JPH11319852A - Treatment of waste water containing surfactant - Google Patents

Treatment of waste water containing surfactant

Info

Publication number
JPH11319852A
JPH11319852A JP13958298A JP13958298A JPH11319852A JP H11319852 A JPH11319852 A JP H11319852A JP 13958298 A JP13958298 A JP 13958298A JP 13958298 A JP13958298 A JP 13958298A JP H11319852 A JPH11319852 A JP H11319852A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
surfactant
water
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13958298A
Other languages
Japanese (ja)
Other versions
JP4065356B2 (en
Inventor
Hisanao Kano
久直 狩野
Kenji Oda
賢治 織田
Mitsuhiro Takada
光裕 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP13958298A priority Critical patent/JP4065356B2/en
Publication of JPH11319852A publication Critical patent/JPH11319852A/en
Application granted granted Critical
Publication of JP4065356B2 publication Critical patent/JP4065356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothly operate a reverse osmosis membrane treating device for a long time by biologically treating a collected raw water, bringing the treated water into contact with a cation exchange resin and then subjecting the water to reverse osmosis membrane treatment. SOLUTION: First, the collected raw water as a waste water containing surfactants is biologically treated. The biologically treated water is then brought into contact with a strong acid cation exchange resin. In this process, it is preferable to pass the water through a bacteria separator to remove a solid content such as microbes and bacteria in the treated water. The biologically treated water after the bacteria separation is passed as a downward flow or upward flow through an ion exchange tower packed with a strong acid cation exchange resin and brought into contact with the strong acid cation exchange resin. In this contact treatment with the ion exchange resin, the TOC(total org. compd.) component which is the main factor substance for pollution of the reverse osmosis membrane in the reverse osmosis membrane treatment in the succeeding process is removed by exchanging ions. As the strong acid cation exchange resin, a porous resin is preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密光学機材や半
導体の製造工程から排出される界面活性剤を含有する排
水の処理方法に関するものであり、さらに詳しくは、レ
ンズ、光ファイバ−等の光学用ガラス、液晶、ハードデ
ィスク、太陽電池等に用いる各種ガラス基板,半導体用
シリコンウエハ,化合物半導体ウエハ等の製造工程など
から排出される界面活性剤を含有する排水を処理・回収
して再利用するための処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater containing a surfactant discharged from the manufacturing process of precision optical equipment and semiconductors, and more particularly, to a method for treating optical elements such as lenses and optical fibers. To process, collect and reuse wastewater containing surfactants discharged from the manufacturing process of various glass substrates used for glass, liquid crystals, hard disks, solar cells, etc., silicon wafers for semiconductors, compound semiconductor wafers, etc. In the processing method.

【0002】[0002]

【従来の技術】近年、水の需要が増大してきているにも
かかわらず、一方で新たな水源の確保が一層困難になり
つつある。また、環境保全の観点から総量規制等の排水
規制がより強化されつつあるので、このような状況に対
応するために,工場排水の回収再利用が重要な課題とな
ってきている。工場排水には、その製造工程に従って種
々の成分が含有されているので、再利用するための排水
処理及び回収方法も多様である。
2. Description of the Related Art In recent years, despite increasing demand for water, it has become more difficult to secure a new water source. In addition, since wastewater regulations such as total volume regulations are being strengthened from the viewpoint of environmental conservation, collection and reuse of factory wastewater is becoming an important issue in order to cope with such a situation. Since factory wastewater contains various components according to its manufacturing process, there are various wastewater treatment and recovery methods for reuse.

【0003】例えば、レンズ、光ファイバ一等の光学用
ガラス、液晶、ハードディスク、太陽電池等に用いる各
種ガラス基板、半導体用シリコンウエハ、化合物半導体
ウエハ等の製造工程では、超純水製造設備で製造された
多量の超純水が洗浄用水として使用され、この洗浄に使
用された超純水は界面活性剤を含有した洗浄排水として
排出されている。この排水中の界面活性剤の濃度は工場
の製品や製造工程によって異なるが,通常TOC(全有
機物)として0.5〜10mg/L(リットル)程度の界面活
性剤が含まれている。含有される界面活性剤としては,
陽イオン系界面活性剤,非イオン系界面活性剤及び陰イ
オン系界面活性剤等の各種の界面活性剤である。
[0003] For example, in the manufacturing process of lenses, optical glass such as optical fibers, liquid crystal, hard disks, various glass substrates used for solar cells, silicon wafers for semiconductors, compound semiconductor wafers, etc., manufacturing is performed with ultrapure water manufacturing equipment. A large amount of the purified ultrapure water is used as cleaning water, and the ultrapure water used for the cleaning is discharged as cleaning wastewater containing a surfactant. Although the concentration of the surfactant in the wastewater varies depending on the product of the factory and the manufacturing process, the surfactant generally contains about 0.5 to 10 mg / L (liter) as TOC (total organic matter). As the surfactant contained,
Various surfactants such as a cationic surfactant, a nonionic surfactant, and an anionic surfactant.

【0004】これらの洗浄排水を処理し回収再利用する
にあたっては,回収処理水を再利用した場合に支障を生
ずることがない程度にまで不純物を除去する必要があ
り、例えば半導体製造工程での回収水は第1次純水レベ
ルにまで達することが望まれる。特に、界面活性剤を含
有する排水の処理においては、処理後の回収水中に界面
活性剤がたとえ低濃度であっても残留すると、再利用の
際回収水が発泡したり、さらに回収水を脱塩処理をして
再利用する場合には、界面活性剤によってイオン交換装
置のイオン交換樹脂が汚染され処理性能が低下するおそ
れがある。そこで、界面活性剤含有排水を処理し回収再
利用する場合には、界面活性剤を含むTOC濃度を低い
値で一定濃度以下にする必要がある。
When treating and recovering and reusing these washing wastewaters, it is necessary to remove impurities to such an extent that no trouble occurs when the recovered and treated water is reused. The water is desired to reach the primary pure water level. In particular, in the treatment of wastewater containing a surfactant, if the surfactant remains in the recovered water after the treatment even if the concentration is low, the recovered water foams at the time of reuse, and the recovered water is further removed. When the salt is reused after the treatment, the ion exchange resin of the ion exchange device may be contaminated by the surfactant, and the treatment performance may be reduced. Therefore, when treating and collecting and reusing the surfactant-containing wastewater, it is necessary to lower the concentration of the TOC containing the surfactant at a low value to a certain concentration or less.

【0005】従来、上述のような界面活性剤を含有する
排水の処理方法においては、排水を生物処理、菌体分離
器、逆浸透膜装置の順に通水して処理し回収する方法が
用いられてきた。この方法では、まず回収のために処理
される排水(以下、回収原水と称することもある)を生
物処理するが、その場合必要に応じて予め活性炭塔に通
水し、過酸化水素等の有害物を除去した後、微生物を原
水中に浮遊させて曝気しながら処理する方法、あるいは
活性炭表面に担持させた微生物に回収原水を接触させる
方法等によりTOC成分の大部分を分解し低減する。次
にこの処理水を精密ろ過膜、又は限外ろ過膜からなる菌
体分離器で生物処理水中の生菌を除去する。次いで菌体
分離器の処理水を逆浸透膜装置に通水して残留するTO
C成分をほぼ完全に除去して、その透過水を回収し再利
用している。
Conventionally, in the method for treating wastewater containing a surfactant as described above, a method of treating and recovering wastewater by passing it through a biological treatment, a bacterial cell separator, and a reverse osmosis membrane device in this order is used. Have been. In this method, first, wastewater treated for recovery (hereinafter sometimes referred to as recovered raw water) is biologically treated. In this case, if necessary, the wastewater is passed through an activated carbon tower in advance to remove harmful substances such as hydrogen peroxide. After removing the matter, most of the TOC component is decomposed and reduced by, for example, a method in which the microorganisms are suspended in raw water and treated while aerating, or a method in which the recovered raw water is brought into contact with the microorganisms carried on the activated carbon surface. Next, the treated water is removed with a microbial cell separator comprising a microfiltration membrane or an ultrafiltration membrane to remove viable bacteria in the biologically treated water. Next, the treated water of the microbial cell separator is passed through a reverse osmosis membrane device to remove the remaining TO.
The C component is almost completely removed, and the permeated water is recovered and reused.

【0006】しかしながら、これらの従来の界面活性剤
含有排水の処理方法には以下のような欠点があった。す
なわち、回収原水中に含まれる界面活性剤の濃度が上昇
したり、原水中の界面活性剤等の含有成分の性質が切り
替わったりすると逆浸透膜に急激な目詰まりが生じ、し
かもこの目詰まりは、各種の薬品洗浄によっても回復し
がたく逆浸透膜装置の円滑な運転が出来なくなる問題が
あった。
However, these conventional methods for treating surfactant-containing wastewater have the following disadvantages. That is, when the concentration of the surfactant contained in the recovered raw water increases, or when the properties of the components such as the surfactant in the raw water are switched, rapid clogging occurs in the reverse osmosis membrane. However, there has been a problem that the reverse osmosis membrane device cannot be smoothly operated because of the difficulty in recovering even by various chemical cleaning.

【0007】[0007]

【発明が解決しようとする課題】本発明者等は、この問
題点を解消するために界面活性剤含有排水の処理回収方
法について検討を重ねた結果、生物処理した後の界面活
性剤含有排水の膜汚染要因物質が陽イオン交換樹脂によ
く吸着されることを見いだした。そして、膜汚染要因物
質を除くためには、回収原水を生物処理した後に陽イオ
ン交換樹脂、特にポーラス型の強酸性陽イオン交換樹脂
に接触させることが極めて効果的であり、その接触処理
により逆浸透膜装置が長期にわたり円滑に運転できるこ
とを知見し、本発明を完成するに至った。
SUMMARY OF THE INVENTION The present inventors have repeatedly studied a method for treating and recovering a surfactant-containing wastewater in order to solve this problem. It was found that the membrane contaminants were well adsorbed on the cation exchange resin. In order to remove membrane contaminants, it is very effective to subject the recovered raw water to biological treatment and then contact it with a cation exchange resin, especially a porous strong acid cation exchange resin. The inventors have found that the permeable membrane device can be operated smoothly for a long time, and have completed the present invention.

【0008】[0008]

【課題を解決するための手段】本発明は、界面活性剤含
有排水を生物処理および逆浸透膜処理に付して処理水を
回収する界面活性剤含有排水の処理方法において、該界
面活性剤含有排水を生物処理した後、強酸性陽イオン交
換樹脂に接触させ、次いで逆浸透膜処理することを特徴
とする界面活性剤含有排水の処理方法を要旨とするもの
である。
SUMMARY OF THE INVENTION The present invention relates to a method for treating a surfactant-containing wastewater, wherein the wastewater containing the surfactant is subjected to biological treatment and reverse osmosis membrane treatment to recover the treated water. The gist of the present invention is a method for treating a surfactant-containing wastewater, which comprises subjecting the wastewater to biological treatment, bringing the wastewater into contact with a strongly acidic cation exchange resin, and then treating the wastewater with a reverse osmosis membrane.

【0009】本発明方法の好ましい態様は、強酸性陽イ
オン交換樹脂としてポーラス型強酸性陽イオン交換樹脂
を使用すること;架橋度8%以下のポ−ラス型強酸性陽
イオン交換樹脂を使用すること;Na型の強酸性陽イオ
ン交換樹脂を使用することからなる処理方法であり、又
排水に含有される界面活性剤が陽イオン系界面活性剤を
主体とする界面活性剤であることよりなる処理方法であ
る。
In a preferred embodiment of the present invention, a porous strongly acidic cation exchange resin is used as the strongly acidic cation exchange resin; a porous strongly acidic cation exchange resin having a degree of crosslinking of 8% or less is used. A treatment method comprising using a Na type strongly acidic cation exchange resin, wherein the surfactant contained in the waste water is a surfactant mainly composed of a cationic surfactant. Processing method.

【0010】[0010]

【発明の実施の形態】以下本発明を図1に沿ってさらに
詳細に説明する。図1は,本発明方法に係わる界面活性
剤含有排水の処理方法の概略系統図の一例を示すもので
ある。精密光学機材や半導体製造工程から排出される排
水は、その工程に従って種々の成分を含有しており、弗
酸、硫酸、硝酸等の酸系排水と酢酸等の有機系排水に大
別されるが、本発明方法では主に界面活性剤を含有する
排水を対象とする。界面活性剤含有排水である回収原水
はまず生物処理を行う。その際、回収原水中に過酸化水
素等の生物処理に有害な物質が含まれている場合には、
予め生物処理を行う前に活性炭等により除去しておくこ
とが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to FIG. FIG. 1 shows an example of a schematic system diagram of a method for treating surfactant-containing wastewater according to the method of the present invention. Wastewater discharged from precision optical equipment and semiconductor manufacturing processes contains various components according to the process, and is roughly classified into acid-based wastewater such as hydrofluoric acid, sulfuric acid, and nitric acid and organic wastewater such as acetic acid. The method of the present invention is mainly intended for wastewater containing a surfactant. Recovered raw water, which is surfactant-containing wastewater, is first subjected to biological treatment. At that time, if the raw water contains substances harmful to biological treatment such as hydrogen peroxide,
It is preferable to remove them with activated carbon or the like before performing biological treatment in advance.

【0011】生物処理としては従来から行われている活
性汚泥法あるいは生物活性炭法等が適宜採用される。こ
の生物処理では、回収原水がTOC 1〜10mg/L
程度の比較的高濃度の界面活性剤を含む場合には、上記
活性汚泥法あるいは生物活性炭法等の通常の操作方法に
より処理可能である。また、TOC O.5〜1mg/
Lの比較的低濃度の界面活性剤含有排水の場合には活性
炭表面に微生物を担持した生物活性炭法を採用すると良
い。回収原水に含まれる界面活性剤の種類は、陽イオン
系界面活性剤、陰イオン系界面活性剤、非イオン系界面
活性剤等特に制限されないが、界面活性剤が陽イオン系
界面活性剤を主体とする場合には、微生物の処理能カが
低下することがあるので、曝気時間を長くしたり、特別
に馴養した微生物を採用する等の方法を採用することが
望ましい。
As the biological treatment, an activated sludge method or a biological activated carbon method, which has been conventionally performed, is appropriately employed. In this biological treatment, the recovered raw water has a TOC of 1 to 10 mg / L.
When a relatively high concentration of surfactant is contained, it can be treated by a usual operation method such as the activated sludge method or the biological activated carbon method. In addition, TOC O.D. 5 to 1 mg /
In the case of a wastewater containing a surfactant having a relatively low concentration of L, a biological activated carbon method in which microorganisms are supported on the surface of activated carbon is preferably used. The type of surfactant contained in the recovered raw water is not particularly limited, such as a cationic surfactant, an anionic surfactant, and a nonionic surfactant, but the surfactant is mainly a cationic surfactant. In this case, it is desirable to adopt a method such as lengthening the aeration time or employing a specially acclimated microorganism, since the processing ability of the microorganism may decrease.

【0012】生物処理した処理水は、次いで強酸性陽イ
オン交換樹脂と接触処理させるが、その際、精密ろ過膜
又限外ろ過膜からなる菌体分離器に通水して処理水に含
まれる微生物、菌体等の固体分を除去しておくことが好
ましい。この菌体分離は強酸性陽イオン交換樹脂との接
触処理の際に微生物の堆積による圧力損失が生起するの
を防止するために行うもので、このような目的が達せら
れれば砂などのろ材によるろ過でも良い。
The treated water subjected to the biological treatment is then subjected to a contact treatment with a strongly acidic cation exchange resin. At this time, the treated water is passed through a microbial cell separator comprising a microfiltration membrane or an ultrafiltration membrane to be included in the treated water. It is preferable to remove solids such as microorganisms and cells. This cell separation is performed to prevent pressure loss due to the accumulation of microorganisms during the contact treatment with a strongly acidic cation exchange resin, and if such a purpose is achieved, a filter medium such as sand is used. Filtration may be used.

【0013】次いで、菌体分離をした生物処理水を、強
酸性陽イオン交換樹脂が装填されているイオン交換塔に
下降流あるいは上昇流で通水し、強酸性陽イオン交換樹
脂に接触させる。このイオン交換樹脂との接触処理によ
り、次工程の逆浸透膜処理の際の逆浸透膜面の汚染要因
物質となるTOC成分をイオン交換除去する。本発明方
法では、生物処理された処理水を強酸性陽イオン交換樹
脂に接触させることが必須であるが、処理水中に含まれ
る成分の種類等によっては、この強酸性陽イオン交換樹
脂との接触を陰イオン交換樹脂の共存下で行なうことも
でき、例えば強酸性陽イオン交換樹脂と陰イオン交換樹
脂との混床からなるイオン交換塔に処理水を通水し接触
処理しても良い。
Next, the biologically treated water from which the cells have been separated is passed down or upward through an ion exchange tower loaded with a strongly acidic cation exchange resin, and brought into contact with the strongly acidic cation exchange resin. By the contact treatment with the ion exchange resin, the TOC component serving as a pollutant substance on the reverse osmosis membrane surface in the next step of the reverse osmosis membrane treatment is ion exchanged and removed. In the method of the present invention, it is essential that the treated water subjected to the biological treatment is brought into contact with the strongly acidic cation exchange resin. However, depending on the type of the components contained in the treated water, the contact with the strongly acidic cation exchange resin is required. Can be carried out in the coexistence of an anion exchange resin. For example, the treated water may be passed through an ion exchange tower composed of a mixed bed of a strongly acidic cation exchange resin and an anion exchange resin to perform contact treatment.

【0014】本発明方法において、生物処理後の処理水
中に含まれる膜汚染要因物質をイオン交換除去するため
の強酸性陽イオン交換樹脂としては、ゲル型及びポーラ
ス型の強酸性陽イオン交換樹脂のいずれでも採用できる
が,ポーラス型の強酸性陽イオン交換樹脂を採用するこ
とが好ましい。何故なら、生物処理水に含まれるTOC
成分中の膜汚染要因物質につき充分解明されていない
が、膜汚染要因物質はその平均分子量が200〜400
程度と推測され、これはナトリウムイオン等の無機イオ
ンに比べて大きいので、ゲル型強酸性陽イオン交換樹脂
では,樹脂表面近傍でしか膜汚染要因物質をイオン交換
できないが、これに対しポーラス型強酸性陽イオン交換
樹脂では,樹脂粒の内部までイオン交換に利用され交換
容量が増大するので、ポーラス型樹脂を使用するのが有
利である。
In the method of the present invention, the strongly acidic cation exchange resin for ion-exchange removal of membrane contaminants contained in the treated water after the biological treatment includes gel type and porous type strongly acidic cation exchange resins. Any of them can be employed, but it is preferable to employ a porous strong acid cation exchange resin. Because TOC contained in biologically treated water
Although the film contaminants in the components are not fully understood, the film contaminants have an average molecular weight of 200 to 400.
It is presumed that this is larger than that of inorganic ions such as sodium ion. Therefore, in the case of a gel-type strongly acidic cation exchange resin, ion exchange of membrane contaminants can be performed only near the resin surface. Since a porous cation exchange resin is used for ion exchange to the inside of the resin particles and increases the exchange capacity, it is advantageous to use a porous resin.

【0015】ポ一ラス型強酸性陽イオン交換樹脂として
は、ダイヤイオン(三菱化学(株):商品名)PKシリ
ーズ、アンバーライト200シリーズ(ローム&ハース
社:商品名)等一般に市販されている商品から適宜使用
することができるが、特にその架橋度が8%以下のもの
が好ましく、例えば三菱化学(株)製ダイヤイオンPK
208,PK216,PK212等が挙げられる。さら
に,強酸性陽イオン交換樹脂はH型あるいはNa型のい
ずれでも良いがNa型の強酸性陽イオン交換樹脂を使用
することが好ましい。その理由としては,H型の強酸性
陽イオン交換樹脂を使用した場合、陽イオン交換樹脂接
触後の処理水のpHが低下するため、次工程の逆浸透膜
処理する際に予め処理水の中和処理が必要になり中和剤
の使用に加えて操作が煩雑となり不利である。陰イオン
交換樹脂を一緒に使用する場合には、ポーラス型の強塩
基性陰イオン交換樹脂が好ましく、例えばダイヤイオン
PA306、PA308、PA312、PA316等が
挙げられる。
As porous strong acid cation exchange resins, Diaion (Mitsubishi Chemical Corp .: trade name) PK series, Amberlite 200 series (Rohm & Haas Co., Ltd .: trade name) and the like are generally commercially available. Although it can be used as appropriate from commercial products, those having a degree of crosslinking of 8% or less are particularly preferable. For example, Diaion PK manufactured by Mitsubishi Chemical Corporation
208, PK216 and PK212. Further, the strongly acidic cation exchange resin may be either H type or Na type, but it is preferable to use Na type strongly acidic cation exchange resin. The reason for this is that when an H-type strongly acidic cation exchange resin is used, the pH of the treated water after contact with the cation exchange resin decreases, so that the treated water must be treated in advance in the reverse osmosis membrane treatment in the next step. This requires a summation treatment, which is disadvantageous because the operation becomes complicated in addition to the use of the neutralizing agent. When an anion exchange resin is used together, a porous strong basic anion exchange resin is preferable, and examples thereof include Diaion PA306, PA308, PA312, and PA316.

【0016】強酸性陽イオン交換樹脂が充填されたイオ
ン交換塔への生物処理水の通水速度は、通常、SV10
〜60、好ましくは20〜40で行う。通水は、強酸性
陽イオン交換樹脂がTOCで飽和されるまで行えるが、
通水した生物処理水中のTOCの量が所定量になったと
き、あるいは強酸性陽イオン交換樹脂の処理水中のTO
Cの濃度が所定の値以上に漏洩し始めたときに停止する
ようにすると良い。
The flow rate of the biologically treated water to the ion exchange tower filled with the strongly acidic cation exchange resin is usually SV10.
To 60, preferably 20 to 40. Water can be passed until the strongly acidic cation exchange resin is saturated with TOC.
When the amount of TOC in the treated biological water reaches a predetermined amount, or when the amount of TOC in the treated water of the strongly acidic cation exchange resin increases.
It is preferable to stop when the concentration of C starts to leak beyond a predetermined value.

【0017】イオン交換塔のイオン交換性能が低下し、
所定のTOC濃度の処理水が得られなくなったら通水を
停止しイオン交換樹脂を交換する。その際、生物処理水
のイオン交換処理に使用された強酸性陽イオン交換樹脂
を再生して使用せず、新規の樹脂と交換するのがよい。
その理由は、イオン交換処理により強酸性陽イオン交換
樹脂に捕捉された膜汚染要因物質を主体とするTOC成
分は、イオン交換樹脂との親和力が強いため、酸、アル
カリを用いる再生手法により樹脂の再生を行うことが出
来るとしてもその再生操作が煩雑で、しかも再生効率も
低く経済的ではないからである。
The ion exchange performance of the ion exchange column is reduced,
When treated water having a predetermined TOC concentration cannot be obtained, the flow of water is stopped and the ion exchange resin is replaced. At this time, the strongly acidic cation exchange resin used for the ion exchange treatment of the biologically treated water is preferably regenerated and not used, but replaced with a new resin.
The reason is that the TOC component mainly composed of the membrane fouling substance trapped in the strongly acidic cation exchange resin by the ion exchange treatment has a strong affinity with the ion exchange resin. This is because even if the reproduction can be performed, the reproduction operation is complicated, the reproduction efficiency is low, and it is not economical.

【0018】強酸性陽イオン交換樹脂により処理された
処理水は、次に逆浸透膜処理に供される。処理水中に残
留するTOC成分は逆浸透膜処理によりほぼ完全に除去
され、TOC成分が除去された透過水の水質レベルは1
次純水程度であるので、回収水として再利用される。本
発明方法では、回収原水は生物処理後、強酸性陽イオン
交換樹脂による処理で膜汚染要因物質が除去されている
ので、逆浸透膜処理の際、逆浸透膜の圧力損失は大幅に
軽減され、逆浸透膜処理を長期間にわたり安定して行う
ことが出来る。逆浸透膜としては、特に制限されず酢酸
セルロース系、ポリアミド系等の通常使用されているも
のから適宜選択することができ、常法により処理操作さ
れる。
The treated water treated with the strongly acidic cation exchange resin is then subjected to a reverse osmosis membrane treatment. The TOC component remaining in the treated water is almost completely removed by the reverse osmosis membrane treatment, and the water quality level of the permeated water from which the TOC component has been removed is 1
Since it is about next pure water, it is reused as recovered water. In the method of the present invention, since the recovered raw water is treated with a strongly acidic cation exchange resin after the biological treatment to remove the membrane contaminant, the pressure loss of the reverse osmosis membrane during the reverse osmosis membrane treatment is greatly reduced. In addition, the reverse osmosis membrane treatment can be stably performed over a long period of time. The reverse osmosis membrane is not particularly limited and can be appropriately selected from those usually used such as cellulose acetate-based and polyamide-based membranes, and is subjected to a treatment operation by a conventional method.

【0019】本発明では、回収原水の生物処理水を強酸
性陽イオン交換樹脂によって接触処理することにより膜
汚染が軽減され逆浸透膜処理を円滑に行うことが出来、
しかもこの膜汚染防止による効果は特定の逆浸透膜に対
して現れるものではない。この強酸性陽イオン交換樹脂
による処理により、逆浸透膜の汚染が軽減される理由は
必ずしも明らかではないが、界面活性剤、特に陽イオン
系界面活性剤を含む排水を生物処理に付した場合、生物
分解が不完全あるいは一様でないために中程度の分子量
の有機成分が残存し、その中のある成分が逆浸透膜汚染
要因物質として作用しており、この汚染要因物質が強酸
性陽イオン交換樹脂との親和性が強く、陽イオン交換樹
脂による処理で容易に除去されるためと推察される。
According to the present invention, the biological treatment water of the recovered raw water is subjected to contact treatment with a strongly acidic cation exchange resin, whereby membrane contamination is reduced and reverse osmosis membrane treatment can be carried out smoothly.
Moreover, the effect of preventing membrane contamination does not appear for a specific reverse osmosis membrane. The reason why the treatment with the strong acidic cation exchange resin reduces contamination of the reverse osmosis membrane is not necessarily clear, but when a wastewater containing a surfactant, particularly a cationic surfactant is subjected to biological treatment, Due to incomplete or non-uniform biodegradation, medium-molecular-weight organic components remain, and some of them are acting as reverse osmosis membrane contaminants. It is presumed that it has strong affinity with the resin and is easily removed by the treatment with the cation exchange resin.

【0020】[0020]

【実施例】以下に本発明を実施例及びこれと対比するた
めの比較例により更に詳細に説明するが,本発明はその
要旨を越えない限り下記の実施例よって制限を受けるも
のではない。
The present invention will be described below in more detail with reference to Examples and Comparative Examples for comparison, but the present invention is not limited by the following Examples unless it exceeds the gist thereof.

【0021】実施例 図1に示すようなフローを有する界面活性剤含有排水処
理装置にてテストを行つた。半導体製造工程から排出さ
れた界面活性剤含有洗浄排水(回収原水)を生物処理し
た後、UF膜マイクローザ(旭化成(株)製)を内蔵し
た菌体分離器により微生物を分離した。菌体分離器から
得られた生物処理水の水質を表1に示す。この生物処理
水を強酸性陽イオン交換樹脂処理、次いで逆浸透膜処理
に付しテストを行った。
Example A test was conducted using a surfactant-containing wastewater treatment apparatus having a flow as shown in FIG. After biological treatment of surfactant-containing cleaning wastewater (recovered raw water) discharged from the semiconductor manufacturing process, microorganisms were separated by a cell separator equipped with a UF membrane microza (manufactured by Asahi Kasei Corporation). Table 1 shows the quality of the biologically treated water obtained from the cell separator. This biologically treated water was subjected to a treatment with a strongly acidic cation exchange resin, followed by a treatment with a reverse osmosis membrane to conduct a test.

【0022】[0022]

【表1】 [Table 1]

【0023】強酸性陽イオン交換樹脂塔は、内径125
mm、高さ750mmで塔頂部に原水導入管を、塔底部
には処理水導出管を設けた。この塔にポーラス型強酸性
陽イオン交換樹脂として、ダイヤイオンPK208(N
a型)[三菱化学(株)製]を7.0L,充填層高 約
570mmで充填した。このイオン交換樹脂塔に、生物
処理水を通水流量210L/hで通水した。逆浸透膜装
置には、全芳香族ポリアミド系複合膜ES−10D(日
東電工(株)製)を装備し、供給水流量210L/h、
濃縮水排出流量30L/h、透過水流量180L/h
で、イオン交換樹脂塔から得られた処理水の処理を行っ
た。上記処理条件で回収処理を行ったときの逆浸透膜装
置の運転圧力損失(kgf/cm2)の経時変化を図2に、処
理水の平均水質を表2に示す。
The strong acid cation exchange resin column has an inner diameter of 125
A raw water introduction pipe was provided at the top of the tower at a height of 750 mm and a height of 750 mm, and a treated water discharge pipe was provided at the bottom of the tower. In this column, as a porous strong acid cation exchange resin, Diaion PK208 (N
a type) [manufactured by Mitsubishi Chemical Corporation] was packed at 7.0 L with a packed bed height of about 570 mm. The biologically treated water was passed through this ion exchange resin tower at a flow rate of 210 L / h. The reverse osmosis membrane device is equipped with a wholly aromatic polyamide-based composite membrane ES-10D (manufactured by Nitto Denko Corporation), with a supply water flow rate of 210 L / h,
Concentrated water discharge flow rate 30 L / h, permeate flow rate 180 L / h
Then, the treated water obtained from the ion exchange resin tower was treated. FIG. 2 shows the change over time in the operating pressure loss (kgf / cm 2 ) of the reverse osmosis membrane device when the recovery treatment was performed under the above treatment conditions, and Table 2 shows the average quality of the treated water.

【0024】比較例 表1に示す実施例で使用したのと同じ水質の生物処理水
を、イオン交換樹脂塔で処理することなく直接逆浸透膜
装置に通水し、回収処理を行った。処理に用いた逆浸透
膜装置と処理条件は実施例と同−とした。上記処理条件
で回収処理を行ったときの逆浸透膜装置の運転圧力損失
の経時変化を図2に示し、又回収水の平均水質を表2に
示す。
Comparative Example Biologically treated water having the same water quality as that used in the examples shown in Table 1 was directly passed through a reverse osmosis membrane device without being treated in an ion exchange resin tower to perform a recovery treatment. The reverse osmosis membrane device used for the treatment and the treatment conditions were the same as in the example. FIG. 2 shows the change over time in the operating pressure loss of the reverse osmosis membrane device when the recovery treatment was performed under the above treatment conditions, and Table 2 shows the average quality of the recovered water.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明の処理方法により、界面活性剤含
有排水を生物処理、強酸性陽イオン交換樹脂処理、逆浸
透膜処理の順に処理すれば,従来の生物処理及び逆浸透
膜処理による排水の処理方法に比較して、逆浸透膜装置
の運転圧力損失をより低いレベルに安定して保つことが
できるので、長期にわたり円滑な運転が可能であるばか
りではなく、逆浸透膜処理水のTOCをより低い濃度に
安定して保つことができるので、回収水を有効に再使用
することができる。
According to the treatment method of the present invention, if the wastewater containing surfactant is treated in the order of biological treatment, strongly acidic cation exchange resin treatment, and reverse osmosis membrane treatment, wastewater by conventional biological treatment and reverse osmosis membrane treatment can be obtained. As compared with the treatment method of the above, the operating pressure loss of the reverse osmosis membrane device can be stably maintained at a lower level, so that not only a smooth operation can be performed for a long time but also the TOC of the reverse osmosis membrane treated water can be improved. Can be stably maintained at a lower concentration, so that the recovered water can be effectively reused.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明にかかわる界面活性剤含有排水
の処理方法の一例を示す系統略図である。
FIG. 1 is a schematic system diagram illustrating an example of a method for treating a surfactant-containing wastewater according to the present invention.

【図2】 図2は実施例及び比較例の逆浸透膜装置の運
転圧力損失の経時変化を示す。図中、縦軸はRO運転圧
力損失(kgf/cm2)、横軸は通水日数を表す。
FIG. 2 shows the change over time of the operating pressure loss of the reverse osmosis membrane devices of Examples and Comparative Examples. In the figure, the vertical axis represents RO operating pressure loss (kgf / cm 2 ), and the horizontal axis represents days of water passage.

フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 9/00 502 C02F 9/00 502J 503 503C 504 504A Continued on the front page (51) Int.Cl. 6 Identification symbol FI C02F 9/00 502 C02F 9/00 502J 503 503C 504 504A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 界面活性剤含有排水を生物処理および逆
浸透膜処理に付し処理水を回収する界面活性剤含有排水
の処理方法において、該界面活性剤含有排水を生物処理
した後、強酸性陽イオン交換樹脂に接触させ、次いで逆
浸透膜処理することを特徴とする界面活性剤含有排水の
処理方法。
Claims: 1. A method for treating a surfactant-containing wastewater, wherein the surfactant-containing wastewater is subjected to biological treatment and reverse osmosis membrane treatment to recover treated water. A method for treating a surfactant-containing wastewater, comprising contacting with a cation exchange resin, and then treating with a reverse osmosis membrane.
【請求項2】 強酸性陽イオン交換樹脂として、ポーラ
ス型強酸性陽イオン交換樹脂を使用することを特徴とす
る請求項1記載の界面活性剤含有排水の処理方法。
2. The method for treating wastewater containing a surfactant according to claim 1, wherein a porous strong acid cation exchange resin is used as the strong acid cation exchange resin.
【請求項3】 強酸性陽イオン交換樹脂として、架橋度
8%以下のポ−ラス型強酸性陽イオン交換樹脂を使用す
ることを特徴とする請求項1又は2記載の界面活性剤含
有排水の処理方法。
3. The surfactant-containing wastewater according to claim 1, wherein a porous strong acid cation exchange resin having a degree of crosslinking of 8% or less is used as the strong acid cation exchange resin. Processing method.
【請求項4】 強酸性陽イオン交換樹脂として、Na型
の強酸性陽イオン交換樹脂を使用することを特徴とする
請求項1乃至3のいずれか1項に記載の界面活性剤含有
排水の処理方法。
4. The treatment of a surfactant-containing wastewater according to claim 1, wherein a strongly acidic cation exchange resin of Na type is used as the strongly acidic cation exchange resin. Method.
【請求項5】 排水に含有される界面活性剤が陽イオン
系界面活性剤を主体とする界面活性剤であることを特徴
とする請求項1記載の界面活性剤含有排水の処理方法。
5. The method for treating a surfactant-containing wastewater according to claim 1, wherein the surfactant contained in the wastewater is a surfactant mainly composed of a cationic surfactant.
JP13958298A 1998-05-21 1998-05-21 Surfactant-containing wastewater treatment method Expired - Fee Related JP4065356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13958298A JP4065356B2 (en) 1998-05-21 1998-05-21 Surfactant-containing wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13958298A JP4065356B2 (en) 1998-05-21 1998-05-21 Surfactant-containing wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH11319852A true JPH11319852A (en) 1999-11-24
JP4065356B2 JP4065356B2 (en) 2008-03-26

Family

ID=15248627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13958298A Expired - Fee Related JP4065356B2 (en) 1998-05-21 1998-05-21 Surfactant-containing wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4065356B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212520A (en) * 2010-03-31 2011-10-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2015139771A (en) * 2014-01-30 2015-08-03 三菱重工業株式会社 System and method for preventing chemical fouling in reverse osmosis membrane
JP2015155097A (en) * 2015-04-20 2015-08-27 株式会社神鋼環境ソリューション Method and equipment for wastewater treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212520A (en) * 2010-03-31 2011-10-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2015139771A (en) * 2014-01-30 2015-08-03 三菱重工業株式会社 System and method for preventing chemical fouling in reverse osmosis membrane
US10322951B2 (en) 2014-01-30 2019-06-18 Mitsubishi Heavy Industries Engineering, Ltd. System and method to prevent chemical fouling on reverse osmosis membrane
JP2015155097A (en) * 2015-04-20 2015-08-27 株式会社神鋼環境ソリューション Method and equipment for wastewater treatment

Also Published As

Publication number Publication date
JP4065356B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP3671644B2 (en) Photoresist developing waste liquid recycling method and apparatus
JP3426072B2 (en) Ultrapure water production equipment
JP2007181833A (en) Method for treating tetraalkylammonium ion-containing solution
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3200314B2 (en) Organic wastewater treatment equipment
JP4065356B2 (en) Surfactant-containing wastewater treatment method
GB2319531A (en) Rejuvenation of photoresist development waste to recover tetraalkylammonium hydroxide
JPH11253968A (en) Water recovering apparatus
JPH0679272A (en) Device for production of pure water
JP3968678B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JP3376639B2 (en) Pure water recovery method from semiconductor cleaning wastewater
JPH09253638A (en) Ultrapure water making apparatus
JP3746803B2 (en) Semiconductor cleaning wastewater collection method
JP2950621B2 (en) Ultrapure water production method
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP4277491B2 (en) Circulation utilization system of fluorine aqueous solution or hydrofluoric acid aqueous solution and its circulation utilization method
JP3944973B2 (en) Reverse osmosis membrane treatment method
JPH0871593A (en) Water treatment method
JP3256647B2 (en) Method for removing hydrogen peroxide in water to be treated and water treatment apparatus
JP3817799B2 (en) Wastewater membrane treatment equipment
CN1278958C (en) Method for removing ammonia nitrogen from reused sewage
JP3645007B2 (en) Ultrapure water production equipment
JPH0632821B2 (en) Method for suppressing the growth of microorganisms in pure water
JP2001205297A (en) Apparatus for producing pure water
JPH09294977A (en) Water purifying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees