JPH11315278A - Scintillator - Google Patents

Scintillator

Info

Publication number
JPH11315278A
JPH11315278A JP12310898A JP12310898A JPH11315278A JP H11315278 A JPH11315278 A JP H11315278A JP 12310898 A JP12310898 A JP 12310898A JP 12310898 A JP12310898 A JP 12310898A JP H11315278 A JPH11315278 A JP H11315278A
Authority
JP
Japan
Prior art keywords
scintillator
afterglow
powder
added
emission intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12310898A
Other languages
Japanese (ja)
Other versions
JP3741302B2 (en
Inventor
Ryohei Nakamura
良平 中村
Kyuhei Mochida
久平 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP12310898A priority Critical patent/JP3741302B2/en
Publication of JPH11315278A publication Critical patent/JPH11315278A/en
Application granted granted Critical
Publication of JP3741302B2 publication Critical patent/JP3741302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a scintilator to greatly improve the light emission strength, to improve the relative light emission strength without increasing afterglow, and well enable the scintilator to deal with a high resolution and high-speed scanning, by adding Tb<3+> to impart a specific formula and a specific relation. SOLUTION: This scintillator is represented by the formula: (Gd1-x-y-z Prx Tby Cez )2 O2 S, with 0.0003<=X<=0.004, 0.00002<=y<=0.004, and 0<z<=0.0004. An aq. Ce(NO3 )3 .6H2 O soln. was added to a given amt. of Gd2 O3 , Pr6 O11 and Tb4 O7 , mixed together and then the mixture was dried. Na2 CO3 , Li2 B4 O7 , K3 PO4 .3H2 O, NaBF4 and S were added to the mixture, dry-mixed powder was heat-treated at 1,300 deg.C for 8 hr. After cooling, it was washed with pure water, 4N hydrochloric acid, and warm water successively to give a scintillator powder of (Gd0.9985 Pr0.001 Tb0.0005 Ce0.00001 )2 O2 S with an average particle size of 40 μm. Then the powder was hot isostatic pressing(HIP) sintered at 1,300 deg.C and under 1,000 atm for 3 hr. The sintered material thus obtd., after being machined into a wafer shape, heat-treated in an Ar gas comprising a trace of oxygen to give a ceramic scintillator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はX線を検出する放射
線検出器に用いられるシンチレータに関するものであ
り、特にCT装置に最適な発光強度が大きく残光特性が
良好なシンチレータに係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scintillator used for a radiation detector for detecting X-rays, and more particularly to a scintillator having a large emission intensity and a good afterglow characteristic which is optimal for a CT apparatus.

【0002】[0002]

【従来の技術】X線診断装置の一つにコンピュータ断層
撮影装置(Computed Tomography:以下CT装置と称
する)がある。このCT装置は扇状のファンビームX線
を発生するX線管と多数のX線検出素子を併設したX線
検出器を被検体の断層面の中央に対向配置して構成さ
れ、X線検出器に向けてX線管からファンビームX線を
照射し、1回照射を行うごとに断層面に対して例えば角
度を1度ずつ移動することによってX線吸収データを検
出収集した後、このデ−タをコンピュータで解析するこ
とによって断層面の個々の位置のX線吸収率を算出し、
その吸収率に応じた画像を作成するものである。
2. Description of the Related Art As one of X-ray diagnostic apparatuses, there is a computed tomography apparatus (hereinafter referred to as a CT apparatus). This CT apparatus comprises an X-ray tube having a fan-shaped X-ray tube for generating fan-beam X-rays and an X-ray detector provided with a large number of X-ray detection elements arranged at the center of the tomographic plane of the subject. X-ray absorption data is detected and collected by irradiating a fan beam X-ray from an X-ray tube toward the target and moving the angle, for example, by one degree with respect to a tomographic plane each time irradiation is performed. The X-ray absorptance at each position on the tomographic plane is calculated by analyzing the
An image corresponding to the absorption rate is created.

【0003】従来からこのCT装置にはキセノンガス検
出器が用いられている。このキセノンガス検出器はガス
チャンバにキセノンガスを封入し、多数配列した電極間
に電圧を印加しながらX線を照射すると、X線がキセノ
ンガスを電離し、X線の強度に応じた電流信号を取り出
すことができ、それにより画像が構成される。しかし、
このキセノンガス検出器では高圧のキセノンガスをガス
チャンバに封入するため厚い窓が必要であり、そのため
X線の利用効率が悪く感度が低いという問題がある。ま
た、高解像度のCT装置を得るためには電極板の厚みを
極力薄くする必要があり、そのように電極板を薄くする
と外部からの振動によって電極板が振動しノイズが発生
するという問題がある。
Conventionally, a xenon gas detector has been used in this CT apparatus. This xenon gas detector encloses xenon gas in a gas chamber and irradiates it with x-rays while applying a voltage between a large number of arranged electrodes. Can be taken out, thereby forming an image. But,
In this xenon gas detector, a thick window is required to enclose high-pressure xenon gas in the gas chamber, and therefore, there is a problem in that the use efficiency of X-rays is low and the sensitivity is low. Further, in order to obtain a high-resolution CT apparatus, it is necessary to reduce the thickness of the electrode plate as much as possible. If the electrode plate is made thinner as described above, there is a problem that the electrode plate vibrates due to external vibration and noise is generated. .

【0004】[0004]

【発明が解決しようとする課題】一方、CdWO4単結晶やG
d2O2S:Pr蛍光体粉末を焼結したセラミックスシンチレー
タとシリコンフォトダイオードを組み合わせた検出器が
開発され実用化されている。これらの材料を用いた検出
器では、検出素子の小型化とチャンネル数の増加が容易
であることから、キセノンガス検出器よりも解像度の高
い画像を得ることが可能となる。しかし、最近CT装置
にはさらなる解像度の向上と人体被爆線量の低減が求め
られる趨勢にある。解像度の向上には検出素子の小型化
が必要であるが、検出素子を小型化した場合、1素子に
入射するX線量が低下し、実用化されているシンチレー
タでは出力が低下してしまい、十分な解像度が得られな
いという問題が指摘されていた。また、人体被爆線量を
低減するためには、走査時間の短縮が必要とされるが、
1回の照射時間が短くなるため、実用化されているシン
チレータでは出力の低下を招来し、そのため十分な解像
度が得られないという問題があった。本発明は以上述べ
た従来の問題に鑑みてなされたものであり、高解像度、
高速走査に対応したX線CT装置用シンチレータを提供
することを目的とする。
On the other hand, CdWO 4 single crystals and G
A detector that combines a ceramic scintillator sintered with d 2 O 2 S: Pr phosphor powder and a silicon photodiode has been developed and put into practical use. In a detector using these materials, it is easy to reduce the size of the detection element and increase the number of channels, so that it is possible to obtain an image with higher resolution than a xenon gas detector. However, recently, there is a trend that a CT apparatus is required to further improve the resolution and reduce the exposure dose to the human body. In order to improve the resolution, it is necessary to reduce the size of the detection element.However, when the detection element is reduced in size, the amount of X-ray incident on one element decreases, and the output of a practical scintillator decreases. It has been pointed out that a high resolution cannot be obtained. In addition, to reduce the human exposure dose, it is necessary to shorten the scanning time,
Since one irradiation time is short, the output of a practically used scintillator is reduced, and there is a problem that a sufficient resolution cannot be obtained. The present invention has been made in view of the conventional problems described above, and has high resolution,
An object of the present invention is to provide a scintillator for an X-ray CT apparatus compatible with high-speed scanning.

【0005】[0005]

【課題を解決するための手段】本発明者は従来技術の課
題を解決するため、長年にわたり種々の組成系に関し検
討を加え新材料の開発を試みてきた。登録特許番号第12
84949号公報には、Gd2O2S:Pr組成にCeを添加することで
残光を低減し、さらにハロゲン元素を添加することで発
光強度を向上させる技術が開示されている。しかし、希
土類元素の添加効果を検討していく過程で、希土類元素
が発光元素であるPr3+とエネルギー共鳴を起し、発光強
度が向上することを見出した。特に、Tb3+が最も大きな
増感作用を有することがわかり、本発明を想到するに至
った。
In order to solve the problems of the prior art, the present inventor has been studying various composition systems and trying to develop new materials for many years. Registered patent number 12
No. 84949 discloses a technique for reducing the afterglow by adding Ce to the Gd 2 O 2 S: Pr composition and improving the emission intensity by further adding a halogen element. However, in the course of examining the effect of adding the rare earth element, it was found that the rare earth element causes energy resonance with the luminescent element Pr 3+, and the luminescence intensity is improved. In particular, it was found that Tb 3+ had the largest sensitizing effect, and the present invention was conceived.

【0006】図1はTb3+に対する相対発光強度特性であ
る。Tb3+添加は一般式(Gd0.999-yPr0.001TbyCe0.00001)
2O2Sに示すように、yが0.00001から発光強度の効果が認
められ、Tb3+添加量の増加とともに単調に出力が向上す
る。Tb3+の添加量を0.0005付近まで増加させるとその改
善効果は大きく、Tb3+を添加しない場合に対し約15%の
発光強度向上が確認できた。これは、Gd2O2S中における
Tb3+の蛍光スペクトルとPr3+の励起スペクトルには、重
なり合う部分があり、エネルギ共鳴を起こすためと考え
られる。一方、Dy3+、Nd3+、Sm3+、Ho3+、Er3+及びTm3+
を添加した場合も同様に改善が見られ、y=0.00005の
時発光強度は最大で約8%の向上が観測できたが、Tb3+
添加した場合よりも発光強度の増加割合は小さい。以上
の検討結果より、発光強度の向上に対しては、Gd2O2S:P
r組成にTb3+を所定量添加することが有効であることを
実験的に確認した。
FIG. 1 shows the relative emission intensity characteristics for Tb 3+ . Tb 3+ addition is the general formula (Gd 0.999-y Pr 0.001 Tb y Ce 0.00001 )
As shown in 2 O 2 S, the effect of the emission intensity is recognized when y is 0.00001, and the output monotonously increases with an increase in the amount of Tb 3+ added. When the added amount of Tb 3+ was increased to around 0.0005, the improvement effect was large, and it was confirmed that the emission intensity was improved by about 15% as compared with the case where Tb 3+ was not added. This is in Gd 2 O 2 S
It is considered that the fluorescence spectrum of Tb 3+ and the excitation spectrum of Pr 3+ have an overlapping portion, which causes energy resonance. On the other hand, Dy 3+ , Nd 3+ , Sm 3+ , Ho 3+ , Er 3+ and Tm 3+
Similarly, when y = 0.00005, the emission intensity was observed to increase by about 8% at the maximum, but the rate of increase of the emission intensity was smaller than when Tb 3+ was added. From the above examination results, Gd 2 O 2 S: P
It was experimentally confirmed that adding a predetermined amount of Tb 3+ to the r composition was effective.

【0007】しかし、X線CT装置のように、高速でX
線の強度変化を測定する目的に用いられるシンチレータ
には、残光(X線照射を停止した後にも続く発光現象)が
小さいことも発光強度と同様に重要となる。図2にTb3+
の添加量と残光の関係を示す。図にはX線の照射停止か
ら3ms後と30ms後の測定結果を示す。図からわかるよう
にX線の照射停止から30ms後の残光特性は、Tb3+添加量
に対して改善効果はないが、3ms後の残光特性はTb3+
加量の増加とともに単調に増加する。そして、yの値が
0.004を越え残光が0.25%以上になると、CT装置の画像
解像度が低下し始める。従って、yの限界値は0.004と
考えられる。また、yの値が0.00002未満では、Tb3+にと
もなう発光強度の向上が小さい。この結果、Tb3+添加の
最適範囲は一般式(Gd1-x-y-zPrxTbyCez)2O2Sにおいて、
0.00002≦y≦0.004の範囲、さらに0.00005≦y≦0.002が
より好ましいことがわかった。
However, like an X-ray CT apparatus, X
In a scintillator used for measuring a change in the intensity of a line, it is also important that the afterglow (a phenomenon of luminescence that continues even after X-ray irradiation is stopped) is small, like the luminescence intensity. FIG. 2 shows Tb 3+
Shows the relationship between the amount of addition and the afterglow. The figure shows the measurement results at 3 ms and 30 ms after stopping the X-ray irradiation. As can be seen from the figure, the afterglow characteristics 30 ms after the stop of X-ray irradiation have no effect on the Tb 3+ addition amount, but the afterglow characteristics after 3 ms monotonically increase with the increase in Tb 3+ addition amount. To increase. And the value of y is
When the afterglow exceeds 0.004 and becomes 0.25% or more, the image resolution of the CT apparatus starts to decrease. Therefore, the limit value of y is considered to be 0.004. Further, when the value of y is less than 0.00002, the improvement in the emission intensity associated with Tb 3+ is small. As a result, the optimum range of the Tb 3+ added in the general formula (Gd 1-xyz Pr x Tb y Ce z) 2 O 2 S,
It was found that the range of 0.00002 ≦ y ≦ 0.004 was more preferable, and the range of 0.00005 ≦ y ≦ 0.002 was more preferable.

【0008】一方、発光元素であるPrの添加量と発光強
度との関係を図3に示す。x=0.001付近で最大値を持
つ上に凸な特性曲線である。xが0.004を越えるかもしく
は0.0003未満では、x=0.001付近の発光強度の80%以下
になってしまう。この結果から一般式(Gd1-x-y-zPrxTby
Cez)2O2Sに示されるxの範囲は0.0003≦x≦0.004であ
り、さらに好ましくは0.0005≦x≦0.002の範囲であるこ
とがわかった。また、残光低減元素であるCeの添加量と
発光強度及び残光との関係を図4に示す。Ceは残光低減
に非常に有効であるが、同時にCeは発光強度を低下させ
る方向に働くことがわかる。そして、zが0.00004を越え
ると、Ceを添加しない場合と比較して発光強度が80%を
下回ってしまう。このため、一般式(Gd1-x-y-zPrxTbyCe
z)2O2Sにおいて、zの値は、0<z≦0.00004の範囲であ
り、さらに0.000005≦z≦0.00002の範囲がより好ましい
ことがわかった。
On the other hand, FIG. 3 shows the relationship between the amount of addition of the light emitting element Pr and the light emission intensity. An upwardly convex characteristic curve having a maximum value near x = 0.001. When x exceeds 0.004 or is less than 0.0003, the emission intensity becomes less than 80% of the emission intensity around x = 0.001. Formula The results (Gd 1-xyz Pr x Tb y
It was found that the range of x shown in Ce z ) 2 O 2 S was 0.0003 ≦ x ≦ 0.004, and more preferably 0.0005 ≦ x ≦ 0.002. FIG. 4 shows the relationship between the amount of added Ce, which is an afterglow reducing element, and the emission intensity and afterglow. It can be seen that Ce is very effective in reducing the afterglow, but at the same time, Ce works in the direction of lowering the emission intensity. When z exceeds 0.00004, the emission intensity is lower than 80% as compared with the case where Ce is not added. Therefore, the general formula (Gd 1-xyz Pr x Tby y Ce
In z ) 2 O 2 S, it was found that the value of z was in the range of 0 <z ≦ 0.00004, and more preferably in the range of 0.000005 ≦ z ≦ 0.00002.

【0009】[0009]

【発明の実施の形態】(実施例1)本発明のシンチレータ
の実施例につき説明する。Gd2O3を361.96g、Pr6O11を0.
34g、及びTb4O7を0.187g計量した。次に、500ccの純水
にCe(NO3)3・6H2Oを1.3016g溶かし、その溶液4mlをピペ
ットで先の素原料に添加後、湿式混合後乾燥した。そし
て、この素原料に、Na2CO3を95.72g、Li2B4O7を10.10
g、K3PO4・3H2Oを32.33g、NaBF4を3.29g及びSを105.49g
添加し、乾式混合した。次に、この素原料混合粉をアル
ミナルツボに入れ、アルミナの蓋をした後、1300℃で8h
焼成した。冷却後、ルツボと焼成物を純水中に1h放置
し、原料をほぐした。この原料を、純水で良く洗浄し、
次に撹拌器を用い、4Nの塩酸で2h、90℃の温水で1hの
洗浄を行った。こうして、平均粒径40μmの(Gd0.9985P
r0.001Tb0.0005Ce0.00001)2O2Sのシンチレータ粉末が得
られた。この粉末に焼結助剤としてLi2GeF6を0.1wt%添
加し、軟鋼製カプセルに充填後、真空封止した。そし
て、1300℃、1000atm、3hの条件で熱間静水圧プレス(HI
P)焼結した。得られた焼結体を30×26×t1.25mmのウェ
ハ形状に機械加工後、微量の酸素を含むArガス中で1100
℃、30minの熱処理を行いセラミックシンチレータを得
た。このシンチレータに管電圧120kV、管電流5mAのX線
(Wターゲット)を照射した時の発光強度及びX線励起停
止後30ms経過後の残光の測定結果を表1に示す。実施例
2〜5も実施例1と同様の手順で原料粉及び焼結体を作
製した。ただし、Gd2O3、Pr6O11、及びTb4O7の添加量を
変えて原料粉を作製した。得られたシンチレータの組成
及び発光強度と残光の測定結果を表1に示す。
(Embodiment 1) An embodiment of a scintillator according to the present invention will be described. Gd 2 O 3 361.96 g, Pr 6 O 11 0.1.
34 g and 0.187 g of Tb 4 O 7 were weighed. Next, 1.3016 g of Ce (NO 3 ) 3 .6H 2 O was dissolved in 500 cc of pure water, 4 ml of the solution was added to the raw material with a pipette, and the mixture was wet-mixed and dried. And to this raw material, 95.72 g of Na 2 CO 3 and 10.10 of Li 2 B 4 O 7
g, K 3 PO 4 · 3H 2 O to 32.33G, the NaBF 4 to 3.29g and S 105.49G
Add and dry mix. Next, this raw material mixed powder was put into an alumina crucible, and after covering with alumina, the mixture was heated at 1300 ° C. for 8 hours.
Fired. After cooling, the crucible and the fired product were left in pure water for 1 hour to loosen the raw materials. This raw material is thoroughly washed with pure water,
Next, using a stirrer, washing was performed for 2 hours with 4N hydrochloric acid and for 1 hour with warm water at 90 ° C. Thus, (Gd 0.9985 P
r 0.001 Tb 0.0005 Ce 0.00001 ) 2 O 2 S scintillator powder was obtained. 0.1% by weight of Li 2 GeF 6 was added to this powder as a sintering aid, and the powder was filled in a mild steel capsule and then vacuum sealed. Then, under the conditions of 1300 ° C, 1000atm and 3h, hot isostatic pressing (HI
P) Sintered. After the obtained sintered body was machined into a wafer shape of 30 × 26 × t1.25 mm, it was subjected to 1100 in Ar gas containing a trace amount of oxygen.
Heat treatment was performed at 30 ° C. for 30 minutes to obtain a ceramic scintillator. X-ray with a tube voltage of 120 kV and a tube current of 5 mA
Table 1 shows the measurement results of the emission intensity when irradiating (W target) and the afterglow 30 ms after stopping the X-ray excitation. In Examples 2 to 5, raw material powders and sintered bodies were produced in the same procedure as in Example 1. However, raw material powders were prepared by changing the addition amounts of Gd 2 O 3 , Pr 6 O 11 , and Tb 4 O 7 . Table 1 shows the composition of the obtained scintillator and the measurement results of the luminescence intensity and the afterglow.

【0010】(比較例1)Gd2O3を361.42g、Pr6O11を1.02
g計量した。次に、500ccの純水にCe(NO3)3・6H2Oを1.30
16g溶かし、その溶液6mlをピペットで先の素原料に添加
後、湿式混合後乾燥した。そして、この素原料に、Na2C
O3を95.72g、Li2B4O7を10.10g、K3PO4・3H2Oを32.33g、
NaBF4を3.29g及びSを105.49g添加し、乾式混合した。次
に、この素原料混合粉をアルミナルツボに入れ、アルミ
ナの蓋をした後、1300℃で8h焼成した。冷却後、ルツボ
と焼成物を純水中に1h放置し、原料をほぐした。この原
料を、純水で良く洗浄し、次に撹拌器を用い、4Nの塩酸
で2h、90℃の温水で1hの洗浄を行った。こうして、平均
粒径40μmの(Gd0.997Pr0.003Ce0.000015)2O2Sのシンチ
レータ粉末が得られた。この粉末に焼結助剤としてLi2G
eF6を0.1wt%添加し、軟鋼製カプセルに充填後、真空封
止した。そして、1300℃、1000atm、3hの条件で熱間静
水圧プレス(HIP)焼結した。得られた焼結体を30×26×t
1.25mmのウェハ形状に機械加工後、微量の酸素を含むAr
ガス中で1100℃、30minの熱処理を行いセラミックスシ
ンチレータを得た。得られたシンチレータの組成及び発
光強度と残光の測定結果を他の比較例と共に表1にまと
めて示す。
(Comparative Example 1) 361.42 g of Gd 2 O 3 and 1.02 g of Pr 6 O 11
g was weighed. Then, the pure water 500 cc Ce a (NO 3) 3 · 6H 2 O 1.30
After dissolving 16 g, 6 ml of the solution was added to the raw material with a pipette, then wet-mixed and dried. And, to this raw material, Na 2 C
The O 3 95.72g, 10.10g a Li 2 B 4 O 7, the K 3 PO 4 · 3H 2 O 32.33g,
3.29 g of NaBF 4 and 105.49 g of S were added and dry-mixed. Next, this raw material mixed powder was placed in an alumina crucible, covered with alumina, and fired at 1300 ° C. for 8 hours. After cooling, the crucible and the fired product were left in pure water for 1 hour to loosen the raw materials. This raw material was thoroughly washed with pure water, and then washed with 4N hydrochloric acid for 2 hours and warm water at 90 ° C. for 1 hour using a stirrer. Thus, a (Gd 0.997 Pr 0.003 Ce 0.000015 ) 2 O 2 S scintillator powder having an average particle size of 40 μm was obtained. Li 2 G is added to this powder as a sintering aid.
The eF 6 was added 0.1 wt%, after filling the soft steel capsule, vacuum sealing. Then, hot isostatic pressing (HIP) sintering was performed at 1300 ° C., 1000 atm, and 3 hours. 30 × 26 × t
After machining to a 1.25 mm wafer shape, Ar containing a small amount of oxygen
Heat treatment was performed at 1100 ° C for 30 minutes in a gas to obtain a ceramic scintillator. The composition of the obtained scintillator and the measurement results of the emission intensity and afterglow are shown together with other comparative examples in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】X線CT装置のように放射線の強度変化を
高速に検出していく装置に用いられるシンチレータに
は、放射線に対する発光強度が大きいこと及び残光が小
さいことが非常に重要である。ところが、図5に示すよ
うに既存のシンチレータは、発光強度の大きいものは残
光も大きく、逆に残光の小さいものは感度も小さい傾向
にあり、特性の要求を十分満足していなかった。一方、
登録特許番号1284949号に開示されている組成系は、残
光が比較的小さく、発光強度もある程度大きいことで、
高解像度のX線CT装置用に実用化されている。しか
し、さらなる高解像度化、人体被爆線量低減のための高
速走査に対しては、発光強度の向上が求められていた。
また、高発光強度のシンチレータとしては、Gd2O2S:Tb
やGd2O2S:Euがあるが、前者は発光の減衰時定数(X線励
起停止後、発光強度が1/eになるまでの時間)が大きく、
また、後者は、残光が大きくX線CT装置には使用でき
ない。本発明によれば、Gd2O2S:Pr組成系をベースに詳
細な検討を行い、一般式(Gd1-x-y-zPrxTbyCez)2O2Sで、
0.0003≦x≦0.004、0.00002≦y≦0.004、及び0<z≦0.0
0004の範囲含むことで、残光特性をさらに低減可能と
し、発光強度は約20%向上させることができた。これに
より、CT装置の解像度向上、高速走査の実現が可能と
なる。
It is very important for a scintillator used in an apparatus that detects a change in the intensity of radiation at a high speed, such as an X-ray CT apparatus, that the emission intensity with respect to the radiation be large and the afterglow be small. However, as shown in FIG. 5, in the existing scintillators, those having a large luminous intensity tend to have a large afterglow, and those having a small luminescence have a tendency to have a low sensitivity, and thus have not sufficiently satisfied the requirements for characteristics. on the other hand,
The composition system disclosed in Registered Patent No. 1284949 has a relatively small afterglow and a relatively large emission intensity,
It has been put to practical use for high-resolution X-ray CT systems. However, for high-speed scanning to further increase the resolution and reduce the exposure dose to the human body, it has been required to improve the emission intensity.
In addition, Gd 2 O 2 S: Tb
And Gd 2 O 2 S: Eu, but the former has a large decay time constant of emission (time until emission intensity becomes 1 / e after stopping X-ray excitation),
The latter has a large afterglow and cannot be used for an X-ray CT apparatus. According to the present invention, Gd 2 O2S: Pr composition system based on conducted detailed studies, the general formula (Gd 1-xyz Pr x Tb y Ce z) 2 O 2 S,
0.0003 ≦ x ≦ 0.004, 0.00002 ≦ y ≦ 0.004, and 0 <z ≦ 0.0
By including the range of 0004, the afterglow characteristics can be further reduced, and the emission intensity can be improved by about 20%. This makes it possible to improve the resolution of the CT apparatus and realize high-speed scanning.

【0013】[0013]

【発明の効果】以上、本発明の詳細な説明から明らかな
ように、従来技術によるシンチレータに対して、Tb3+
添加することにより大幅な発光強度の改善ができ、残光
を増加させることなく相対発光強度を向上させるシンチ
レータを提供できる。
As described above, it is apparent from the detailed description of the present invention that the addition of Tb 3+ to the conventional scintillator significantly improves the emission intensity and increases the afterglow. It is possible to provide a scintillator that improves the relative luminous intensity without the need.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるTb添加に対する発光強度特性を示
す。
FIG. 1 shows emission intensity characteristics with respect to addition of Tb according to the present invention.

【図2】本発明によるTb添加に対する残光特性を示す。FIG. 2 shows the afterglow characteristics with respect to Tb addition according to the present invention.

【図3】本発明による発光元素であるPrの発光強度特性
を示す。
FIG. 3 shows emission intensity characteristics of Pr which is a light emitting element according to the present invention.

【図4】本発明によるCe添加に対する発光強度及び残光
特性を示す。
FIG. 4 shows emission intensity and afterglow characteristics with respect to Ce addition according to the present invention.

【図5】本発明による各種シンチレータの発光強度及び
残光特性を示す。
FIG. 5 shows emission intensity and afterglow characteristics of various scintillators according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式(Gd1-X-Y-ZPrXTbYCeZ)2O2Sで表さ
れることを特徴とするシンチレータ。ただし、x、yお
よびzはそれぞれ0.0003≦x≦0.004、0.00002≦y≦0.00
4、0<z≦0.00004とする。
1. A scintillator characterized by being represented by a general formula (Gd 1 -XYZ Pr X Tb Y Ce Z ) 2 O 2 S. However, x, y and z are respectively 0.0003 ≦ x ≦ 0.004, 0.00002 ≦ y ≦ 0.00
4, 0 <z ≦ 0.00004.
【請求項2】 請求項1において、前記一般式のxが0.0
005≦x≦0.002の範囲であることを特徴とするシンチレ
ータ。
2. The method according to claim 1, wherein x in the general formula is 0.0
A scintillator characterized by the range of 005 ≦ x ≦ 0.002.
【請求項3】 請求項1または2のいずれかにおいて、
前記一般式のyが0.00005≦y≦0.002の範囲であることを
特徴とするシンチレータ。
3. The method according to claim 1, wherein
A scintillator, wherein y in the general formula is in the range of 0.00005 ≦ y ≦ 0.002.
【請求項4】 請求項1から3のいずれかにおいて、前
記一般式のzが0.000005≦z≦0.00002の範囲であること
を特徴とするシンチレータ。
4. The scintillator according to claim 1, wherein z in the general formula is in the range of 0.000005 ≦ z ≦ 0.00002.
JP12310898A 1998-05-06 1998-05-06 Scintillator Expired - Lifetime JP3741302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12310898A JP3741302B2 (en) 1998-05-06 1998-05-06 Scintillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12310898A JP3741302B2 (en) 1998-05-06 1998-05-06 Scintillator

Publications (2)

Publication Number Publication Date
JPH11315278A true JPH11315278A (en) 1999-11-16
JP3741302B2 JP3741302B2 (en) 2006-02-01

Family

ID=14852384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12310898A Expired - Lifetime JP3741302B2 (en) 1998-05-06 1998-05-06 Scintillator

Country Status (1)

Country Link
JP (1) JP3741302B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015862A1 (en) * 2005-07-25 2007-02-08 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US8872119B2 (en) 2008-12-30 2014-10-28 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
JP2014529060A (en) * 2011-07-28 2014-10-30 コーニンクレッカ フィリップス エヌ ヴェ Terbium-based detector scintillator
US8877093B2 (en) 2008-12-30 2014-11-04 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
WO2015072197A1 (en) * 2013-11-15 2015-05-21 株式会社 東芝 Radiation detector, scintillator panel, and methods for manufacturing radiation detector and scintillator panel
US9175216B2 (en) 2008-12-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9183962B2 (en) 2008-12-30 2015-11-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
CN108249920A (en) * 2018-03-14 2018-07-06 上海科炎光电技术有限公司 A kind of CT detects material with efficient nano

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015862A1 (en) * 2005-07-25 2007-02-08 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US7531109B2 (en) 2005-07-25 2009-05-12 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US8460578B2 (en) 2005-07-25 2013-06-11 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US8872119B2 (en) 2008-12-30 2014-10-28 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US8877093B2 (en) 2008-12-30 2014-11-04 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9175216B2 (en) 2008-12-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9183962B2 (en) 2008-12-30 2015-11-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
JP2014529060A (en) * 2011-07-28 2014-10-30 コーニンクレッカ フィリップス エヌ ヴェ Terbium-based detector scintillator
WO2015072197A1 (en) * 2013-11-15 2015-05-21 株式会社 東芝 Radiation detector, scintillator panel, and methods for manufacturing radiation detector and scintillator panel
US9720106B2 (en) 2013-11-15 2017-08-01 Toshiba Electron Tubes & Devices Co., Ltd. Radiation detector and scintillator panel, and methods for manufacturing same
CN108249920A (en) * 2018-03-14 2018-07-06 上海科炎光电技术有限公司 A kind of CT detects material with efficient nano

Also Published As

Publication number Publication date
JP3741302B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
EP0297269B1 (en) Solid state scintillator and method for preparing such scintillator
NL1027265C2 (en) Terbium or lutetium-containing scintillator compositions with improved resistance to radiation damage.
US6793848B2 (en) Terbium or lutetium containing garnet scintillators having increased resistance to radiation damage
JP3777486B2 (en) Phosphor, radiation detector using the same, and X-ray CT apparatus
US5116559A (en) Method of forming yttria-gadolinia ceramic scintillator using hydroxide coprecipitation step
JP5675339B2 (en) Solid scintillator, radiation detector, and X-ray tomography apparatus
JP5022600B2 (en) Ceramic scintillator and radiation detector and radiation inspection apparatus using the same
WO2010095737A1 (en) Solid-state scintillator, radiation detector, and x-ray tomographic imaging device
EP2898043B1 (en) Mixed oxide materials
JPH11315278A (en) Scintillator
US5100598A (en) Method of forming yttria-gadolinia ceramic scintillator from ammonium dispersed oxalate precipitates
JP4678924B2 (en) Radiation detector and X-ray diagnostic apparatus using the same
JP3524300B2 (en) Ceramic scintillator, radiation detector and radiation inspection device using the same
US20100059668A1 (en) Scintillator material and radiation detectors containing same
JP2989184B1 (en) Ceramic scintillator
JP4266114B2 (en) Scintillator and radiation inspection apparatus using the same
JPH11166177A (en) Scintillator
JPH11310777A (en) Phosphor ceramic, and radiation detector and radiographic inspection apparatus using the same
JP3369681B2 (en) X-ray detector phosphor and X-ray detector using the same
JPH06145655A (en) Fluorescent substance for x-ray detector and x-ray detector using the same
JPH11237480A (en) Radiation detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

EXPY Cancellation because of completion of term