 hour, then hot-rolled at a finishing temperature (FT) of 920 ° C., and wound at 650 ° C. Was. After pickling, cold rolling was performed at a rolling reduction of 80%, and after annealing in an annealing furnace at 810 ° C. for 1 minute, cooling was performed at a cooling rate of 20 ° C./S, and further 1% skin pass rolling was performed.
【0017】このようにして得られた鋼板の機械的性質
およびMgとTiの酸化物および/または複合酸化物の
粒子サイズdと|Δr|との関係を調査した。ただし、
機械的性質は、JIS Z 2201記載の5号試験片
にて、JIS Z 2241記載の引張試験方法で測定
した。また|Δr|は、既に述べたものと同一の方法に
よって求めた。The mechanical properties of the steel sheet thus obtained and the relationship between the particle size d of Mg and Ti oxides and / or composite oxides and | Δr | were investigated. However,
The mechanical properties were measured on a No. 5 test piece described in JIS Z 2201 by a tensile test method described in JIS Z 2241. | Δr | was obtained by the same method as described above.
【0018】一方、MgとTiの酸化物および複合酸化
物の状態は、供試鋼の1/4厚のところから透過型電子
顕微鏡サンプルを採取し、エネルギー分散型X線分光
(Energy Dispersive X−ray
Spectroscope:EDS)や電子エネルギー
損失分光(Electron Energy Loss
Spectroscope:EELS)の組成分析機
能を加えた、200kVの加速電圧の電界放射型電子銃
(Field Emission Gun:FEG)を
搭載した透過型電子顕微鏡によって観察した。観察され
る粒子の組成は、上記EDSおよびEELSによりMg
とTiの酸化物および複合酸化物であることを確認し
た。また、本願で規定するMgとTiの酸化物および複
合酸化物の平均粒子径は、10000〜500000倍
の倍率で少なくとも1000μm2以上の面積にわたっ
て観察し、対象となる粒子をそれぞれ測定したもののそ
の一視野での平均の値である。On the other hand, the state of the oxides and the composite oxides of Mg and Ti was determined by taking a transmission electron microscope sample from a quarter of the thickness of the test steel and performing energy dispersive X-ray spectroscopy (Energy Dispersive X-ray spectroscopy). ray
Spectroscope (EDS) or electron energy loss spectroscopy (Electron Energy Loss)
It was observed by a transmission electron microscope equipped with a field emission type electron gun (Field Emission Gun: FEG) with an accelerating voltage of 200 kV and a composition analysis function of Spectroscope (EELS). The composition of the observed particles was determined by the above EDS and EELS.
And Ti oxides and composite oxides. Further, the average particle diameter of the oxides and composite oxides of Mg and Ti specified in the present application is observed at a magnification of 10,000 to 500,000 times over an area of at least 1000 μm 2, and each target particle is measured. It is the average value at.
【0019】図2にrmおよび|Δr|とMgとTiの
酸化物および複合酸化物の粒子サイズdの測定結果を示
す。このように、rmと|Δr|がともに優れるMgと
Tiの酸化物および複合酸化物の粒子サイズは0.00
5μm以上0.1μm以下と分かった。FIG. 2 shows the measurement results of rm and | Δr | and the particle size d of Mg and Ti oxides and composite oxides. As described above, the particle size of Mg and Ti oxides and composite oxides having both excellent rm and | Δr |
It was found to be 5 μm or more and 0.1 μm or less.
【0020】次に、本発明の構成要素について説明す
る。まず、本発明の化学成分の限定理由について説明す
る。 C: Cは冷延時に固溶状態で鋼中に存在していると、
後の焼鈍時に深絞り性にとって好ましくない方位が生成
するので0.005%以下、好ましくは0.003%以
下がよい。Next, the components of the present invention will be described. First, the reasons for limiting the chemical components of the present invention will be described. C: If C exists in the steel in a solid solution state during cold rolling,
Since an orientation unfavorable for deep drawability is generated during subsequent annealing, the content is preferably 0.005% or less, and more preferably 0.003% or less.
【0021】Si: Siは固溶強化元素であり必要に
応じて添加する。ただし、0.005%未満では製鋼段
階での製造コストの上昇を招くので0.005%以上と
する。一方、0.1%以上添加すると固溶硬化が著しく
なり加工用に不適当になるばかりでなく、rmを劣化さ
せかつ溶融亜鉛めっきの密着性を悪くするため0.1%
以下とした。好ましくは0.05%以下がよい。Si: Si is a solid solution strengthening element and is added as necessary. However, if it is less than 0.005%, the production cost at the steel making stage will increase, so it is made 0.005% or more. On the other hand, if added in an amount of 0.1% or more, solid solution hardening becomes remarkable and not only becomes unsuitable for working, but also deteriorates rm and deteriorates adhesion of hot-dip galvanized, so that 0.1% or more is added.
It was as follows. Preferably, it is 0.05% or less.
【0022】Mn: Mnは、Si同様に固溶強化元素
であり必要に応じて添加する。ただし、0.01%未満
では製鋼段階での製造コストの上昇を招くので0.01
%以上とする。一方、0.5%以上添加するとrmが劣
化し、また延性も低下するため0.5%以下とした。Mn: Mn is a solid solution strengthening element like Si, and is added as necessary. However, if the content is less than 0.01%, the production cost at the steel making stage is increased, so that the content is 0.01%.
% Or more. On the other hand, if 0.5% or more is added, rm is deteriorated and ductility is also reduced.
【0023】P: Pは不純物であり、粒界に偏析し粒
界脆化を起こし、二次加工割れの原因となる元素である
ので少ないほど好ましい。ただし、0.05%以下なら
ば、許容できる範囲である。 S: Sは不純物であり、多すぎると熱間圧延時の割れ
を引き起こすばかりでなく、rmの劣化を起こすので極
力低減させるべきであるが0.02%以下ならば許容で
きる範囲である。 Al: 通常Alは溶鋼脱酸のために添加されるが本発
明においてはMg添加の効果を阻害するため少ないほど
好ましい。ただし、0.004%以下ならば、許容でき
る範囲である。P: P is an impurity, and is an element which segregates at the grain boundary to cause grain boundary embrittlement and causes secondary working cracks, so that the smaller the content, the better. However, if it is 0.05% or less, it is within an allowable range. S: S is an impurity, and if it is too much, it not only causes cracks during hot rolling, but also causes deterioration of rm. Therefore, S should be reduced as much as possible. Al: Al is usually added for deoxidation of molten steel, but in the present invention, a smaller amount is more preferable because it hinders the effect of Mg addition. However, if it is 0.004% or less, it is within an allowable range.
【0024】Mg: Mgは、本発明における最も重要
な添加元素の一つである。Mgは、酸素と結合して微細
な酸化物を形成する。鋼中に微細に分散したMgとTi
の酸化物および複合酸化物はピニング効果によって、熱
延板段階での結晶粒の粗大化を抑制し、|Δr|を低減
する。また、再結晶焼鈍時にこれらの粒子は、{11
0}〈100〉方位および{100}〈110〉方位の
核生成または粒成長を抑制する効果があると考えられ
る。ただし、0.0001%未満ではその効果が不十分
である。一方、0.01%超添加すると、|Δr|を小
さくする効果が飽和してしまうばかりでなく、製鋼技術
上非常に難しい。従ってMgの添加量は0.0001%
以上0.01%以下とする。Mg: Mg is one of the most important additive elements in the present invention. Mg combines with oxygen to form a fine oxide. Mg and Ti finely dispersed in steel
The oxides and composite oxides suppress the coarsening of crystal grains at the hot-rolled sheet stage by the pinning effect, and reduce | Δr |. Also, during recrystallization annealing, these particles have a size of # 11
It is considered that there is an effect of suppressing nucleation or grain growth in the 0} <100> orientation and the {100} <110> orientation. However, if the content is less than 0.0001%, the effect is insufficient. On the other hand, if added over 0.01%, not only does the effect of reducing | Δr | become saturated, but also it is extremely difficult in steelmaking technology. Therefore, the added amount of Mg is 0.0001%
Not less than 0.01%.
【0025】O: Oは、|Δr|を低減する効果のあ
るMgまたは/およびTiを含む微細な粒子を得るため
には、0.001%以上必要である。しかし、0.01
%超では、酸化物が粗大化し、その効果が失われるばか
りか、成形性に好ましくないC系介在物が増加する。従
ってOの含有量は0.001%以上0.01%以下とす
る。O: O is required to be 0.001% or more in order to obtain fine particles containing Mg and / or Ti which have an effect of reducing | Δr |. However, 0.01
If it exceeds%, the oxide becomes coarse and its effect is lost, and moreover, C-based inclusions that are not preferable for the moldability increase. Therefore, the content of O is set to 0.001% or more and 0.01% or less.
【0026】N: Nは、|Δr|を低減する効果のあ
るMgとTiの酸化物および複合酸化物を含む微細な粒
子の形成に関与し、|Δr|を低減する効果を促進す
る。この効果を得るためにNは0.001%以上含有す
る必要がある。しかし、0.01%超含有してもその効
果は飽和するので、Nの含有量は0.001%以上0.
01%以下とする。N: N is involved in the formation of fine particles containing Mg and Ti oxides and composite oxides that have an effect of reducing | Δr |, and promotes the effect of reducing | Δr |. In order to obtain this effect, N must be contained at 0.001% or more. However, the effect is saturated even if the content exceeds 0.01%, so that the content of N is 0.001% or more and 0.1% or more.
01% or less.
【0027】Ti: Tiは、本発明における最も重要
な添加元素の一つである。Tiは、|Δr|を低減する
効果のあるMgとTiの酸化物および複合酸化物を形成
し、均一に微細に分散させるのに必要である。また、再
結晶焼鈍時にこれらの粒子は、{110}〈100〉方
位および{100}〈110〉方位の核生成または粒成
長を抑制する効果がある考えられる。またTiは、γ相
の高温域においてTiNおよびTiSとして析出する
が、Ti≦3.42N+1.5Sでは固溶NがTiNと
して十分固定されず残存した固溶Nが深絞り性を劣化さ
せるだけでなく、BNとして析出して二次加工性に有効
なBが確保されない。従ってTiは、Ti>3.42N
+1.5Sの条件を満たすように添加する。しかし、T
iは0.03%以上添加すると溶融亜鉛めっきの密着性
を悪くし、プレス成形時にパウダリングを起こすので、
0.05%以下好ましくは0.03%未満がよい。ま
た、固溶Cの残存による深絞り性劣化を抑えるため、
(Ti−3.42N−1.5S)/48−C/12>0
とする。Ti: Ti is one of the most important additive elements in the present invention. Ti is necessary for forming oxides and composite oxides of Mg and Ti having an effect of reducing | Δr | and uniformly and finely dispersing them. Further, it is considered that these particles have an effect of suppressing nucleation or grain growth in the {110} <100> direction and the {100} <110> direction during recrystallization annealing. Also, Ti precipitates as TiN and TiS in the high temperature region of the γ phase, but when Ti ≦ 3.42N + 1.5S, the dissolved N is not sufficiently fixed as TiN and the remaining dissolved N only deteriorates the deep drawability. In addition, B which precipitates as BN and is effective for secondary workability cannot be secured. Therefore, Ti: Ti> 3.42N
+1.5 S is added to satisfy the condition. But T
When i is added in an amount of 0.03% or more, the adhesion of hot-dip galvanized coating deteriorates and powdering occurs during press molding.
0.05% or less, preferably less than 0.03%. Further, in order to suppress the deterioration of deep drawability due to the residual solid solution C,
(Ti-3.42N-1.5S) / 48-C / 12> 0
And
【0028】Nbは、Cを析出物として固定し更に成形
性を向上させるので,添加することが好ましい。ただ
し、{(Ti−3.42N−1.5S)/48+Nb/
93}−C/12≦0では、固溶Cが残存し、深絞り性
にとって好ましくない。従って{(Ti−3.42N−
1.5S)/48+Nb/93}−C/12>0の条件
を満たすように添加する。しかし、Nbは、0.03%
以上添加すると再結晶温度を上昇させるので焼鈍時に十
分再結晶が完了させることができずrmの劣化を招くの
で、0.05%以下好ましくは0.03%未満がよい。Nb is preferably added because it fixes C as a precipitate and further improves formability. However, {(Ti−3.42N−1.5S) / 48 + Nb /
When 93 ° -C / 12 ≦ 0, solid solution C remains, which is not preferable for deep drawability. Therefore, {(Ti-3.42N-
1.5S) / 48 + Nb / 93} -C / 12> 0. However, Nb is 0.03%
Addition of the above increases the recrystallization temperature, so that the recrystallization cannot be sufficiently completed during annealing and the rm deteriorates. Therefore, the content is preferably 0.05% or less, and preferably less than 0.03%.
【0029】B: Bは二次加工割れを防止するために
添加することが好ましい。ただし、0.0003%未満
の添加では、その効果がなく、0.002%超添加して
もその効果は飽和してしまう。従ってBの添加量は0.
0003%以上0.002%以下とする。なお、本発明
において上記以外の成分はFeとなるがスクラップ等の
溶製原料から混入する不可避的不純物の含有は許容され
る。B: B is preferably added to prevent secondary working cracks. However, if the addition is less than 0.0003%, the effect is not obtained, and if the addition exceeds 0.002%, the effect is saturated. Therefore, the amount of B added is 0.
0003% or more and 0.002% or less. In the present invention, the components other than the above are Fe, but the inclusion of unavoidable impurities mixed from the smelting raw material such as scrap is allowed.
【0030】次に、本発明の鋼板に含まれるMgとTi
の酸化物および複合酸化物の存在状態について説明す
る。これらの酸化物の直径が、平均粒子径で0.005
μm未満であると再結晶焼鈍時の粒成長が妨げられ良好
なrmが得られない。また、0.1μm超であるとr値
の面内異方性にとって好ましくない{110}〈10
0〉方位および{100}〈110〉方位の再結晶焼鈍
時の核生成、粒成長を抑制することが不十分になり|Δ
r|≦0.2が得られない。従って、rmおよび|Δr
|≦0.2の両方を満足させるためには、MgとTiの
酸化物および複合酸化物の平均粒子径を0.005μm
以上0.1μm以下とする。Next, Mg and Ti contained in the steel sheet of the present invention are described.
The state of existence of the oxides and composite oxides will be described. These oxides have an average particle diameter of 0.005
If it is less than μm, grain growth during recrystallization annealing is hindered, and good rm cannot be obtained. On the other hand, if it exceeds 0.1 μm, it is not preferable for the in-plane anisotropy of the r value {110} <10
Nucleation and grain growth during recrystallization annealing in the 0> and {100} <110> directions become insufficient | Δ
r | ≦ 0.2 cannot be obtained. Therefore, rm and | Δr
In order to satisfy both | ≦ 0.2, the average particle diameter of Mg and Ti oxides and composite oxides must be 0.005 μm.
At least 0.1 μm.
【0031】また、MgとTiの酸化物および複合酸化
物の面密度は、40個/mm2未満では、これら粒子の
数が少く、r値の面内異方性にとって好ましくない{1
10}〈100〉方位および{100}〈110〉方位
の再結晶焼鈍時の核生成、粒成長を抑制することが不十
分になり|Δr|≦0.2が得られない。従って、Mg
とTiの酸化物および複合酸化物の面密度は、40個/
mm2以上とする。一方、MgとTiの酸化物および複
合酸化物の面密度は、1000個/mm2超では、r値
の面内異方性にとって好ましくない{110}〈10
0〉方位および{100}〈110〉方位の再結晶焼鈍
時の核生成、粒成長を抑制する効果が飽和するだけでな
く、伸びを劣化させる。従って、MgとTiの酸化物お
よび複合酸化物の面密度は、1000個/mm2以下と
する。If the areal density of the oxides and composite oxides of Mg and Ti is less than 40 particles / mm 2, the number of these particles is small, which is not preferable for the in-plane anisotropy of r value.
Sufficient suppression of nucleation and grain growth during recrystallization annealing of the 10} <100> orientation and the {100} <110> orientation becomes insufficient, and | Δr | ≦ 0.2 cannot be obtained. Therefore, Mg
And Ti oxide and composite oxide have an area density of 40 /
mm2 or more. On the other hand, if the areal density of the oxides and composite oxides of Mg and Ti is more than 1000 / mm 2, {110} <10 is not preferable for the in-plane anisotropy of the r value.
The effects of suppressing nucleation and grain growth during recrystallization annealing in the 0> orientation and {100} <110> orientation are not only saturated, but also degrade elongation. Therefore, the areal density of the oxides and composite oxides of Mg and Ti is set to 1000 / mm 2 or less.
【0032】[0032]
【実施例】以下に、実施例により本発明をさらに説明す
る。表1および表2に示す化学成分を有するA〜Mの鋼
を、転炉にて溶製して連続鋳造後、その鋳片を加熱温度
1150℃で再加熱し、910℃〜930℃の仕上げ圧
延の温度範囲で6.0mmに圧延した後600℃〜70
0℃で巻取った。酸洗後0.8mmまで冷間圧延を施
し、連続焼鈍ライン(最高加熱温度800〜830℃、
スキンパス圧延率0.8%)を通板した。ただし、ただ
し、鋼Fについては、冷延後、溶融亜鉛めっきライン
(最高加熱温度810℃、溶融亜鉛めっき460℃、合
金化処理520℃×20秒、スキンパス圧延率0.8
%)を通板した。なお、表1、表2の化学組成について
の表示は質量%である。The present invention will be further described below with reference to examples. After continuously casting and smelting steels A to M having the chemical components shown in Tables 1 and 2 in a converter, the slabs were reheated at a heating temperature of 1150 ° C, and finished at 910 ° C to 930 ° C. After rolling to 6.0 mm in the rolling temperature range, 600 ° C to 70 ° C
Winded at 0 ° C. Cold-rolled to 0.8mm after pickling, continuous annealing line (maximum heating temperature 800 ~ 830 ℃,
(Skin pass rolling ratio: 0.8%). However, for steel F, after cold rolling, hot-dip galvanizing line (maximum heating temperature 810 ° C, hot-dip galvanizing 460 ° C, alloying treatment 520 ° C x 20 seconds, skin pass rolling ratio 0.8
%). The indications of the chemical compositions in Tables 1 and 2 are% by mass.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】[0035]
【表3】 [Table 3]
【0036】このようにして得られた鋼板の機械的性質
およびMgとTiの酸化物および/または複合酸化物の
粒子サイズとrmおよび|Δr|との関係を調査した。
ただし、機械的性質は、JIS Z 2201記載の5
号試験片にて、JISZ 2241記載の引張試験方法
で測定した。また|Δr|は、既に述べたものと同一の
方法によって求めた。The relationship between rm and | Δr | and the mechanical properties of the steel sheet thus obtained and the particle size of Mg and Ti oxides and / or composite oxides were investigated.
However, the mechanical properties are as described in JIS Z 2201
The tensile test method described in JISZ2241 was used for the test piece. | Δr | was obtained by the same method as described above.
【0037】一方、MgとTiの酸化物および複合酸化
物の状態は、供試鋼の1/4厚のところから透過型電子
顕微鏡サンプルを採取し、エネルギー分散型X線分光
(Energy Dispersive X−ray
Spectroscope:EDS)や電子エネルギー
損失分光(Electron Energy Loss
Spectroscope:EELS)の組成分析機
能を加えた、200kVの加速電圧の電界放射型電子銃
(Field Emission Gun:FEG)を
搭載した透過型電子顕微鏡によって観察した。観察され
る粒子の組成は、上記EDSおよびEELSによりMg
とTiの酸化物および複合酸化物であることを確認し
た。また、それらの粒子径は、10000〜50000
0倍の倍率で少なくとも1000μm2以上の面積にわ
たって観察し、対象となる粒子をそれぞれ測定したもの
のその一視野での平均の値である。一方、それら対象と
なるサイズの粒子の面密度(1mm2あたりの個数)も
同時に測定した。On the other hand, the state of the oxides and the composite oxides of Mg and Ti was determined by taking a transmission electron microscope sample from a quarter of the thickness of the test steel and performing energy dispersive X-ray spectroscopy (Energy Dispersive X-ray spectroscopy). ray
Spectroscope (EDS) or electron energy loss spectroscopy (Electron Energy Loss)
It was observed by a transmission electron microscope equipped with a field emission type electron gun (Field Emission Gun: FEG) with an accelerating voltage of 200 kV and a composition analysis function of Spectroscope (EELS). The composition of the observed particles was determined by the above EDS and EELS.
And Ti oxides and composite oxides. Further, their particle diameters are 10,000 to 50,000.
This is the average value in one visual field of the target particles measured at a magnification of 0 over an area of at least 1000 μm 2 or more. On the other hand, the areal densities (the number per 1 mm 2) of the target size particles were also measured.
【0038】本発明に沿うものは、鋼A、C、D、E、
F、I、Lの7鋼である。上記以外の鋼は、以下の理由
によって面内異方性が小さく深絞り性に優れた冷延鋼板
が得られていない。鋼Bは、Alの含有量が本発明の範
囲外であるのでMgとTiの酸化物および複合酸化物の
面密度が低い、従って|Δr|が本発明の範囲外であ
る。鋼Gは、C*の値が本発明の範囲外である、従って
rmが低い。鋼Hは、Mgが添加されていないため、酸
化物粒子の径が大きい、従って|Δr|が本発明の範囲
外である。鋼Jは、Cの含有量が本発明の範囲より多
い、従ってrmが低い。鋼Kは、Oの含有量が本発明の
範囲より多いので、MgとTiの酸化物および複合酸化
物の粒子径が大きい、従って|Δr|が本発明の範囲外
である。鋼Mは、Oの含有量が本発明の範囲より少ない
ので、MgとTiの酸化物および複合酸化物の粒子の面
密度が低い、従って|Δr|が本発明の範囲外である。According to the present invention, steels A, C, D, E,
F, I, and L steels. For other steels, cold-rolled steel sheets with small in-plane anisotropy and excellent deep drawability have not been obtained for the following reasons. Steel B has a low areal density of oxides and composite oxides of Mg and Ti because the Al content is out of the range of the present invention, and | Δr | is out of the range of the present invention. Steel G has a low rm because the value of C * is outside the scope of the present invention. Since steel H does not contain Mg, the diameter of the oxide particles is large, and | Δr | is out of the range of the present invention. Steel J has a higher C content than is within the scope of the present invention and therefore a lower rm. Steel K has a larger O content than the range of the present invention, and thus has a large particle size of Mg and Ti oxides and composite oxides. Therefore, | Δr | is out of the range of the present invention. Since the steel M has a lower O content than the range of the present invention, the areal density of the particles of the oxides and composite oxides of Mg and Ti is low, and | Δr | is out of the range of the present invention.
【0039】[0039]
【発明の効果】本発明は、上述したように面内異方性が
小さく深絞り性に優れた冷延鋼板を与えるもので、これ
らの鋼板を用いることで、プレス成形後の耳の発生を大
幅に少なくすることができる。As described above, the present invention provides a cold rolled steel sheet having a small in-plane anisotropy and excellent in deep drawability. By using these steel sheets, the occurrence of ears after press forming can be reduced. It can be significantly reduced.
【図1】 本発明の基礎になる実験において圧延方向と
平行な断面における焼鈍後の再結晶粒の粒度番号Nと|
Δr|の関係を示す図である。FIG. 1 shows the grain size numbers N and | of recrystallized grains after annealing in a cross section parallel to the rolling direction in an experiment on which the present invention is based.
FIG. 6 is a diagram illustrating a relationship of Δr |.
【図2】 本発明の範囲をMgとTiの酸化物および複
合酸化物の平均粒子径dと|Δr|およびrmの関係に
おいて示す図である。FIG. 2 is a diagram showing the range of the present invention in relation to the average particle diameter d of Mg and Ti oxides and composite oxides and | Δr | and rm.
Claims (5)
を特徴とする面内異方性が小さく深絞り性に優れた冷延
鋼板。1. In mass%, C ≦ 0.005%, Si = 0.005-0.1%, Mn = 0.01-0.5%, P ≦ 0.05%, S ≦ 0.02 %, Al ≦ 0.004%, Mg = 0.001-0.01%, O = 0.001-0.01%, N = 0.001-0.01%, and further 0.05 >Ti> 3.42N + 1.5S and (Ti-3.42N-1.5S) / 48-C / 12> 0, with the balance being Fe and inevitable impurities. Cold rolled steel sheet with low anisotropy and excellent deep drawability.
が小さく深絞り性に優れた冷延鋼板。2. The surface according to claim 1, further satisfying 0.05>Nb> 93 {C / 12- (Ti-3.42N-1.5S) / 48} by mass%. Cold rolled steel sheet with low internal anisotropy and excellent deep drawability.
性が小さく深絞り性に優れた冷延鋼板。3. The cold-rolled material according to claim 1, wherein the content of B is 0.0003 to 0.002% by mass%. steel sheet.
μm以下であるMgとTiの酸化物および/または複合
酸化物を鋼中に含有することを特徴とする請求項1〜3
のいずれか1項に記載の面内異方性が小さく深絞り性に
優れた冷延鋼板。4. An average particle size of 0.005 μm or more and 0.1 or more.
4. The steel according to claim 1, wherein an oxide and / or a composite oxide of Mg and Ti having a particle size of not more than μm is contained in the steel.
The cold-rolled steel sheet having a small in-plane anisotropy according to any one of the above, and having excellent deep drawability.
び/または複合酸化物の面密度が40〜1000個/m
m2であることを特徴とする請求項4記載の面内異方性
が小さく深絞り性に優れた冷延鋼板。5. The areal density of oxides and / or composite oxides of Mg and Ti contained in steel is 40 to 1000 / m.
5. The cold-rolled steel sheet according to claim 4, having a small in-plane anisotropy and an excellent deep drawability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14043398A JP3842898B2 (en) | 1998-05-08 | 1998-05-08 | Cold rolled steel sheet with low in-plane anisotropy and excellent deep drawability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14043398A JP3842898B2 (en) | 1998-05-08 | 1998-05-08 | Cold rolled steel sheet with low in-plane anisotropy and excellent deep drawability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11323476A true JPH11323476A (en) | 1999-11-26 |
JP3842898B2 JP3842898B2 (en) | 2006-11-08 |
Family
ID=15268564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14043398A Expired - Fee Related JP3842898B2 (en) | 1998-05-08 | 1998-05-08 | Cold rolled steel sheet with low in-plane anisotropy and excellent deep drawability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3842898B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9340860B2 (en) | 2007-03-05 | 2016-05-17 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet and galvannealed steel sheet |
CN108998742A (en) * | 2018-08-08 | 2018-12-14 | 南京钢铁股份有限公司 | A kind of extremely low yield strength steel plate and its manufacturing method |
-
1998
- 1998-05-08 JP JP14043398A patent/JP3842898B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9340860B2 (en) | 2007-03-05 | 2016-05-17 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet and galvannealed steel sheet |
US9771638B2 (en) | 2007-03-05 | 2017-09-26 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet |
CN108998742A (en) * | 2018-08-08 | 2018-12-14 | 南京钢铁股份有限公司 | A kind of extremely low yield strength steel plate and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP3842898B2 (en) | 2006-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4635525B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
KR100494213B1 (en) | Cold rolled steel sheet having excellent deep drawability and anti-aging property, and manufacture method thereof | |
WO2017168991A1 (en) | Thin steel sheet, plated steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method | |
JP4414883B2 (en) | High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method | |
JP4407449B2 (en) | High strength steel plate and manufacturing method thereof | |
JP3314833B2 (en) | Cold rolled steel sheet excellent in workability and method for producing the same | |
CN111868282A (en) | Steel plate | |
JP2576894B2 (en) | Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same | |
JP5031751B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet, hot-dipped steel sheet and cold-rolled steel sheet with excellent bake hardenability | |
JP2006342412A (en) | Method for producing high tensile strength cold rolled deep-drawing steel sheet excellent in surface property | |
JP2000313936A (en) | Galvannealed steel sheet excellent in ductility and production thereof | |
JP4858004B2 (en) | High-strength steel sheet with excellent ductility and deep drawability and method for producing the same | |
JP2012052236A (en) | High-strength steel sheet excellent in ductility and deep drawability, and its manufacturing method | |
JP2004143470A (en) | Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process | |
JPH11310827A (en) | Manufacture of cold rolled steel sheet excellent in aging resistance at normal temperature and panel characteristic and hot dip galvanized steel sheet | |
JP5076480B2 (en) | High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same | |
JP4561200B2 (en) | High-strength cold-rolled steel sheet with excellent secondary work brittleness resistance and manufacturing method thereof | |
JP3842898B2 (en) | Cold rolled steel sheet with low in-plane anisotropy and excellent deep drawability | |
JP3872595B2 (en) | Cold rolled steel sheet with low in-plane anisotropy and excellent formability | |
JP4506380B2 (en) | Manufacturing method of high-strength steel sheet | |
JP2004137554A (en) | Steel sheet having excellent workability, and production method therefor | |
JP2000256786A (en) | Cold rolled steel sheet minimal in inplane anisotropy and excellent in baking hardenability and aging resistance | |
JP4525386B2 (en) | Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability | |
CN115627414B (en) | Secondary processing brittleness resistance and excellent surface quality phosphorus-containing IF steel plate and production method thereof | |
JPS6230259B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060704 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060811 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090818 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110818 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120818 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |