JPH11315771A - Inspection system for noise by discharge pulse of electric fuel pump - Google Patents

Inspection system for noise by discharge pulse of electric fuel pump

Info

Publication number
JPH11315771A
JPH11315771A JP11929398A JP11929398A JPH11315771A JP H11315771 A JPH11315771 A JP H11315771A JP 11929398 A JP11929398 A JP 11929398A JP 11929398 A JP11929398 A JP 11929398A JP H11315771 A JPH11315771 A JP H11315771A
Authority
JP
Japan
Prior art keywords
peak
pulsation
frequency
value
fuel pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11929398A
Other languages
Japanese (ja)
Other versions
JP3595926B2 (en
Inventor
Yoshio Sato
嘉夫 佐藤
Toshitaka Suzuki
利隆 鈴木
Hirobumi Komatsubara
博文 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP11929398A priority Critical patent/JP3595926B2/en
Publication of JPH11315771A publication Critical patent/JPH11315771A/en
Application granted granted Critical
Publication of JP3595926B2 publication Critical patent/JP3595926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately determine the quality of an electric fuel pump. SOLUTION: The determination system determines the quality of an electric fuel pump based on pulse pressure relative to pulse frequency obtained by an analyzer. The determination system is provided with primary component pulse frequency setting means 21, first peak value detecting means 22 which detects the pulse pressure peak value in a predetermined frequency range including the pulse frequency of each higher- degree order component for every higher-degree order, second peak value detecting means 23 which detects the pulse pressure peak value in the frequency range outside of the predetermined frequency range including the pulse frequency of each higher- degree order component for every higher-degree order, peak difference calculating means 24 which calculates the difference of the pulse pressure peak values for every higher-degree order, peak difference total value calculating means 25 which calculates the total value of the peak difference which is the positive value in each peak difference, and quality determining means 26 which compares the peak difference total value with a predetermined reference value and which determines the electric fuel pump to be defective when the peak difference total value is larger than the reference value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電動燃料ポンプの
吐出脈動による騒音を検査し、当該電動燃料ポンプの良
否を判定する検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection apparatus for inspecting noise due to discharge pulsation of an electric fuel pump and judging the quality of the electric fuel pump.

【0002】[0002]

【従来の技術】従来、電動燃料ポンプの吐出脈動による
騒音の検査装置は、電動燃料ポンプの吐出脈動圧力を検
出する圧力センサと、圧力センサからの吐出脈動圧力信
号に基づき、脈動周波数に対する脈動圧力を求めるアナ
ライザと、アナライザにより得られた脈動周波数に対す
る脈動圧力に基づき燃料ポンプの良否を判定する判定装
置とを備えて構成され、判定装置は、次数1次成分の脈
動周波数における脈動圧力ピーク値が予め定めた基準値
より大きい場合に当該電動燃料ポンプを不良品と判定す
るよう構成されていた。
2. Description of the Related Art Conventionally, an apparatus for inspecting noise due to discharge pulsation of an electric fuel pump has a pressure sensor for detecting a discharge pulsation pressure of the electric fuel pump, and a pulsation pressure corresponding to a pulsation frequency based on a discharge pulsation pressure signal from the pressure sensor. And a determination device for determining the quality of the fuel pump based on the pulsation pressure with respect to the pulsation frequency obtained by the analyzer, wherein the determination device has a pulsation pressure peak value at the pulsation frequency of the first order component. If the electric fuel pump is larger than a predetermined reference value, the electric fuel pump is determined to be defective.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、次数1
次成分の脈動周波数における脈動圧力ピーク値が基準値
よりも小さい場合であっても、電動燃料ポンプのインペ
ラ羽根欠けによる騒音大品があり、また、インペラ羽根
欠けが無くても騒音の大きいクレーム品があり、従来の
検査装置によると、これらの電動燃料ポンプの良否を正
確に判定することが難しかった。
However, the order 1
Even when the pulsation pressure peak value at the pulsation frequency of the next component is smaller than the reference value, there is a large noise product due to the impeller blade chipping of the electric fuel pump, and a large noise product even without the impeller blade chipping. According to the conventional inspection apparatus, it is difficult to accurately determine the quality of these electric fuel pumps.

【0004】本発明は、上記問題点を解決し、電動燃料
ポンプの良否を正確に判定可能な検査装置を提供するこ
とを目的とする。
[0004] It is an object of the present invention to solve the above problems and to provide an inspection device capable of accurately determining the quality of an electric fuel pump.

【0005】[0005]

【課題を解決するための手段】本発明による電動燃料ポ
ンプの吐出脈動による騒音の検査装置は、電動燃料ポン
プの吐出脈動圧力を検出する圧力センサと、前記圧力セ
ンサからの吐出脈動圧力信号に基づき、脈動周波数に対
する脈動圧力を求めるアナライザと、前記アナライザに
より得られた脈動周波数に対する脈動圧力に基づき電動
燃料ポンプの良否を判定する判定装置とを備える電動燃
料ポンプの吐出脈動による騒音の検査装置において、前
記判定装置は、前記アナライザにより得られた脈動周波
数に対する脈動圧力に基づき次数1次成分の脈動周波数
を設定する1次成分脈動周波数設定手段と、前記1次成
分脈動周波数設定手段により設定された次数1次成分の
脈動周波数を基に、各次数高次毎に、当該次数高次成分
の脈動周波数を含む所定周波数範囲における脈動圧力ピ
ーク値を検出する第1ピーク値検出手段と、前記1次成
分脈動周波数設定手段により設定された次数1次成分の
脈動周波数を基に、各次数高次毎に、当該次数高次成分
の脈動周波数を含む所定周波数範囲以外の周波数範囲に
おける脈動圧力ピーク値を検出する第2ピーク値検出手
段と、各次数高次毎に、前記第1ピーク値検出手段によ
り検出された脈動圧力ピーク値と前記第2ピーク値検出
手段により検出された脈動圧力ピーク値との差を算出す
るピーク差演算手段と、前記ピーク差演算手段により算
出された各ピーク差のうち正の値となるピーク差の合計
値を算出するピーク差合計値算出手段と、前記ピーク差
合計値算出手段により算出されたピーク差合計値を予め
定めた基準値と大小比較し、ピーク差合計値が前記基準
値よりも大きい場合、当該電動燃料ポンプを不良品と判
定する良否判定手段とを備えることを特徴とする。
According to the present invention, there is provided an apparatus for inspecting noise due to discharge pulsation of an electric fuel pump, comprising: a pressure sensor for detecting a discharge pulsation pressure of the electric fuel pump; and a discharge pulsation pressure signal from the pressure sensor. An analyzer for determining a pulsation pressure with respect to a pulsation frequency, and a noise inspection device for noise due to discharge pulsation of the electric fuel pump, comprising: a determination device for determining the quality of the electric fuel pump based on the pulsation pressure with respect to the pulsation frequency obtained by the analyzer; The determination device includes a primary component pulsation frequency setting unit that sets a pulsation frequency of a first-order component based on a pulsation pressure with respect to the pulsation frequency obtained by the analyzer, and an order set by the primary component pulsation frequency setting unit. Based on the pulsation frequency of the first-order component, the pulsation frequency of the higher-order component is included for each higher order. A first peak value detecting means for detecting a pulsating pressure peak value in a predetermined frequency range; and a pulsating frequency of a first-order component set by the first-order pulsating frequency setting means. Second peak value detecting means for detecting a pulsating pressure peak value in a frequency range other than the predetermined frequency range including the pulsating frequency of the higher order component, and the first peak value detecting means for each higher order. A peak difference calculating means for calculating a difference between the pulsating pressure peak value and the pulsating pressure peak value detected by the second peak value detecting means; and a positive value among the peak differences calculated by the peak difference calculating means. A peak difference total value calculating means for calculating a total value of the peak differences, and a peak difference total value calculated by the peak difference total value calculating means is compared with a predetermined reference value to determine a peak value. If the sum is greater than the reference value, characterized in that it comprises a determining quality determination means the electric fuel pump defective.

【0006】[0006]

【発明の実施の形態】図1は、本発明の一実施形態に係
る検査装置の構成図、図2は、同検査装置における判定
装置の機能ブロック図、図3及び図4は、それぞれ同判
定装置の処理内容を説明するための説明図、図5は、同
判定装置による判定結果の説明図を示す。
FIG. 1 is a block diagram of an inspection apparatus according to an embodiment of the present invention, FIG. 2 is a functional block diagram of a determination apparatus in the inspection apparatus, and FIGS. FIG. 5 is an explanatory diagram for explaining the processing contents of the device, and FIG. 5 is an explanatory diagram of a determination result by the determination device.

【0007】図1において、1は、検査対象とされる電
動燃料ポンプ、2は、電動燃料ポンプ1の電源であり、
電動燃料ポンプ1に対し例えば14Vの駆動電圧を印加
するもの、3は、電動燃料ポンプ1に吸入され吐出され
る擬似燃料を表している。
In FIG. 1, 1 is an electric fuel pump to be inspected, 2 is a power supply of the electric fuel pump 1,
A reference numeral 3 for applying a drive voltage of, for example, 14 V to the electric fuel pump 1 denotes a pseudo fuel that is drawn into and discharged from the electric fuel pump 1.

【0008】電動燃料ポンプ1の吐出口1aには燃料通
路4が接続されている。燃料通路4には、直角に折れ曲
がった通路5を有するセンサ配管6が配設されており、
このセンサ配管6に、電動燃料ポンプ1の吐出脈動圧力
を検出する圧力センサ7が配設されている。圧力センサ
7は、電動燃料ポンプ1の吐出口1aから所定距離例え
ば150mm離れて位置している。また、燃料通路4に
は、レギュレータ8が配設されている。
A fuel passage 4 is connected to a discharge port 1 a of the electric fuel pump 1. A sensor pipe 6 having a passage 5 bent at a right angle is disposed in the fuel passage 4.
A pressure sensor 7 for detecting a discharge pulsation pressure of the electric fuel pump 1 is provided in the sensor pipe 6. The pressure sensor 7 is located at a predetermined distance, for example, 150 mm from the discharge port 1 a of the electric fuel pump 1. A regulator 8 is provided in the fuel passage 4.

【0009】圧力センサ7には、アンプ9を介してFF
T(Fast Fourier Transform)
アナライザ10が接続されている。FFTアナライザ1
0は、圧力センサ7からの吐出脈動圧力信号に基づき、
脈動周波数に対する脈動圧力(図3及び図4のグラフ参
照(図3のグラフ及び図4のグラフは同一のグラフであ
る。))を求めるものである。FFTアナライザ10に
は、判定装置としてのパーソナルコンピュータ11が接
続されている。パーソナルコンピュータ11は、FFT
アナライザ10により得られた脈動周波数に対する脈動
圧力に基づき電動燃料ポンプ1の良否を判定するもので
ある。
An FF is connected to the pressure sensor 7 via an amplifier 9.
T (Fast Fourier Transform)
An analyzer 10 is connected. FFT analyzer 1
0 is based on the discharge pulsation pressure signal from the pressure sensor 7,
The pulsation pressure with respect to the pulsation frequency (see the graphs of FIGS. 3 and 4 (the graphs of FIGS. 3 and 4 are the same graph)) is obtained. A personal computer 11 as a determination device is connected to the FFT analyzer 10. The personal computer 11 uses the FFT
The quality of the electric fuel pump 1 is determined based on the pulsation pressure with respect to the pulsation frequency obtained by the analyzer 10.

【0010】パーソナルコンピュータ11は、機能的に
は図2に示すように構成される。図2において、パーソ
ナルコンピュータ11は、1次成分脈動周波数設定手段
21と第1ピーク値検出手段22と第2ピーク値検出手
段23とピーク差演算手段24とピーク差合計値算出手
段25と良否判定手段26とを備える。
The personal computer 11 is functionally configured as shown in FIG. In FIG. 2, the personal computer 11 includes a primary component pulsation frequency setting means 21, a first peak value detecting means 22, a second peak value detecting means 23, a peak difference calculating means 24, a peak difference total value calculating means 25, and a pass / fail judgment. Means 26.

【0011】1次成分脈動周波数設定手段21は、FF
Tアナライザ10により得られた脈動周波数に対する脈
動圧力に基づき次数1次成分の脈動周波数(基本脈動周
波数)を設定するものである。ここで、次数1次成分の
脈動周波数(基本脈動周波数)とは、例えば図3に示す
ように、70.00Hzから110.00Hzまでの脈
動周波数範囲において脈動圧力ピーク値をとる脈動周波
数のことをいい、図3のグラフの場合、次数1次成分の
脈動周波数(基本脈動周波数)は77.50Hzとな
る。
The primary component pulsation frequency setting means 21 includes an FF
The pulsation frequency of the first order component (basic pulsation frequency) is set based on the pulsation pressure with respect to the pulsation frequency obtained by the T analyzer 10. Here, the pulsation frequency of the first-order component (basic pulsation frequency) is, for example, a pulsation frequency having a pulsation pressure peak value in a pulsation frequency range from 70.00 Hz to 110.00 Hz as shown in FIG. In the case of the graph of FIG. 3, the pulsation frequency (basic pulsation frequency) of the first-order component is 77.50 Hz.

【0012】第1ピーク値検出手段22は、1次成分脈
動周波数設定手段21により設定された次数1次成分の
脈動周波数(基本脈動周波数)を基に、各次数高次毎
に、当該次数高次成分の脈動周波数を含む所定周波数範
囲における脈動圧力ピーク値(第1脈動圧力ピーク値)
を検出するものである。
The first peak value detecting means 22 is provided for each higher order based on the pulsation frequency (basic pulsation frequency) of the first order component set by the first order component pulsating frequency setting means 21. Pulsating pressure peak value in a predetermined frequency range including the pulsating frequency of the next component (first pulsating pressure peak value)
Is to be detected.

【0013】ここで、次数高次成分の脈動周波数は、次
数2次成分については次数1次成分の脈動周波数(基本
脈動周波数)を2倍して得られる脈動周波数となり、以
下、次数3次成分、次数4次成分、…については、次数
1次成分の脈動周波数(基本脈動周波数)をそれぞれ3
倍、4倍、…、して得られる脈動周波数となる。例え
ば、図3のグラフの場合、次数2次成分、次数3次成
分、次数4次成分、…、次数13次成分の各脈動周波数
は、77.50Hzの次数1次成分の脈動周波数(基本
脈動周波数)をそれぞれ2倍、3倍、4倍、…、13倍
して得られる155.00Hz、232.50Hz、3
10.00Hz、…、1007.50Hzとなる。
Here, the pulsation frequency of the higher-order component is a pulsation frequency obtained by doubling the pulsation frequency of the first-order component (basic pulsation frequency) for the second-order component. , The fourth-order component,..., The pulsation frequency (basic pulsation frequency) of the first-order component is 3
.., 4 times,... For example, in the case of the graph of FIG. 3, the pulsation frequencies of the second-order component, the third-order component, the fourth-order component,..., The thirteenth-order component are the pulsation frequencies of the first-order component of 77.50 Hz (basic pulsation). , 15 × 20 Hz, 232.50 Hz, 3 × 2 ×, 3 ×, 4 ×,.
, 1007.50 Hz.

【0014】また、次数高次成分の脈動周波数を含む所
定周波数範囲は、各次数高次成分において第1脈動圧力
ピーク値をとる脈動周波数の誤差を考慮して設けられて
おり、例えば、次数高次成分の脈動周波数を中心とした
±20Hzの範囲に設定されている。例えば、図3及び
図4に示すグラフの場合、次数2次成分、次数3次成
分、次数4次成分、…、次数13次成分の各脈動周波数
を含む所定周波数範囲は、それぞれ、57.50Hzか
ら97.50Hzまでの範囲、135.00Hzから1
75.00Hzまでの範囲、212.50Hzから25
2.50Hzまでの範囲、…、987.50Hzから1
027.50Hzまでの範囲となる。
The predetermined frequency range including the pulsation frequency of the higher-order component is provided in consideration of the error of the pulsation frequency that takes the first pulsation pressure peak value in each higher-order component. It is set in the range of ± 20 Hz around the pulsation frequency of the next component. For example, in the case of the graphs shown in FIGS. 3 and 4, the predetermined frequency ranges including the pulsation frequencies of the second-order component, the third-order component, the fourth-order component,..., The thirteenth-order component are 57.50 Hz, respectively. From 97.50 Hz to 135.00 Hz to 1
Range up to 75.00 Hz, 212.50 Hz to 25
Range up to 2.50 Hz, ..., 987.50 Hz to 1
The range is up to 027.50 Hz.

【0015】また、次数高次成分の脈動周波数を含む所
定周波数範囲における第1脈動圧力ピーク値は、例えば
図3及び図4のグラフの場合、次数2次成分、次数3次
成分、次数4次成分、…、次数13次成分について、そ
れぞれ、脈動周波数(第1ピーク周波数)155.00
Hzのときの−66.75dB、脈動周波数(第1ピー
ク周波数)240.00Hzのときの−83.75d
B、脈動周波数(第1ピーク周波数)315.00Hz
のときの−82.75dB、…、脈動周波数(第1ピー
ク周波数)997.50Hzのときの−93.75Hz
となる(下記表1参照)。
For example, in the case of the graphs of FIGS. 3 and 4, the first pulsation pressure peak value in a predetermined frequency range including the pulsation frequency of the higher-order component is the second-order component, the third-order component, and the fourth-order component. , The pulsation frequency (first peak frequency) of the 13th-order component is 155.00, respectively.
-66.75 dB at Hz, pulsation frequency (first peak frequency) -83.75 dB at 240.00 Hz
B, pulsation frequency (first peak frequency) 315.00 Hz
-82.75 dB at ..., pulsation frequency (first peak frequency) -93.75 Hz at 997.50 Hz
(See Table 1 below).

【0016】第2ピーク値検出手段23は、1次成分脈
動周波数設定手段21により設定された次数1次成分の
脈動周波数(基本脈動周波数)を基に、各次数高次毎
に、当該次数高次成分の脈動周波数を含む所定周波数範
囲以外の周波数範囲における脈動圧力ピーク値(第2脈
動圧力ピーク値)を検出するものである。
The second peak value detecting means 23, based on the pulsation frequency (basic pulsation frequency) of the first-order component set by the first-order component pulsation frequency setting means 21, for each higher order, A pulsation pressure peak value (second pulsation pressure peak value) in a frequency range other than the predetermined frequency range including the pulsation frequency of the next component is detected.

【0017】ここで、次数高次成分の脈動周波数を含む
所定周波数範囲以外の周波数範囲は、例えば、図3及び
図4に示すグラフの場合、次数2次成分、次数3次成
分、次数4次成分、…、次数13次成分について、それ
ぞれ、97.50Hzから135.00Hzまでの範
囲、175.00Hzから212.50Hzまでの範
囲、252.50Hzから290.00Hzまでの範
囲、…、950.00Hzから987.50Hzまでの
範囲となる。
Here, the frequency ranges other than the predetermined frequency range including the pulsation frequency of the higher-order component are, for example, in the case of the graphs shown in FIGS. 3 and 4, the second-order component, the third-order component, and the fourth-order component. ,..., 13th-order components, respectively, in the range from 97.50 Hz to 135.00 Hz, in the range from 175.00 Hz to 212.50 Hz, in the range from 252.50 Hz to 290.00 Hz,. To 987.50 Hz.

【0018】また、次数高次成分の脈動周波数を含む所
定周波数範囲以外の周波数範囲における第2脈動圧力ピ
ーク値は、例えば図3及び図4のグラフの場合、次数2
次成分、次数3次成分、次数4次成分、…、次数13次
成分について、それぞれ、脈動周波数(第2ピーク周波
数)127Hzのときの−67.50dB、脈動周波数
(第2ピーク周波数)180.00Hzのときの−7
8.00dB、脈動周波数(第2ピーク周波数)29
2.50Hzのときの−83.75dB、…、脈動周波
数(第2ピーク周波数)972.50Hzのときの−9
2.75dBとなる(下記表1参照)。
The second pulsation pressure peak value in a frequency range other than the predetermined frequency range including the pulsation frequency of the higher-order component is, for example, the order 2 in the graphs of FIGS.
The next component, the third-order component, the fourth-order component,..., The thirteenth-order component, respectively, have a pulsation frequency (second peak frequency) of -67.50 dB at 127 Hz and a pulsation frequency (second peak frequency) of 180. -7 at 00Hz
8.00 dB, pulsation frequency (second peak frequency) 29
-83.75 dB at 2.50 Hz, ..., -9 at pulsation frequency (second peak frequency) 972.50 Hz
2.75 dB (see Table 1 below).

【0019】ピーク差演算手段24は、各次数高次毎
に、第1ピーク値検出手段22により検出された第1脈
動圧力ピーク値と第2ピーク値検出手段23により検出
された第2脈動圧力ピーク値との差を算出するものであ
る。
The peak difference calculating means 24 includes a first pulsating pressure peak value detected by the first peak value detecting means 22 and a second pulsating pressure detected by the second peak value detecting means 23 for each higher order. The difference from the peak value is calculated.

【0020】ここで、ピーク差は、例えば図3及び図4
のグラフの場合、次数2次成分、次数3次成分、次数4
次成分、…、次数13次成分について、それぞれ、0.
75Hz、−5.75Hz、1.00Hz、…、−1.
00Hzとなる(下記表1参照)。
Here, the peak difference is, for example, as shown in FIGS.
In the case of the graph of, the second order component, the third order component, the fourth order
The next component,...
75 Hz, -5.75 Hz, 1.00 Hz, ..., -1.
00 Hz (see Table 1 below).

【0021】ピーク差合計値算出手段25は、ピーク差
演算手段24により算出された各ピーク差のうち正の値
となるピーク差の合計値を算出するものである。
The peak difference total value calculating means 25 calculates the total value of the positive peak differences among the peak differences calculated by the peak difference calculating means 24.

【0022】ここで、各ピーク差のうち正の値となるピ
ーク差の合計値を算出するようにしている理由は、脈動
周波数に対する脈動圧力の波形は、通常、低次の脈動周
波数から高次の脈動周波数になる(0Hzから1kHz
になる)に従って低くなるため、ピーク差は負の値とな
るが、脈動発生時にはその逆の傾向を示すため正の値の
みを取り上げて合計するようにしたのである。
Here, the reason why the total value of the positive peak differences among the peak differences is calculated is that the waveform of the pulsation pressure with respect to the pulsation frequency is usually from a lower pulsation frequency to a higher pulsation frequency. Pulsation frequency (from 0 Hz to 1 kHz
), The peak difference becomes a negative value, but when a pulsation occurs, only the positive values are picked up and summed to show the opposite tendency.

【0023】また、次数1次成分のピーク差をピーク差
合計値の要素としない理由は、次数1次成分は高次周波
数の脈動に関係無く高さが発生するからである。
The reason why the peak difference of the first-order component is not used as an element of the total peak difference value is that the first-order component has a height irrespective of the pulsation of the higher-order frequency.

【0024】ピーク差合計値は、例えば図3及び図4の
グラフの場合、70.00dBとなる(下記表1参
照)。
The peak difference total value is, for example, 70.00 dB in the case of the graphs of FIGS. 3 and 4 (see Table 1 below).

【0025】良否判定手段26は、ピーク差合計値算出
手段25により算出されたピーク差合計値を予め定めた
基準値例えば60.00dBと大小比較し、ピーク差合
計値が基準値よりも大きい場合、当該電動燃料ポンプ1
を不良品と判定するものである。
The pass / fail judgment means 26 compares the peak difference total value calculated by the peak difference total value calculation means 25 with a predetermined reference value, for example, 60.00 dB, and determines whether the peak difference total value is larger than the reference value. , The electric fuel pump 1
Is determined to be defective.

【0026】ここで、図3及び図4のグラフの場合、ピ
ーク差合計値が70.00dBであり、基準値60.0
0dBよりも大きいため、当該電動燃料ポンプ1は不良
品と判断される。
Here, in the case of the graphs of FIGS. 3 and 4, the peak difference total value is 70.00 dB, and the reference value is 60.0 dB.
Since it is larger than 0 dB, the electric fuel pump 1 is determined to be defective.

【0027】下記表1は、図3及び図4のグラフに対応
する測定結果を示している。
Table 1 below shows the measurement results corresponding to the graphs of FIGS.

【0028】[0028]

【表1】 [Table 1]

【0029】図5(A)、(B)、(C)、(D)は、
それぞれ、電動燃料ポンプが良品である場合、インペラ
羽根欠けは無いが騒音大品であるクレーム品である場
合、インペラ羽根3枚欠け品である場合、インペラ羽根
4枚欠け品である場合における脈動周波数に対する脈動
圧力のグラフを示している。これらのグラフから、ピー
ク差合計値は、図5(A)の場合19.5dB、図5
(B)の場合63.75dB、図5(C)の場合20
2.75dB、図5(D)の場合137.5dBとな
り、良品と不良品(クレーム品及びインペラ羽根欠け
品)とを正確に判断できた。
FIGS. 5A, 5B, 5C, and 5D show
The pulsation frequency in the case where the electric fuel pump is good, the case where there is no impeller blade chipping but there is no noise, the case where the impeller blades are missing, the case where there are three impeller blades and the case where the impeller blades are missing 3 shows a graph of pulsating pressure with respect to. From these graphs, the peak difference total value is 19.5 dB in the case of FIG.
63.75 dB in the case of (B), 20 in the case of FIG.
5.75 dB and 137.5 dB in the case of FIG. 5 (D), it was possible to accurately determine a non-defective product and a defective product (claim product and impeller blade missing product).

【0030】[0030]

【発明の効果】本発明によると、電動燃料ポンプの良否
を正確に判定可能となる。
According to the present invention, the quality of the electric fuel pump can be accurately determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る検査装置の構成図で
ある。
FIG. 1 is a configuration diagram of an inspection apparatus according to an embodiment of the present invention.

【図2】同検査装置における判定装置の機能ブロック図
である。
FIG. 2 is a functional block diagram of a determination device in the inspection device.

【図3】同判定装置の処理内容を説明するための説明図
である。
FIG. 3 is an explanatory diagram for explaining processing contents of the determination device.

【図4】同判定装置の処理内容を説明するための説明図
である。
FIG. 4 is an explanatory diagram for explaining processing contents of the determination device.

【図5】同判定装置による判定結果の説明図である。FIG. 5 is an explanatory diagram of a determination result by the determination device.

【符号の説明】[Explanation of symbols]

1 電動燃料ポンプ 7 圧力センサ 10 FFTアナライザ(アナライザ) 11 パーソナルコンピュータ(判定装置) 21 1次成分脈動周波数設定手段 22 第1ピーク値検出手段 23 第2ピーク値検出手段 24 ピーク差演算手段 25 ピーク差合計値算出手段 26 良否判定手段 REFERENCE SIGNS LIST 1 electric fuel pump 7 pressure sensor 10 FFT analyzer (analyzer) 11 personal computer (judgment device) 21 primary component pulsation frequency setting means 22 first peak value detection means 23 second peak value detection means 24 peak difference calculation means 25 peak difference Total value calculating means 26 Pass / fail judgment means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電動燃料ポンプの吐出脈動圧力を検出す
る圧力センサと、 前記圧力センサからの吐出脈動圧力信号に基づき、脈動
周波数に対する脈動圧力を求めるアナライザと、 前記アナライザにより得られた脈動周波数に対する脈動
圧力に基づき電動燃料ポンプの良否を判定する判定装置
とを備える電動燃料ポンプの吐出脈動による騒音の検査
装置において、 前記判定装置は、 前記アナライザにより得られた脈動周波数に対する脈動
圧力に基づき次数一次成分の脈動周波数を設定する1次
成分脈動周波数設定手段と、 前記1次成分脈動周波数設定手段により設定された次数
1次成分の脈動周波数を基に、各次数高次毎に、当該次
数高次成分の脈動周波数を含む所定周波数範囲における
脈動圧力ピーク値を検出する第1ピーク値検出手段と、 前記1次成分脈動周波数設定手段により設定された次数
1次成分の脈動周波数を基に、各次数高次毎に、当該次
数高次成分の脈動周波数を含む所定周波数範囲以外の周
波数範囲における脈動圧力ピーク値を検出する第2ピー
ク値検出手段と、 各次数高次毎に、前記第1ピーク値検出手段により検出
された脈動圧力ピーク値と前記第2ピーク値検出手段に
より検出された脈動圧力ピーク値との差を算出するピー
ク差演算手段と、 前記ピーク差演算手段により算出された各ピーク差のう
ち正の値となるピーク差の合計値を算出するピーク差合
計値算出手段と、 前記ピーク差合計値算出手段により算出されたピーク差
合計値を予め定めた基準値と大小比較し、ピーク差合計
値が前記基準値よりも大きい場合、当該電動燃料ポンプ
を不良品と判定する良否判定手段とを備えることを特徴
とする電動燃料ポンプの吐出脈動による騒音の検査装
置。
A pressure sensor for detecting a discharge pulsation pressure of the electric fuel pump; an analyzer for obtaining a pulsation pressure with respect to a pulsation frequency based on a discharge pulsation pressure signal from the pressure sensor; A determination device for determining the quality of the electric fuel pump based on the pulsating pressure; and a noise inspection device based on the discharge pulsation of the electric fuel pump, wherein the determination device has a primary order based on a pulsation pressure with respect to a pulsation frequency obtained by the analyzer. A first-order component pulsation frequency setting means for setting a pulsation frequency of the component; and a pulsation frequency of the first-order component set by the first-order pulsation frequency setting means. First peak value detecting means for detecting a pulsating pressure peak value in a predetermined frequency range including the pulsating frequency of the component; On the basis of the pulsation frequency of the first-order component set by the first-order component pulsation frequency setting means, the pulsation pressure in a frequency range other than the predetermined frequency range including the pulsation frequency of the higher-order component for each higher order. A second peak value detecting means for detecting a peak value, and a pulsating pressure peak value detected by the first peak value detecting means and a pulsating pressure peak detected by the second peak value detecting means for each higher order. A peak difference calculating means for calculating a difference from the peak value; a peak difference total value calculating means for calculating a sum of positive peak differences among the peak differences calculated by the peak difference calculating means; The peak difference total value calculated by the difference total value calculation means is compared in magnitude with a predetermined reference value. If the peak difference total value is larger than the reference value, the electric fuel pump is determined to be defective. That quality determination unit and the inspection unit of the noise due to discharge pulsation of the electric fuel pump, characterized in that it comprises a.
JP11929398A 1998-04-28 1998-04-28 Inspection system for noise caused by discharge pulsation of electric fuel pump Expired - Fee Related JP3595926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11929398A JP3595926B2 (en) 1998-04-28 1998-04-28 Inspection system for noise caused by discharge pulsation of electric fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11929398A JP3595926B2 (en) 1998-04-28 1998-04-28 Inspection system for noise caused by discharge pulsation of electric fuel pump

Publications (2)

Publication Number Publication Date
JPH11315771A true JPH11315771A (en) 1999-11-16
JP3595926B2 JP3595926B2 (en) 2004-12-02

Family

ID=14757832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11929398A Expired - Fee Related JP3595926B2 (en) 1998-04-28 1998-04-28 Inspection system for noise caused by discharge pulsation of electric fuel pump

Country Status (1)

Country Link
JP (1) JP3595926B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074478A (en) * 2001-08-31 2003-03-12 Toshiba Corp Life estimating method for rotating machine for semiconductor manufacturing device and semiconductor manufacturing device
JP2006029154A (en) * 2004-07-14 2006-02-02 Hitachi Industrial Equipment Systems Co Ltd Abnormality diagnosing device and abnormality diagnosing system for screw compressor
WO2017033015A1 (en) * 2015-08-25 2017-03-02 Artemis Intelligent Power Limited The measurement and use of hydraulic stiffness properties of hydraulic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074478A (en) * 2001-08-31 2003-03-12 Toshiba Corp Life estimating method for rotating machine for semiconductor manufacturing device and semiconductor manufacturing device
JP2006029154A (en) * 2004-07-14 2006-02-02 Hitachi Industrial Equipment Systems Co Ltd Abnormality diagnosing device and abnormality diagnosing system for screw compressor
JP4511886B2 (en) * 2004-07-14 2010-07-28 株式会社日立産機システム Abnormality diagnosis device and abnormality diagnosis system for screw compressor
WO2017033015A1 (en) * 2015-08-25 2017-03-02 Artemis Intelligent Power Limited The measurement and use of hydraulic stiffness properties of hydraulic apparatus
US11078934B2 (en) 2015-08-25 2021-08-03 Artemis Intelligent Power Limited Measurement and use of hydraulic stiffness properties of hydraulic apparatus

Also Published As

Publication number Publication date
JP3595926B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
EP2806518B1 (en) Serial arc detection based on harmonic content of DC current signal
KR100426227B1 (en) Methods, devices and systems for identifying subjects
US7421356B2 (en) Method and apparatus for measurement of fuel cell high frequency resistance in the presence of large undesirable signals
US6463775B1 (en) Method and apparatus for detecting chattering in cold rolling mill
US7855081B2 (en) Methods of detecting RF interference in breath ethanol testing
US20210190849A1 (en) Acoustic condition monitoring method and system for electrical power components, in particular transformers
US10197594B2 (en) Tachometer signal jitter reduction system and method
JPH11315771A (en) Inspection system for noise by discharge pulse of electric fuel pump
JPH04296299A (en) Monitoring method and device for steam trap as well as diagnostic method and device plus manufacturing line thereof
JPH01311242A (en) Valve leak monitoring device
KR102061616B1 (en) Diagnosis method of structure and diagnosis system using nonlinear spectral correlation
JP2000235022A (en) Inspection device
JP2006333661A (en) Inverter-circuit diagnostic apparatus
JP2006300524A (en) Abnormal sound inspection method
KR102051380B1 (en) On­line gas analysis system capable of monitoring abnormal state
JPH08122142A (en) Device and method for discrimination
JP4448437B2 (en) Engine evaluation method and engine evaluation device
JP3452817B2 (en) Signal detection device for detecting water leak sound
JPH0783787A (en) Acoustic monitoring method and device
JPH0249384Y2 (en)
JP4349888B2 (en) Engine evaluation device
US20240151772A1 (en) Abnormality detector apparatus and method for detecting abnomal state of rotary machine such as motor
JP2002313729A (en) Method of monitoring plasma processor, plasma processing method and apparatus
CN117517470A (en) Method for detecting looseness of screws in liquid crystal display panel
JP2003322335A (en) Combustion oscillation diagnostic determination device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040325

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees