JP3741302B2 - Scintillator - Google Patents

Scintillator Download PDF

Info

Publication number
JP3741302B2
JP3741302B2 JP12310898A JP12310898A JP3741302B2 JP 3741302 B2 JP3741302 B2 JP 3741302B2 JP 12310898 A JP12310898 A JP 12310898A JP 12310898 A JP12310898 A JP 12310898A JP 3741302 B2 JP3741302 B2 JP 3741302B2
Authority
JP
Japan
Prior art keywords
emission intensity
afterglow
scintillator
ray
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12310898A
Other languages
Japanese (ja)
Other versions
JPH11315278A (en
Inventor
良平 中村
久平 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP12310898A priority Critical patent/JP3741302B2/en
Publication of JPH11315278A publication Critical patent/JPH11315278A/en
Application granted granted Critical
Publication of JP3741302B2 publication Critical patent/JP3741302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はX線を検出する放射線検出器に用いられるシンチレータに関するものであり、特にCT装置に最適な発光強度が大きく残光特性が良好なシンチレータに係わるものである。
【0002】
【従来の技術】
X線診断装置の一つにコンピュータ断層撮影装置(Computed Tomography:以下CT装置と称する)がある。このCT装置は扇状のファンビームX線を発生するX線管と多数のX線検出素子を併設したX線検出器を被検体の断層面の中央に対向配置して構成され、X線検出器に向けてX線管からファンビームX線を照射し、1回照射を行うごとに断層面に対して例えば角度を1度ずつ移動することによってX線吸収データを検出収集した後、このデ−タをコンピュータで解析することによって断層面の個々の位置のX線吸収率を算出し、その吸収率に応じた画像を作成するものである。
【0003】
従来からこのCT装置にはキセノンガス検出器が用いられている。このキセノンガス検出器はガスチャンバにキセノンガスを封入し、多数配列した電極間に電圧を印加しながらX線を照射すると、X線がキセノンガスを電離し、X線の強度に応じた電流信号を取り出すことができ、それにより画像が構成される。しかし、このキセノンガス検出器では高圧のキセノンガスをガスチャンバに封入するため厚い窓が必要であり、そのためX線の利用効率が悪く感度が低いという問題がある。また、高解像度のCT装置を得るためには電極板の厚みを極力薄くする必要があり、そのように電極板を薄くすると外部からの振動によって電極板が振動しノイズが発生するという問題がある。
【0004】
【発明が解決しようとする課題】
一方、CdWO4単結晶やGd2O2S:Pr蛍光体粉末を焼結したセラミックスシンチレータとシリコンフォトダイオードを組み合わせた検出器が開発され実用化されている。これらの材料を用いた検出器では、検出素子の小型化とチャンネル数の増加が容易であることから、キセノンガス検出器よりも解像度の高い画像を得ることが可能となる。しかし、最近CT装置にはさらなる解像度の向上と人体被爆線量の低減が求められる趨勢にある。解像度の向上には検出素子の小型化が必要であるが、検出素子を小型化した場合、1素子に入射するX線量が低下し、実用化されているシンチレータでは出力が低下してしまい、十分な解像度が得られないという問題が指摘されていた。また、人体被爆線量を低減するためには、走査時間の短縮が必要とされるが、1回の照射時間が短くなるため、実用化されているシンチレータでは出力の低下を招来し、そのため十分な解像度が得られないという問題があった。本発明は以上述べた従来の問題に鑑みてなされたものであり、高解像度、高速走査に対応したX線CT装置用シンチレータを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は従来技術の課題を解決するため、長年にわたり種々の組成系に関し検討を加え新材料の開発を試みてきた。登録特許番号第1284949号公報には、Gd2O2S:Pr組成にCeを添加することで残光を低減し、さらにハロゲン元素を添加することで発光強度を向上させる技術が開示されている。しかし、希土類元素の添加効果を検討していく過程で、希土類元素が発光元素であるPr3+とエネルギー共鳴を起し、発光強度が向上することを見出した。特に、Tb3+が最も大きな増感作用を有することがわかり、本発明を想到するに至った。即ち、本発明は、一般式(Gd1-X-Y-ZPrXTbYCeZ)2O2Sで表され、Pr、Tb及びCeを必ず含み、前記x、yおよびzはそれぞれ0.0005≦x≦0.002、0.00005≦y≦0.002、0.000005≦z≦0.00002の範囲であるシンチレータである。
【0006】
図1はTb3+に対する相対発光強度特性である。Tb3+添加は一般式(Gd0.999-yPr0.001TbyCe0.00001)2O2Sに示すように、yが0.00001から発光強度の効果が認められ、Tb3+添加量の増加とともに単調に出力が向上する。Tb3+の添加量を0.0005付近まで増加させるとその改善効果は大きく、Tb3+を添加しない場合に対し約15%の発光強度向上が確認できた。これは、Gd2O2S中におけるTb3+の蛍光スペクトルとPr3+の励起スペクトルには、重なり合う部分があり、エネルギ共鳴を起こすためと考えられる。一方、Dy3+、Nd3+、Sm3+、Ho3+、Er3+及びTm3+を添加した場合も同様に改善が見られ、y=0.00005の時発光強度は最大で約8%の向上が観測できたが、Tb3+を添加した場合よりも発光強度の増加割合は小さい。以上の検討結果より、発光強度の向上に対しては、Gd2O2S:Pr組成にTb3+を所定量添加することが有効であることを実験的に確認した。
【0007】
しかし、X線CT装置のように、高速でX線の強度変化を測定する目的に用いられるシンチレータには、残光(X線照射を停止した後にも続く発光現象)が小さいことも発光強度と同様に重要となる。図2にTb3+の添加量と残光の関係を示す。図にはX線の照射停止から3ms後と30ms後の測定結果を示す。図からわかるようにX線の照射停止から30ms後の残光特性は、Tb3+添加量に対して改善効果はないが、3ms後の残光特性はTb3+添加量の増加とともに単調に増加する。そして、yの値が0.004を越え残光が0.25%以上になると、CT装置の画像解像度が低下し始める。従って、yの限界値は0.004と考えられる。また、yの値が0.00002未満では、Tb3+にともなう発光強度の向上が小さい。この結果、Tb3+添加の最適範囲は一般式(Gd1-x-y-zPrxTbyCez)2O2Sにおいて、0.00002≦y≦0.004の範囲、さらに0.00005≦y≦0.002がより好ましいことがわかった。
【0008】
一方、発光元素であるPrの添加量と発光強度との関係を図3に示す。x=0.001付近で最大値を持つ上に凸な特性曲線である。xが0.004を越えるかもしくは0.0003未満では、x=0.001付近の発光強度の80%以下になってしまう。この結果から一般式(Gd1-x-y-zPrxTbyCez)2O2Sに示されるxの範囲は0.0003≦x≦0.004であり、さらに好ましくは0.0005≦x≦0.002の範囲であることがわかった。また、残光低減元素であるCeの添加量と発光強度及び残光との関係を図4に示す。Ceは残光低減に非常に有効であるが、同時にCeは発光強度を低下させる方向に働くことがわかる。そして、zが0.00004を越えると、Ceを添加しない場合と比較して発光強度が80%を下回ってしまう。このため、一般式(Gd1-x-y-zPrxTbyCez)2O2Sにおいて、zの値は、0<z≦0.00004の範囲であり、さらに0.000005≦z≦0.00002の範囲がより好ましいことがわかった。
【0009】
【発明の実施の形態】
(実施例1)本発明のシンチレータの実施例につき説明する。
Gd2O3を361.96g、Pr6O11を0.34g、及びTb4O7を0.187g計量した。次に、500ccの純水にCe(NO3)3・6H2Oを1.3016g溶かし、その溶液4mlをピペットで先の素原料に添加後、湿式混合後乾燥した。そして、この素原料に、Na2CO3を95.72g、Li2B4O7を10.10g、K3PO4・3H2Oを32.33g、NaBF4を3.29g及びSを105.49g添加し、乾式混合した。次に、この素原料混合粉をアルミナルツボに入れ、アルミナの蓋をした後、1300℃で8h焼成した。冷却後、ルツボと焼成物を純水中に1h放置し、原料をほぐした。この原料を、純水で良く洗浄し、次に撹拌器を用い、4Nの塩酸で2h、90℃の温水で1hの洗浄を行った。こうして、平均粒径40μmの(Gd0.9985Pr0.001Tb0.0005Ce0.00001)2O2Sのシンチレータ粉末が得られた。この粉末に焼結助剤としてLi2GeF6を0.1wt%添加し、軟鋼製カプセルに充填後、真空封止した。そして、1300℃、1000atm、3hの条件で熱間静水圧プレス(HIP)焼結した。得られた焼結体を30×26×t1.25mmのウェハ形状に機械加工後、微量の酸素を含むArガス中で1100℃、30minの熱処理を行いセラミックシンチレータを得た。このシンチレータに管電圧120kV、管電流5mAのX線(Wターゲット)を照射した時の発光強度及びX線励起停止後30ms経過後の残光の測定結果を表1に示す。実施例2〜5も実施例1と同様の手順で原料粉及び焼結体を作製した。ただし、Gd2O3、Pr6O11、及びTb4O7の添加量を変えて原料粉を作製した。得られたシンチレータの組成及び発光強度と残光の測定結果を表1に示す。
【0010】
(比較例1)Gd2O3を361.42g、Pr6O11を1.02g計量した。次に、500ccの純水にCe(NO3)3・6H2Oを1.3016g溶かし、その溶液6mlをピペットで先の素原料に添加後、湿式混合後乾燥した。そして、この素原料に、Na2CO3を95.72g、Li2B4O7を10.10g、K3PO4・3H2Oを32.33g、NaBF4を3.29g及びSを105.49g添加し、乾式混合した。次に、この素原料混合粉をアルミナルツボに入れ、アルミナの蓋をした後、1300℃で8h焼成した。冷却後、ルツボと焼成物を純水中に1h放置し、原料をほぐした。この原料を、純水で良く洗浄し、次に撹拌器を用い、4Nの塩酸で2h、90℃の温水で1hの洗浄を行った。こうして、平均粒径40μmの(Gd0.997Pr0.003Ce0.000015)2O2Sのシンチレータ粉末が得られた。この粉末に焼結助剤としてLi2GeF6を0.1wt%添加し、軟鋼製カプセルに充填後、真空封止した。そして、1300℃、1000atm、3hの条件で熱間静水圧プレス(HIP)焼結した。得られた焼結体を30×26×t1.25mmのウェハ形状に機械加工後、微量の酸素を含むArガス中で1100℃、30minの熱処理を行いセラミックスシンチレータを得た。得られたシンチレータの組成及び発光強度と残光の測定結果を他の比較例と共に表1にまとめて示す。
【0011】
【表1】

Figure 0003741302
【0012】
X線CT装置のように放射線の強度変化を高速に検出していく装置に用いられるシンチレータには、放射線に対する発光強度が大きいこと及び残光が小さいことが非常に重要である。ところが、図5に示すように既存のシンチレータは、発光強度の大きいものは残光も大きく、逆に残光の小さいものは感度も小さい傾向にあり、特性の要求を十分満足していなかった。一方、登録特許番号1284949号に開示されている組成系は、残光が比較的小さく、発光強度もある程度大きいことで、高解像度のX線CT装置用に実用化されている。しかし、さらなる高解像度化、人体被爆線量低減のための高速走査に対しては、発光強度の向上が求められていた。また、高発光強度のシンチレータとしては、Gd2O2S:TbやGd2O2S:Euがあるが、前者は発光の減衰時定数(X線励起停止後、発光強度が1/eになるまでの時間)が大きく、また、後者は、残光が大きくX線CT装置には使用できない。本発明によれば、Gd2O2S:Pr組成系をベースに詳細な検討を行い、一般式(Gd1-X-Y-ZPrXTbYCeZ)2O2Sで 0.0005 x 0.002 0.00005 y 0.002 0.000005 z 0.00002 の範囲で Pr Tb 及び Ce を必ず含むことで、残光特性をさらに低減可能とし、発光強度は約20%向上させることができた。これにより、CT装置の解像度向上、高速走査の実現が可能となる。
【0013】
【発明の効果】
以上、本発明の詳細な説明から明らかなように、従来技術によるシンチレータに対して、Tb3+を添加することにより大幅な発光強度の改善ができ、残光を増加させることなく相対発光強度を向上させるシンチレータを提供できる。
【図面の簡単な説明】
【図1】本発明によるTb添加に対する発光強度特性を示す。
【図2】本発明によるTb添加に対する残光特性を示す。
【図3】本発明による発光元素であるPrの発光強度特性を示す。
【図4】本発明によるCe添加に対する発光強度及び残光特性を示す。
【図5】本発明による各種シンチレータの発光強度及び残光特性を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scintillator used for a radiation detector that detects X-rays, and particularly relates to a scintillator having a large emission intensity optimum for a CT apparatus and a good afterglow characteristic.
[0002]
[Prior art]
One of the X-ray diagnostic apparatuses is a computed tomography apparatus (hereinafter referred to as a CT apparatus). This CT apparatus is configured by disposing an X-ray detector, which is provided with an X-ray tube for generating a fan-shaped fan beam X-ray and a large number of X-ray detection elements, facing the center of a tomographic plane of a subject. The X-ray absorption data is detected and collected by irradiating the X-ray tube from the X-ray tube and moving the angle, for example, by 1 degree with respect to the tomographic plane every time irradiation is performed. The X-ray absorption rate at each position on the tomographic plane is calculated by analyzing the data with a computer, and an image corresponding to the absorption rate is created.
[0003]
Conventionally, a xenon gas detector has been used in this CT apparatus. This xenon gas detector encloses xenon gas in a gas chamber, and when X-rays are irradiated while applying a voltage between a large number of arranged electrodes, the X-rays ionize the xenon gas and a current signal corresponding to the intensity of the X-rays. Can be retrieved, thereby constructing an image. However, this xenon gas detector requires a thick window in order to enclose the high-pressure xenon gas in the gas chamber, so that there is a problem that the utilization efficiency of X-rays is poor and the sensitivity is low. In addition, in order to obtain a high-resolution CT apparatus, it is necessary to reduce the thickness of the electrode plate as much as possible. If the electrode plate is thinned as such, there is a problem that the electrode plate vibrates due to external vibration and noise is generated. .
[0004]
[Problems to be solved by the invention]
On the other hand, a detector combining a ceramic scintillator obtained by sintering CdWO 4 single crystal or Gd 2 O 2 S: Pr phosphor powder and a silicon photodiode has been developed and put into practical use. In detectors using these materials, it is easy to reduce the size of the detection element and increase the number of channels, so that it is possible to obtain an image with higher resolution than that of a xenon gas detector. Recently, however, there is a tendency for CT devices to require further improvement in resolution and reduction in human exposure dose. To improve the resolution, it is necessary to reduce the size of the detection element. However, when the detection element is reduced in size, the X-ray dose incident on one element is reduced, and the output of a practical scintillator is reduced. The problem of not being able to obtain a proper resolution has been pointed out. In addition, in order to reduce the human exposure dose, it is necessary to shorten the scanning time, but since the irradiation time for one time is shortened, a practical scintillator causes a decrease in output, which is sufficient. There was a problem that the resolution could not be obtained. The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a scintillator for an X-ray CT apparatus that is compatible with high resolution and high speed scanning.
[0005]
[Means for Solving the Problems]
In order to solve the problems of the prior art, the present inventor has studied various composition systems for many years and tried to develop new materials. Japanese Patent No. 1284949 discloses a technique for reducing afterglow by adding Ce to the Gd 2 O 2 S: Pr composition and further improving the emission intensity by adding a halogen element. . However, in the process of studying the effect of adding rare earth elements, it was found that the rare earth elements cause energy resonance with Pr 3+ , which is a luminescent element, and the emission intensity is improved. In particular, Tb 3+ was found to have the greatest sensitizing action, and the present invention was conceived. That is, the present invention is represented by the general formula (Gd 1-XYZ Pr X Tb Y Ce Z ) 2 O 2 S, and necessarily includes Pr, Tb and Ce, and the x, y and z are 0.0005 ≦ x ≦ 0.002 respectively. , 0.00005 ≦ y ≦ 0.002 and 0.000005 ≦ z ≦ 0.00002.
[0006]
FIG. 1 shows the relative emission intensity characteristics with respect to Tb 3+ . Tb 3+ added as is shown in the general formula (Gd 0.999-y Pr 0.001 Tb y Ce 0.00001) 2 O 2 S, y is the effect of the light emission intensity was observed from 0.00001 monotonically with increasing Tb 3+ added amount Output is improved. When the amount of Tb 3+ added was increased to around 0.0005, the improvement effect was significant, and the emission intensity was improved by about 15% compared to the case where Tb 3+ was not added. This is presumably because the Tb 3+ fluorescence spectrum and the Pr 3+ excitation spectrum in Gd 2 O 2 S have overlapping portions and cause energy resonance. On the other hand, when Dy 3+ , Nd 3+ , Sm 3+ , Ho 3+ , Er 3+ and Tm 3+ are added, the same improvement is observed, and the luminous intensity is about 8% at the maximum when y = 0.00005. However, the rate of increase in emission intensity is smaller than when Tb 3+ is added. From the above examination results, it was experimentally confirmed that the addition of a predetermined amount of Tb 3+ to the Gd 2 O 2 S: Pr composition was effective for improving the emission intensity.
[0007]
However, scintillators used for the purpose of measuring changes in the intensity of X-rays at high speed, such as X-ray CT apparatuses, have a small afterglow (a light emission phenomenon that continues even after X-ray irradiation is stopped). Equally important. FIG. 2 shows the relationship between the amount of Tb 3+ added and afterglow. The figure shows the measurement results 3ms and 30ms after X-ray irradiation was stopped. As can be seen from the figure, the afterglow characteristics after 30 ms from the stop of X-ray irradiation have no improvement effect on the added amount of Tb 3+ , but the afterglow characteristics after 3 ms become monotonous as the added amount of Tb 3+ increases. To increase. When the value of y exceeds 0.004 and the afterglow becomes 0.25% or more, the image resolution of the CT apparatus starts to decrease. Therefore, the limit value of y is considered to be 0.004. On the other hand, if the value of y is less than 0.00002, the improvement in emission intensity associated with Tb 3+ is small. As a result, the optimum range for addition of Tb 3+ is preferably in the range of 0.00002 ≦ y ≦ 0.004, more preferably 0.00005 ≦ y ≦ 0.002, in the general formula (Gd 1-xyz Pr x Tb y Ce z ) 2 O 2 S. all right.
[0008]
On the other hand, FIG. 3 shows the relationship between the addition amount of Pr, which is a light emitting element, and the light emission intensity. It is an upwardly convex characteristic curve having a maximum value in the vicinity of x = 0.001. When x exceeds 0.004 or less than 0.0003, the emission intensity near x = 0.001 is 80% or less. From this result, the range of x shown in the general formula (Gd 1-xyz Pr x Tb y Ce z ) 2 O 2 S is 0.0003 ≦ x ≦ 0.004, more preferably 0.0005 ≦ x ≦ 0.002. all right. FIG. 4 shows the relationship between the amount of Ce added as an afterglow reducing element, the emission intensity, and the afterglow. It can be seen that Ce is very effective in reducing afterglow, but at the same time, Ce works in the direction of decreasing the emission intensity. When z exceeds 0.00004, the emission intensity is less than 80% compared to the case where Ce is not added. Therefore, in the general formula (Gd 1-xyz Pr x Tb y Ce z ) 2 O 2 S, the value of z is in the range of 0 <z ≦ 0.00004, and more preferably in the range of 0.000005 ≦ z ≦ 0.00002. I understood.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1) An embodiment of the scintillator of the present invention will be described.
Weighed 361.96 g of Gd 2 O 3 , 0.34 g of Pr 6 O 11 and 0.187 g of Tb 4 O 7 . Next, 1.3016 g of Ce (NO 3 ) 3 .6H 2 O was dissolved in 500 cc of pure water, and 4 ml of the solution was added to the previous raw material with a pipette, followed by wet mixing and drying. Then, 95.72 g of Na 2 CO 3 , 10.10 g of Li 2 B 4 O 7 , 32.33 g of K 3 PO 4 .3H 2 O, 3.29 g of NaBF 4 and 105.49 g of S are added to this raw material, Dry mixed. Next, this raw material mixed powder was put in an alumina crucible, covered with alumina, and then fired at 1300 ° C. for 8 hours. After cooling, the crucible and the fired product were left in pure water for 1 h to loosen the raw materials. This raw material was thoroughly washed with pure water, and then washed with 4N hydrochloric acid for 2 h and warm water at 90 ° C. for 1 h using a stirrer. Thus, a (Gd 0.9985 Pr 0.001 Tb 0.0005 Ce 0.00001 ) 2 O 2 S scintillator powder having an average particle size of 40 μm was obtained. To this powder, 0.1 wt% of Li 2 GeF 6 was added as a sintering aid, filled into a mild steel capsule, and vacuum sealed. Then, hot isostatic pressing (HIP) sintering was performed at 1300 ° C., 1000 atm, and 3 hours. The obtained sintered body was machined into a wafer shape of 30 × 26 × t1.25 mm, and then heat treated in Ar gas containing a trace amount of oxygen at 1100 ° C. for 30 minutes to obtain a ceramic scintillator. Table 1 shows the emission intensity when the scintillator is irradiated with X-rays (W target) having a tube voltage of 120 kV and a tube current of 5 mA, and the afterglow measurement results after 30 ms have elapsed after stopping the X-ray excitation. In Examples 2 to 5, raw material powders and sintered bodies were produced in the same procedure as in Example 1. However, raw material powders were prepared by changing the amounts of Gd 2 O 3 , Pr 6 O 11 , and Tb 4 O 7 added. Table 1 shows the composition of the obtained scintillator and the measurement results of emission intensity and afterglow.
[0010]
(Comparative Example 1) 361.42 g of Gd 2 O 3 and 1.02 g of Pr 6 O 11 were weighed. Next, 1.3016 g of Ce (NO 3 ) 3 .6H 2 O was dissolved in 500 cc of pure water, and 6 ml of the solution was added to the raw material by a pipette, followed by wet mixing and drying. Then, 95.72 g of Na 2 CO 3 , 10.10 g of Li 2 B 4 O 7 , 32.33 g of K 3 PO 4 .3H 2 O, 3.29 g of NaBF 4 and 105.49 g of S are added to this raw material, Dry mixed. Next, this raw material mixed powder was put in an alumina crucible, covered with alumina, and then fired at 1300 ° C. for 8 hours. After cooling, the crucible and the fired product were left in pure water for 1 h to loosen the raw materials. This raw material was thoroughly washed with pure water, and then washed with 4N hydrochloric acid for 2 hours and warm water at 90 ° C. for 1 hour using a stirrer. Thus, (Gd 0.997 Pr 0.003 Ce 0.000015 ) 2 O 2 S scintillator powder having an average particle size of 40 μm was obtained. To this powder, 0.1 wt% of Li 2 GeF 6 was added as a sintering aid, filled into a mild steel capsule, and vacuum sealed. Then, hot isostatic pressing (HIP) sintering was performed at 1300 ° C., 1000 atm, and 3 hours. The obtained sintered body was machined into a wafer shape of 30 × 26 × t1.25 mm, and then heat-treated at 1100 ° C. for 30 minutes in an Ar gas containing a small amount of oxygen to obtain a ceramic scintillator. The composition of the obtained scintillator and the measurement results of emission intensity and afterglow are shown together in Table 1 together with other comparative examples.
[0011]
[Table 1]
Figure 0003741302
[0012]
In a scintillator used for an apparatus that detects a change in the intensity of radiation at high speed, such as an X-ray CT apparatus, it is very important that the emission intensity with respect to the radiation is large and the afterglow is small. However, as shown in FIG. 5, the existing scintillators having a large emission intensity have a large afterglow, and conversely, those having a small afterglow tend to have a low sensitivity, and have not sufficiently satisfied the characteristic requirements. On the other hand, the composition system disclosed in Registered Patent No. 1284949 has been put to practical use for a high-resolution X-ray CT apparatus because it has a relatively small afterglow and a relatively high emission intensity. However, for further high resolution and high-speed scanning for reducing human exposure doses, improvement in emission intensity has been demanded. In addition, scintillators with high emission intensity include Gd 2 O 2 S: Tb and Gd 2 O 2 S: Eu. The former is the decay time constant of emission (the emission intensity is reduced to 1 / e after X-ray excitation is stopped). The latter has a long afterglow and cannot be used in an X-ray CT apparatus. According to the present invention, a detailed study is performed based on the Gd 2 O2S: Pr composition system, and the general formula (Gd 1-XYZ Pr X Tb Y Ce Z ) 2 O 2 S , 0.0005 x 0.002 , 0.00005 By including Pr , Tb and Ce in the range of y 0.002 and 0.000005 z 0.00002 , the afterglow characteristics can be further reduced, and the emission intensity can be improved by about 20%. As a result, the resolution of the CT apparatus can be improved and high-speed scanning can be realized.
[0013]
【The invention's effect】
As described above, as is clear from the detailed description of the present invention, the emission intensity can be significantly improved by adding Tb 3+ to the scintillator according to the prior art, and the relative emission intensity can be increased without increasing the afterglow. An improved scintillator can be provided.
[Brief description of the drawings]
FIG. 1 shows emission intensity characteristics with respect to Tb addition according to the present invention.
FIG. 2 shows afterglow characteristics with respect to Tb addition according to the present invention.
FIG. 3 shows emission intensity characteristics of Pr, which is a light emitting element according to the present invention.
FIG. 4 shows emission intensity and afterglow characteristics for Ce addition according to the present invention.
FIG. 5 shows emission intensity and afterglow characteristics of various scintillators according to the present invention.

Claims (1)

一般式(Gd1-X-Y-ZPrXTbYCeZ)2O2Sで表され、Pr、Tb及びCeを必ず含み、
前記x、yおよびzはそれぞれ0.0005≦x≦0.002、0.00005≦y≦0.002、0.000005≦z≦0.00002であることを特徴とするシンチレータ。
It is represented by the general formula (Gd 1-XYZ Pr X Tb Y Ce Z ) 2 O 2 S, and must contain Pr, Tb and Ce,
The x, y, and z are 0.0005 ≦ x ≦ 0.002, 0.00005 ≦ y ≦ 0.002, and 0.000005 ≦ z ≦ 0.00002, respectively.
JP12310898A 1998-05-06 1998-05-06 Scintillator Expired - Lifetime JP3741302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12310898A JP3741302B2 (en) 1998-05-06 1998-05-06 Scintillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12310898A JP3741302B2 (en) 1998-05-06 1998-05-06 Scintillator

Publications (2)

Publication Number Publication Date
JPH11315278A JPH11315278A (en) 1999-11-16
JP3741302B2 true JP3741302B2 (en) 2006-02-01

Family

ID=14852384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12310898A Expired - Lifetime JP3741302B2 (en) 1998-05-06 1998-05-06 Scintillator

Country Status (1)

Country Link
JP (1) JP3741302B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015862A1 (en) * 2005-07-25 2007-02-08 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
WO2010078220A2 (en) 2008-12-30 2010-07-08 Saint-Gobain Ceramics & Plastics, Inc. Scintillation device and method of producing a ceramic scintillator body
US9183962B2 (en) 2008-12-30 2015-11-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
WO2010078224A2 (en) 2008-12-30 2010-07-08 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
WO2010078223A2 (en) 2008-12-30 2010-07-08 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
WO2013014557A1 (en) * 2011-07-28 2013-01-31 Koninklijke Philips Electronics N.V. Terbium based detector scintillator
CN105849591B (en) 2013-11-15 2018-12-14 东芝电子管器件株式会社 Radiation detector and scintillator panel and its manufacturing method
CN108249920A (en) * 2018-03-14 2018-07-06 上海科炎光电技术有限公司 A kind of CT detects material with efficient nano

Also Published As

Publication number Publication date
JPH11315278A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
NL1033061C2 (en) Material and radiation detectors that contain this material.
EP0297269B1 (en) Solid state scintillator and method for preparing such scintillator
US7008558B2 (en) Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
US6793848B2 (en) Terbium or lutetium containing garnet scintillators having increased resistance to radiation damage
JP5675339B2 (en) Solid scintillator, radiation detector, and X-ray tomography apparatus
CA2059915C (en) Method of forming yttria-gadolinia ceramic scintillator using hydroxide coprecipitation step
JP3777486B2 (en) Phosphor, radiation detector using the same, and X-ray CT apparatus
JP5022600B2 (en) Ceramic scintillator and radiation detector and radiation inspection apparatus using the same
JP5937287B1 (en) Mixed oxide material
JP3741302B2 (en) Scintillator
JP4678924B2 (en) Radiation detector and X-ray diagnostic apparatus using the same
JP3524300B2 (en) Ceramic scintillator, radiation detector and radiation inspection device using the same
Buchanan An improved x-ray intensifying screen
JP2018194396A (en) Scintillator array, and radiation detector and radiation inspection device each using the same, and method for manufacturing scintillator array
US20100059668A1 (en) Scintillator material and radiation detectors containing same
JP2989184B1 (en) Ceramic scintillator
JP2989089B2 (en) Ceramic scintillator material
JP2012072330A (en) Material for solid scintillator, solid scintillator, and radiation detector and radiation inspection device using the same
JP4266114B2 (en) Scintillator and radiation inspection apparatus using the same
JPH11166177A (en) Scintillator
JPH11237480A (en) Radiation detector
JPH11310777A (en) Phosphor ceramic, and radiation detector and radiographic inspection apparatus using the same
JP2024075629A (en) Scintillator element, scintillator array, radiation detector, and radiation computed tomography apparatus
JPH06145655A (en) Fluorescent substance for x-ray detector and x-ray detector using the same
CA1315089C (en) Solid state scintillator and treatment therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

EXPY Cancellation because of completion of term