JPH1131523A - Nonaqueous electrolyte secondary battery and manufacture thereof - Google Patents

Nonaqueous electrolyte secondary battery and manufacture thereof

Info

Publication number
JPH1131523A
JPH1131523A JP9298690A JP29869097A JPH1131523A JP H1131523 A JPH1131523 A JP H1131523A JP 9298690 A JP9298690 A JP 9298690A JP 29869097 A JP29869097 A JP 29869097A JP H1131523 A JPH1131523 A JP H1131523A
Authority
JP
Japan
Prior art keywords
battery
battery case
concave portion
electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9298690A
Other languages
Japanese (ja)
Inventor
Masayuki Kageyama
雅之 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9298690A priority Critical patent/JPH1131523A/en
Publication of JPH1131523A publication Critical patent/JPH1131523A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which is superior in a high temperature preservation characteristic with high reliability and high energy density, and its manufacturing method. SOLUTION: Negative electrodes 1 and positive electrodes 2 are successively laminated via separators 3 to form an electrode element 5. This electrode element 5 is stored in a rectangular battery case 6 along with an element pressurizing plate 7, and insulating sheets 8 are arranged at both upper and lower faces of the electrode element 5. The element pressurizing plate 7 is arranged between the negative electrode 1 at the outermost periphery of the electrode element 5 and the internal wall of the battery case 6. A positive electrode lead 9 made of aluminum is welded to a positive electrode terminal 12 which has been previously fitted to a battery lid 11 via a gasket 10. The battery case 6 and the battery lid 11 are then fixed by laser welding to constitute a nonaqueous electrolyte secondary battery. A recessed part 6a with a flat bottom part is provided at a face, oppositely facing an electrode laminating direction of the battery case 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に関し、更に詳しくは高温保存特性にすぐれ、エネルギ
ー密度の高い角型の非水電解液二次電池とその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a square non-aqueous electrolyte secondary battery having excellent high-temperature storage characteristics and high energy density, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR、携帯電話、
ラップトップコンピュータ等の新しいポータブル電子機
器が次々に出現し、ますますその小型軽量化が図られ、
それに伴って、携帯可能なポータブル電源として二次電
池が注目され、さらに高いエネルギー密度を得るために
活発な研究開発がなされている。
2. Description of the Related Art In recent years, camera-integrated VTRs, mobile phones,
New portable electronic devices, such as laptop computers, are appearing one after another, and are becoming smaller and lighter,
Along with this, secondary batteries have attracted attention as portable power sources, and active research and development have been made to obtain higher energy densities.

【0003】このような状況の中で、鉛電池、ニッケル
・カドミウム電池等の水系電解液二次電池よりも高いエ
ネルギー密度を有する二次電池として非水電解液を用い
たリチウムイオン二次電池が提案され、実用されてきて
いる。
Under these circumstances, a lithium ion secondary battery using a non-aqueous electrolyte has been developed as a secondary battery having a higher energy density than an aqueous electrolyte secondary battery such as a lead battery and a nickel-cadmium battery. It has been proposed and put into practical use.

【0004】リチウムイオン二次電池の電池形態として
は、渦巻き状に巻回した電極素子を円筒型ケースに挿入
した筒型電池と、折り込んだ電極や矩形状積層電極素
子、また短冊状の正負極を巻回してなる巻回電極素子を
角型のケースに挿入した角型電池がある。この角型電池
は、筒型電池よりもスペース効率が高く、近年の電子機
器の薄型化に伴い要求が高まっている。
[0004] Lithium ion secondary batteries include a cylindrical battery in which a spirally wound electrode element is inserted into a cylindrical case, a folded electrode, a rectangular laminated electrode element, and a strip-shaped positive and negative electrode. There is a prismatic battery in which a wound electrode element formed by winding is wound into a rectangular case. This rectangular battery has a higher space efficiency than a cylindrical battery, and the demand has been increasing as electronic devices have become thinner in recent years.

【0005】ところで、上述した二次電池は通常の使用
は勿論のこと、真夏の車中等の過酷な条件下においても
使用され、高い信頼性が要求されている。特に角型の電
池ケースは円筒型と比べ強度が弱いため電池内圧の上昇
に伴い変形が起こりやすい。そのためこのような電池を
電子機器内部に収納して使用する場合、電池の変形によ
って電子機器から抜き出せなくなり、さらには電子機器
を破損する場合があった。また、これを防止するために
電池サイズを小さくすると電池容量が低下し、電子機器
の作動時間が短くなるという問題があった。
By the way, the above-mentioned secondary battery is used not only in normal use but also under severe conditions such as in a car in the middle of summer, and high reliability is required. In particular, a rectangular battery case is weaker in strength than a cylindrical battery case, and thus is likely to be deformed as the battery internal pressure increases. Therefore, when such a battery is used while housed in an electronic device, the battery may not be able to be pulled out of the electronic device due to deformation of the battery, and the electronic device may be damaged. Further, if the size of the battery is reduced to prevent this, there is a problem that the battery capacity is reduced and the operation time of the electronic device is shortened.

【0006】また、リチウムイオンの非水電解液二次電
池の正極および負極材料はそれぞれの結晶中にリチウム
イオンを出し入れすることで充放電を行うが、その際に
結晶の膨張収縮を伴う。前述したように円筒型ケースは
強度が高く、正極および負極の膨張によってもケースは
変形せず、電極間の密着性が十分に保持され、イオンの
移動反応がスムーズに行われて、優れた電池特性を示
す。
The positive and negative electrode materials of a lithium ion non-aqueous electrolyte secondary battery are charged and discharged by taking lithium ions in and out of their respective crystals, which involves expansion and contraction of the crystals. As described above, the cylindrical case has high strength, the case does not deform due to the expansion of the positive electrode and the negative electrode, the adhesion between the electrodes is sufficiently maintained, and the ion transfer reaction is smoothly performed, and an excellent battery is obtained. Show characteristics.

【0007】しかしながら、角型電池ではケースの変形
が起こり、そのため電極間の密着性が十分に保持され
ず、良い電池特性を得ることができなかった。この現象
を図10ないし図12を参照して説明する。
However, in the case of a prismatic battery, the case is deformed, so that the adhesion between the electrodes is not sufficiently maintained, and good battery characteristics cannot be obtained. This phenomenon will be described with reference to FIGS.

【0008】図10(a)は充電前の角型の非水電解液
二次電池の縦断面図であるが、充電後、図10(b)に
示すように電池内圧の上昇に伴って、電極素子5が膨張
し、電池ケース6を変形させていた。また、この変形を
抑えるために素子加圧板7を配設する対策も採られてき
たが、十分な効果を得ることができず、電極間の密着性
を十分に確保することができなかった。
FIG. 10A is a longitudinal sectional view of a prismatic non-aqueous electrolyte secondary battery before charging. After charging, as shown in FIG. The electrode element 5 expanded and deformed the battery case 6. Although measures have been taken to dispose the element pressing plate 7 in order to suppress this deformation, a sufficient effect could not be obtained, and the adhesion between the electrodes could not be sufficiently ensured.

【0009】また、図11は角型の非水電解液二次電池
の膨張前の状態(a)と、膨張後の状態(b)の横断面
図である。図11(b)および図12に示されているよ
うにY方向に大きな力が加わって、この側面、即ち、電
極を積層する方向に対向する側面が膨張するが、電極を
積層する方向とは直角方向の側面がX方向に変形するこ
とで、さらにY方向の膨張が促進されていた。
FIG. 11 is a cross-sectional view of the prismatic nonaqueous electrolyte secondary battery in a state before expansion (a) and in a state after expansion (b). As shown in FIGS. 11B and 12, a large force is applied in the Y direction, and this side surface, that is, the side surface opposed to the electrode stacking direction expands. The side face in the perpendicular direction is deformed in the X direction, thereby further promoting expansion in the Y direction.

【0010】[0010]

【発明が解決しようとする課題】従って本発明の課題
は、電極間が十分に密着され、更に高温に曝された場合
でも電池ケースの膨張を抑えることで、高温保存特性に
優れた、高い信頼性と高エネルギー密度の非水電解液二
次電池とその製造方法を提供する。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high-reliability, high-temperature storage characteristic by suppressing the expansion of the battery case even when the electrodes are sufficiently adhered and exposed to a high temperature. The present invention provides a non-aqueous electrolyte secondary battery having high energy density and a method of manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、多孔質セパレータで正極と負極と
を絶縁した電極を積層して電極素子を形成し、該電極素
子を電池ケース内に収納すると共に、前記電池ケース内
に非水電解液を注入してなる角型の非水電解液二次電池
において、前記電池ケースの少なくとも1つの側面に、
少なくとも1つの凹部を形成する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an electrode element is formed by laminating electrodes in which a positive electrode and a negative electrode are insulated by a porous separator, and the electrode element is formed in a battery case. In a rectangular non-aqueous electrolyte secondary battery obtained by injecting a non-aqueous electrolyte into the battery case, at least one side surface of the battery case,
At least one recess is formed.

【0012】第一の形態として、前記電池ケースの側面
に形成する凹部は、電極を積層する方向に対向する電池
ケース側面に、底面が平面である凹部を形成する。
As a first mode, the concave portion formed on the side surface of the battery case has a concave portion having a flat bottom surface on the side surface of the battery case opposed to the direction in which the electrodes are stacked.

【0013】また、前記電池ケースの凹部を有する面に
垂直な方向におけるケース内厚みが、電極素子厚みに対
して0.84倍以上、0.99倍以下、または0.90
倍以上、0.99倍以下であることとする。
The thickness of the battery case in a direction perpendicular to the surface of the battery case having a concave portion is 0.84 times or more, 0.99 times or less, or 0.90 times or less of the electrode element thickness.
It should be more than twice and less than 0.99 times.

【0014】また、前記電池ケースの凹部は、電池ケー
ス内に電極素子を収納した後、電極を積層する方向に対
向する電池ケース側面の少なくとも一方の面に、金型を
押圧して底部が平面である凹部を設ける製造方法を用い
る。
The recess of the battery case is formed by pressing a mold on at least one of the side surfaces of the battery case opposed to the direction in which the electrodes are stacked after the electrode element is housed in the battery case, and the bottom is flat. Is used.

【0015】第二の形態として、前記電池ケースの側面
に形成する凹部は、電極を積層する方向とは直角方向の
側面の少なくとも一方の面に形成する。
As a second mode, the concave portion formed on the side surface of the battery case is formed on at least one of the side surfaces in a direction perpendicular to the direction in which the electrodes are stacked.

【0016】また、電極を積層する方向とは直角方向の
側面に設けた凹部における、電極を積層する方向の電池
ケース幅は凹部以外における電池ケース幅の80%以
上、99.8%以下であることとする。
The width of the battery case in the direction in which the electrodes are stacked in the recess provided on the side surface perpendicular to the direction in which the electrodes are stacked is 80% or more and 99.8% or less of the width of the battery case other than the recesses. It shall be.

【0017】また、前記電池ケースの凹部はプレス加工
により形成する製造方法を用いる。
Further, a concave portion of the battery case is formed by a press working method.

【0018】さらに、第一の形態、第二の形態におい
て、電極を積層する方向の電池ケース内壁と電極素子と
の間にバネ性を有する素子加圧板を設けて上記課題を解
決する。
Further, in the first and second embodiments, the above object is achieved by providing an element pressing plate having a spring property between the inner wall of the battery case in the direction in which the electrodes are stacked and the electrode element.

【0019】上述したように角型非水電解液二次電池の
少なくとも1つの側面に凹部を設けたことにより、電池
内圧の上昇による電池ケースの変形が低減され、電極素
子の密着性が確保される。
As described above, by providing the concave portion on at least one side surface of the rectangular nonaqueous electrolyte secondary battery, deformation of the battery case due to an increase in battery internal pressure is reduced, and adhesion of the electrode element is secured. You.

【0020】[0020]

【発明の実施の形態】本発明の第1の実施形態について
図1ないし図5を参照し、また、第2の実施形態につい
て図6ないし図9を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. 1 to 5, and a second embodiment will be described with reference to FIGS.

【0021】前述の課題を解決するために、本発明者ら
は鋭意検討を行った結果、電池ケースに凹部を設けるこ
とで電池反応が円滑に進み、さらに高温に曝されても電
池ケースの変形を抑制できることを見いだした。これに
基づいた本発明は角型電池等の扁平な形状であって、電
池ケースの側面に凹部を設け、さらに電極を積層する方
向の電池ケース内壁と電極素子との間にバネ性を有する
素子加圧板を設けた電池構造を特徴とする。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, by providing a concave portion in the battery case, the battery reaction proceeds smoothly, and even when the battery case is exposed to a high temperature, the battery case is deformed. Can be suppressed. The present invention based on this is an element having a flat shape such as a prismatic battery, provided with a concave portion on the side surface of the battery case, and further having a spring property between the inner wall of the battery case in the direction of laminating the electrodes and the electrode element. It features a battery structure provided with a pressure plate.

【0022】つぎに、本発明に係わる角型の非水電解液
二次電池の構成について説明する。まず、負極活物質と
しては、酸化鉄、酸化ルテニウム、酸化モリブデン、酸
化タングステン、酸化チタン等の酸化物、リチウム、リ
チウム合金、リチウムイオンのドープ・脱ドープが可能
な炭素材料が使用可能である。
Next, the configuration of the prismatic nonaqueous electrolyte secondary battery according to the present invention will be described. First, as the negative electrode active material, oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, and titanium oxide, lithium, lithium alloys, and carbon materials capable of doping / dedoping lithium ions can be used.

【0023】負極に用いる炭素材料は、フェノール樹
脂、アクリル樹脂、ハロゲン化ビニル樹脂、ポリイミド
樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリア
セチレン、ポリ(p−フェニレン)等の共役系樹脂、セ
ルロースおよびその誘導体、任意の有機高分子系化合
物、また、特にフルフリルアルコール或いはフルフラー
ルのホモポリマー、コポリマーよりなるフラン樹脂等、
また石油ピッチ等、上記の有機材料を出発原料として焼
成等の手法により炭素化して得られる炭素質材料および
黒鉛類等の炭素材料が好適である。
Carbon materials used for the negative electrode include phenolic resins, acrylic resins, vinyl halide resins, polyimide resins, polyamideimide resins, polyamide resins, conjugated resins such as polyacetylene and poly (p-phenylene), cellulose and derivatives thereof, Any organic high molecular compound, or furfuryl alcohol or furfural homopolymer, furan resin composed of copolymer, etc.
Further, carbonaceous materials obtained by carbonizing the above organic materials as starting materials, such as petroleum pitch, by a method such as firing, and carbon materials such as graphites are preferable.

【0024】一方、正極材料は特に限定されないが、十
分な量のLiを含んでいることが好ましく、例えば一般
式LiMO2 (但し、MはCo、Ni、Mn、Fe、A
l、V、Tiの少なくとも一種を表す)で表されるリチ
ウムと遷移金属からなる複合金属酸化物やLiを含んだ
層間化合物等を用いることができる。
On the other hand, the cathode material is not particularly limited, but preferably contains a sufficient amount of Li. For example, the general formula LiMO 2 (where M is Co, Ni, Mn, Fe, A
l, V, or Ti), a composite metal oxide composed of lithium and a transition metal, an interlayer compound containing Li, or the like can be used.

【0025】また、電解液は電解質を非水溶媒に溶解し
て用いられる。例えば、プロピレンカーボネート、エチ
レンカーボネート、ブチレンカーボネート、ジエチルカ
ーボネート、ジメチルカーボネート、メチルエチルカー
ボネート、1,2−ジメトキシエタン、1,2−ジエト
キシメタン、γ−ブチロラクトン、バレロラクトン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、スルホラン、メチルスルホラン、アセトニトリ
ル、プロピオニトリル等が単独、若しくは2種類以上が
混合されて溶媒として使用される。
The electrolyte is used by dissolving the electrolyte in a non-aqueous solvent. For example, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane, γ-butyrolactone, valerolactone, tetrahydrofuran, 2-methyltetrahydrofuran,
1,3-Dioxolane, 4-methyl-1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, etc. are used alone or as a mixture of two or more kinds.

【0026】このような非水溶媒に溶解する電解質とし
ては、この種の電池に用いられるものであればいずれも
一種以上を混合し使用可能である。例えばLiPF6
好適であるが、その他LiClO4 、LiAsF6 、L
iBF4 、LiB(C6 54 、CH3 SO3 Li、
CF3 SO3 Li、LiN(CF3 SO2 2 、LiC
(CF3 SO2 3 、LiCl、LiBr等も使用可能
である。
As the electrolyte dissolved in such a non-aqueous solvent, any electrolyte used in this type of battery can be used by mixing one or more kinds. For example, LiPF 6 is preferable, but other LiClO 4 , LiAsF 6 , L
iBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li,
CF 3 SO 3 Li, LiN (CF 3 SO 2 ) 2 , LiC
(CF 3 SO 2 ) 3 , LiCl, LiBr and the like can also be used.

【0027】第1実施形態例 つぎに、図1に示す構成の第1実施形態例に係わる非水
電解液二次電池の実施例1〜8、および比較例1〜4に
ついて説明する。
First Embodiment Next, Examples 1 to 8 and Comparative Examples 1 to 4 of the nonaqueous electrolyte secondary battery according to the first embodiment having the structure shown in FIG. 1 will be described.

【0028】実施例1 まず、負極1を次のようにして作製した。H/C原子比
を0.6〜0.8の範囲から選んだ石油ピッチを粉砕
し、空気気流中で酸化処理して炭素前駆体を得た。この
炭素前駆体のキノリン不溶分(JIS遠心法:K242
5−1983)は80%であり、また、酸素含有率(有
機元素分析法)は15.4重量%であった。
Example 1 First, a negative electrode 1 was produced as follows. A petroleum pitch having an H / C atomic ratio selected from the range of 0.6 to 0.8 was pulverized and oxidized in an air stream to obtain a carbon precursor. Quinoline-insoluble matter of this carbon precursor (JIS centrifugation: K242
5-1983) was 80%, and the oxygen content (organic elemental analysis) was 15.4% by weight.

【0029】この炭素前駆体を窒素気流中で1000℃
に昇温して熱処理した後、粉砕し、平均粒径が10μm
の炭素材料粉末とした。尚、このとき得られた難黒鉛化
炭素材料についてX線回折測定を行った結果、(00
2)面の面間隔は0.381nmであり、真比重は1.
54g/cm3 であった。
The carbon precursor is heated at 1000 ° C. in a nitrogen stream.
And heat-treated, pulverized to an average particle size of 10 μm
Carbon material powder. In addition, as a result of performing X-ray diffraction measurement on the non-graphitizable carbon material obtained at this time, (00
2) The plane spacing is 0.381 nm, and the true specific gravity is 1.
It was 54 g / cm 3 .

【0030】この炭素材料粉末90重量部を、バインダ
ーであるポリフッ化ビニリデン10重量部と混合して負
極混合物を調製し、この負極混合物を溶剤となるN−メ
チル−2−ピロリドンに分散させてスラリー状にし、負
極スラリーを調整した。このようにして得られた負極ス
ラリーを負極集電体となる厚さ10μmの帯状の銅箔の
両面に均一に塗布し、乾燥させた後、ロールプレス機で
圧縮成形し、帯状の負極1を作製した。この負極1は合
剤厚さを両面とも80μmで同一とし、幅を41.5m
m、長さを440mmとした。
90 parts by weight of the carbon material powder was mixed with 10 parts by weight of polyvinylidene fluoride as a binder to prepare a negative electrode mixture, and the negative electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to form a slurry. And a negative electrode slurry was prepared. The negative electrode slurry thus obtained is uniformly applied to both sides of a 10 μm-thick strip-shaped copper foil serving as a negative electrode current collector, dried, and then compression-molded with a roll press to obtain a strip-shaped negative electrode 1. Produced. This negative electrode 1 had the same mixture thickness of 80 μm on both sides and a width of 41.5 m.
m and the length were 440 mm.

【0031】正極2は次のようにして作製した。炭酸リ
チウムと炭酸コバルトを0.5モル:1.0モルの比で
混合し、この混合物を空気中、温度900℃で5時間焼
成してLiCoO2 を得た。このLiCoO2 91重量
部と導電材であるグラファイト6重量部とバインダーで
あるポリフッ化ビニリデン3重量部とを混合して正極混
合物を調製し、この正極混合物を溶剤となるN−メチル
−2−ピロリドンに分散させてスラリー状にし、正極ス
ラリーを調製した。
The positive electrode 2 was manufactured as follows. Lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol: 1.0 mol, and this mixture was calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2 . 91 parts by weight of this LiCoO 2, 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, and this positive electrode mixture was mixed with N-methyl-2-pyrrolidone as a solvent. To prepare a positive electrode slurry.

【0032】このようにして得られた正極スラリーを正
極集電体となる厚さ20μmの帯状のアルミニウム箔の
両面に均一に塗布し、乾燥させた後、ロールプレス機で
圧縮成形し、帯状の正極2を作製した。この正極2は合
剤厚さを両面とも80μmで同一とし、幅を39.5m
m、長さを415mmとした。
The positive electrode slurry thus obtained is uniformly coated on both sides of a 20 μm-thick strip-shaped aluminum foil serving as a positive electrode current collector, dried, and then compression-molded by a roll press to form a strip-shaped aluminum foil. The positive electrode 2 was produced. This positive electrode 2 had the same mixture thickness of 80 μm on both sides and a width of 39.5 m.
m and the length were 415 mm.

【0033】上述したように作製された負極1および正
極2を厚さ30μmの微多孔性ポリプロピレンフィルム
よりなるセパレータ3を介して、負極1、セパレータ
3、正極2、セパレータ3の順に積層して電極積層体を
形成し、この電極積層体を断面が菱形状の巻芯にセパレ
ータ3を固定して多数回巻回する。尚、菱形状の巻芯は
2本の対角線の長さ比が1:3であり、巻芯の各角は円
弧状の曲線仕上げが施されている。
The negative electrode 1 and the positive electrode 2 manufactured as described above are laminated in order of the negative electrode 1, the separator 3, the positive electrode 2, and the separator 3 via the separator 3 made of a microporous polypropylene film having a thickness of 30 μm. A laminate is formed, and the electrode laminate is wound a number of times while fixing the separator 3 to a core having a rhombic cross section. The diamond-shaped core has a length ratio of two diagonal lines of 1: 3, and each corner of the core has an arc-shaped curved finish.

【0034】その後、最外周に位置する負極集電体であ
る銅箔の最終端部を幅40mmの素子接着テープ4で固
定し、更にその後、巻芯を巻回した電極積層体から抜き
取り、直径方向に押しつぶすことで長円状の電極素子5
を作製した。
Thereafter, the final end of the copper foil as the negative electrode current collector located at the outermost periphery is fixed with an element adhesive tape 4 having a width of 40 mm. Oval electrode element 5 by crushing in the direction
Was prepared.

【0035】このようにして作製した電極素子5を、ニ
ッケルメッキを施した鉄製の角型の電池ケース6内にニ
ッケルメッキを施したステンレス製の素子加圧板7と共
に収納し、電極素子5の上下両面に絶縁シート8を配置
した。このとき素子加圧板7は電極素子5の最外周の負
極1と電池ケース6の内壁間に配置した。
The electrode element 5 thus manufactured is housed in a nickel-plated iron rectangular battery case 6 together with a nickel-plated stainless steel element pressing plate 7, and the upper and lower sides of the electrode element 5 The insulating sheets 8 were arranged on both sides. At this time, the element pressing plate 7 was arranged between the outermost negative electrode 1 of the electrode element 5 and the inner wall of the battery case 6.

【0036】つぎに、アルミニウム製の正極リード9を
導出して、予めガスケット10を介して電池蓋11に取
り付けられた正極端子12に溶接し、その後、電池ケー
ス6と電池蓋11とをレーザ溶接により固定した。
Next, the positive electrode lead 9 made of aluminum is led out and welded to the positive electrode terminal 12 previously attached to the battery cover 11 via the gasket 10, and then the battery case 6 and the battery cover 11 are laser-welded. And fixed.

【0037】プロピレンカーボネート50容量%とジメ
チルカーボネート50容量%の混合溶媒に、LiPF6
を1モル/lの割合で溶解して電解液を調製し、これを
電解液注入口(図示せず)から電池ケース6内に注入
し、その後、この電解液注入口を溶接して封口し密封す
る。
LiPF 6 was added to a mixed solvent of propylene carbonate 50% by volume and dimethyl carbonate 50% by volume.
Was dissolved at a rate of 1 mol / l to prepare an electrolyte, which was injected into the battery case 6 from an electrolyte injection port (not shown), and then the electrolyte injection port was welded and sealed. Seal.

【0038】つぎに、図2に示すように平面状のプレス
面を有するプレス金型13により、電極を積層する方向
の片面に凹部6aを形成し、角型のリチウムイオン二次
電池を作製した。このとき、図3で示される電池ケース
6の寸法は、W=34mm、A=48mm、B=15m
m、C=14.5mm、D=7.5mm、E=7.4m
m、電極素子5の厚み6.12mm、素子加圧板7の総
厚み0.5mm、電池ケース6の肉厚0.43mmであ
る。尚、素子加圧板7は、例えば厚さが0.1mmのス
テンレスの表面に凹凸を加工してバネ性を持たせ、総厚
みを0.5mmとしたものが用いられる。
Next, as shown in FIG. 2, a concave portion 6a was formed on one side in the direction in which the electrodes were laminated by a press die 13 having a flat press surface, thereby producing a prismatic lithium ion secondary battery. . At this time, the dimensions of the battery case 6 shown in FIG. 3 are W = 34 mm, A = 48 mm, B = 15 m
m, C = 14.5 mm, D = 7.5 mm, E = 7.4 m
m, the thickness of the electrode element 5 is 6.12 mm, the total thickness of the element pressing plate 7 is 0.5 mm, and the thickness of the battery case 6 is 0.43 mm. The element pressing plate 7 is made of, for example, stainless steel having a thickness of 0.1 mm, which is formed with irregularities on the surface so as to have a spring property and has a total thickness of 0.5 mm.

【0039】実施例2 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=15mm、C=14.5m
m、D=7.5mm、E=7.35mmであること以外
は実施例1と同様にして角型のリチウムイオン二次電池
を作製した。
Embodiment 2 The size of the battery case 6 after the formation of the recess 6a is W = 34.
mm, A = 48 mm, B = 15 mm, C = 14.5 m
A prismatic lithium ion secondary battery was produced in the same manner as in Example 1, except that m, D = 7.5 mm, and E = 7.35 mm.

【0040】実施例3 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=15mm、C=14.5m
m、D=7.5mm、E=7.30mmであること以外
は実施例1と同様にして角型のリチウムイオン二次電池
を作製した。
Embodiment 3 The size of the battery case 6 after the formation of the recess 6a is W = 34.
mm, A = 48 mm, B = 15 mm, C = 14.5 m
A prismatic lithium ion secondary battery was produced in the same manner as in Example 1, except that m, D = 7.5 mm, and E = 7.30 mm.

【0041】実施例4 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=15mm、C=14.5m
m、D=7.5mm、E=7.30mmであって、凹部
6aは電極を積層する方向の電池ケース6の両面に形成
したこと以外は実施例1と同様にして角型のリチウムイ
オン二次電池を作製した。尚、この実施例4における図
3の寸法Eは、両側に設けられた凹部6aの両凹部底面
間の厚みとする。
Example 4 The size of the battery case 6 after the formation of the recess 6a was W = 34.
mm, A = 48 mm, B = 15 mm, C = 14.5 m
m, D = 7.5 mm, E = 7.30 mm, and a rectangular lithium ion secondary battery was formed in the same manner as in Example 1 except that the concave portions 6a were formed on both surfaces of the battery case 6 in the direction in which the electrodes were stacked. A secondary battery was manufactured. The dimension E in FIG. 3 in the fourth embodiment is the thickness between the bottom surfaces of the concave portions 6a provided on both sides.

【0042】実施例5 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=20mm、C=12mm、D
=7.5mm、E=7.35mmであること以外は実施
例1と同様にして角型のリチウムイオン二次電池を作製
した。
Embodiment 5 The size of the battery case 6 after the formation of the recess 6a is W = 34.
mm, A = 48 mm, B = 20 mm, C = 12 mm, D
= 7.5 mm and E = 7.35 mm, and a prismatic lithium ion secondary battery was produced in the same manner as in Example 1.

【0043】実施例6 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=15mm、C=14.5m
m、D=7.5mm、E=7.08mmであること以外
は実施例1と同様にして角型のリチウムイオン二次電池
を作製した。
Embodiment 6 The dimensions of the battery case 6 after the formation of the recess 6a are W = 34.
mm, A = 48 mm, B = 15 mm, C = 14.5 m
A prismatic lithium ion secondary battery was produced in the same manner as in Example 1 except that m, D = 7.5 mm, and E = 7.08 mm.

【0044】実施例7 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=15mm、C=14.5m
m、D=7.5mm、E=6.86mmであること以外
は実施例1と同様にして角型のリチウムイオン二次電池
を作製した。
Embodiment 7 The size of the battery case 6 after the formation of the recess 6a is W = 34.
mm, A = 48 mm, B = 15 mm, C = 14.5 m
A prismatic lithium ion secondary battery was produced in the same manner as in Example 1 except that m, D = 7.5 mm, and E = 6.86 mm.

【0045】実施例8 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=15mm、C=14.5m
m、D=7.5mm、E=6.66mmであること以外
は実施例1と同様にして角型のリチウムイオン二次電池
を作製した。
Embodiment 8 The dimensions of the battery case 6 after the formation of the recess 6a are W = 34.
mm, A = 48 mm, B = 15 mm, C = 14.5 m
A prismatic lithium ion secondary battery was produced in the same manner as in Example 1 except that m, D = 7.5 mm, and E = 6.66 mm.

【0046】比較例1 凹部を形成しないこと以外は実施例1と同様にして角型
のリチウムイオン二次電池を作製した。
Comparative Example 1 A prismatic lithium ion secondary battery was manufactured in the same manner as in Example 1 except that no concave portion was formed.

【0047】比較例2 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=15mm、C=14.5m
m、D=7.5mm、E=7.45mmであること以外
は実施例1と同様にして角型のリチウムイオン二次電池
を作製した。
COMPARATIVE EXAMPLE 2 The size of the battery case 6 after the formation of the recess 6a was W = 34.
mm, A = 48 mm, B = 15 mm, C = 14.5 m
A prismatic lithium ion secondary battery was produced in the same manner as in Example 1 except that m, D = 7.5 mm, and E = 7.45 mm.

【0048】比較例3 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=15mm、C=14.5m
m、D=7.5mm、E=6.66mm、電極素子厚み
=6.12mmであり、素子加圧板7を用いなかったこ
と以外は実施例1と同様にして角型のリチウムイオン二
次電池を作製した。
COMPARATIVE EXAMPLE 3 The size of the battery case 6 after the formation of the concave portion 6a was W = 34.
mm, A = 48 mm, B = 15 mm, C = 14.5 m
m, D = 7.5 mm, E = 6.66 mm, electrode element thickness = 6.12 mm, and a prismatic lithium ion secondary battery in the same manner as in Example 1 except that the element pressing plate 7 was not used. Was prepared.

【0049】比較例4 凹部6aの形成後での電池ケース6の寸法は、W=34
mm、A=48mm、B=15mm、C=14.5m
m、D=7.5mm、E=6.36mmであること以外
は実施例1と同様にして角型のリチウムイオン二次電池
を作製した。
COMPARATIVE EXAMPLE 4 The dimensions of the battery case 6 after the formation of the recess 6a were W = 34.
mm, A = 48 mm, B = 15 mm, C = 14.5 m
A prismatic lithium ion secondary battery was produced in the same manner as in Example 1 except that m, D = 7.5 mm, and E = 6.36 mm.

【0050】上述した実施例1〜8、および比較例1〜
4の二次電池のそれぞれ50個について、つぎのような
測定を行った。
The above Examples 1 to 8 and Comparative Examples 1 to
The following measurements were performed on 50 secondary batteries of No. 4 respectively.

【0051】まず、実施例1〜5、および比較例1、2
のそれぞれの電池について、定電圧4.2V、定電流4
00mAで5時間の初期充電後、1KHzにおける電池
のインピーダンス、および電池ケース6の厚みDを測定
した。その結果を表1に示す。尚、表1中の「ケース内
厚み/電極素子厚み」の欄は、「ケース内厚み」を図3
に示すEの値から電池ケース6の両面の肉厚(0.43
mm×2=0.86mm)を引いた初期充電前の値と
し、一方、「電極素子厚み」を電極素子5の厚みと素子
加圧板7の厚みを加えた初期充電前の値とし、両者の比
を示している。
First, Examples 1 to 5 and Comparative Examples 1 and 2
Constant voltage of 4.2 V, constant current of 4
After the initial charging at 00 mA for 5 hours, the impedance of the battery at 1 KHz and the thickness D of the battery case 6 were measured. Table 1 shows the results. The column of “thickness in case / electrode element thickness” in Table 1 indicates “thickness in case” in FIG.
The thickness of both sides of the battery case 6 (0.43
mm × 2 = 0.86 mm) is subtracted from the value before the initial charge. On the other hand, the “electrode element thickness” is a value before the initial charge obtained by adding the thickness of the electrode element 5 and the thickness of the element pressing plate 7. The ratio is shown.

【0052】[0052]

【表1】 [Table 1]

【0053】つぎに、上記充電した電池を、60℃で5
日間保存した後の1KHzにおける電池のインピーダン
ス、および電池ケース6の厚みDを測定した。更に、こ
れらの電池を60℃で15時間保存後、400mA定電
流で2.75Vまで放電した条件で自己放電率を測定し
た。その結果を表2に示す。尚、自己放電率(%)とは
100−(保存後容量÷保存前容量×100)で示され
る値である。
Next, the charged battery was charged at 60 ° C. for 5 hours.
After storage for one day, the impedance of the battery at 1 KHz and the thickness D of the battery case 6 were measured. Further, after storing these batteries at 60 ° C. for 15 hours, the self-discharge rate was measured under the condition of discharging to 2.75 V at a constant current of 400 mA. Table 2 shows the results. The self-discharge rate (%) is a value represented by 100- (capacity after storage / capacity before storage × 100).

【0054】[0054]

【表2】 [Table 2]

【0055】また、実施例3、6〜8、比較例3、4に
ついて、定電圧4.2V、定電流400mAで5時間の
初期充電後、放置して電圧降下を測定し、内部ショート
の発生率を調べた。その結果を表3に示す。尚、表3中
の「ケース内厚み/電極素子厚み」の欄は、表1と同様
である。
For Examples 3, 6 to 8, and Comparative Examples 3 and 4, after initial charging for 5 hours at a constant voltage of 4.2 V and a constant current of 400 mA, the voltage was left to measure the voltage drop, and the occurrence of an internal short circuit was observed. The rate was checked. Table 3 shows the results. The column of “thickness in case / thickness of electrode element” in Table 3 is the same as in Table 1.

【0056】[0056]

【表3】 [Table 3]

【0057】まず、表1に示される測定結果から、初期
充電後の電池厚みは、凹部を持たない比較例1では7.
72mmであるのに対して、凹部を持った実施例1〜5
では7.58〜7.63mmの範囲にある。また、初期
充電後のインピーダンスは凹部を持たない比較例1では
56mΩであるのに対して、実施例1〜5では51〜5
2mΩの範囲にある。
First, from the measurement results shown in Table 1, the thickness of the battery after the initial charge was 7.7 in Comparative Example 1 having no concave portion.
Examples 1 to 5 having a concave portion in contrast to 72 mm
Is in the range of 7.58 to 7.63 mm. Further, the impedance after the initial charge was 56 mΩ in Comparative Example 1 having no concave portion, whereas the impedance was 51 to 5 in Examples 1 to 5.
It is in the range of 2 mΩ.

【0058】従って、凹部を持たない電池に対して凹部
を持った電池は電極間の密着性を良好にし、電極素子活
物質のインプット量を減らすことなく電池厚みの増加を
少なくでき、更に、重負荷放電特性等の電池性能に影響
を与える電池のインピーダンスを小さくできることが分
かる。図4はこの効果を示す図であって膨張前の状態に
対し〔図4(a)〕、膨張後〔図4(b)〕においては
電池ケース6に設けた凹部6aが膨張を押さえる方向に
作用して電極間の密着性を保持している。
Therefore, a battery having a concave portion has better adhesion between electrodes than a battery having no concave portion, and the increase in battery thickness can be reduced without reducing the input amount of the electrode element active material. It can be seen that the impedance of the battery, which affects battery performance such as load discharge characteristics, can be reduced. FIG. 4 is a view showing this effect. In the state before expansion (FIG. 4 (a)), after expansion (FIG. 4 (b)), the concave portion 6a provided in the battery case 6 moves in a direction to suppress the expansion. It acts to maintain the adhesion between the electrodes.

【0059】つぎに、表2に示される測定結果から、充
電した電池の60℃で5日間保存した後の電池厚みは、
凹部を持たない比較例1では7.85mmであるのに対
して、凹部を持った実施例1〜5では7.66〜7.7
5mmの範囲にある。また、インピーダンスは凹部を持
たない比較例1では75mΩであるのに対して、凹部を
持った実施例1〜5では60〜63mΩの範囲にある。
Next, from the measurement results shown in Table 2, the thickness of the charged battery after storage at 60 ° C. for 5 days is as follows:
In Comparative Example 1 having no concave portion, the length is 7.85 mm, whereas in Examples 1 to 5 having the concave portion, 7.66 to 7.7.
It is in the range of 5 mm. The impedance is 75 mΩ in Comparative Example 1 having no concave portion, whereas it is in the range of 60 to 63 mΩ in Examples 1 to 5 having the concave portion.

【0060】従って、凹部を持たない電池に対して凹部
を持った電池は高温保存においても電極間の密着性を良
好に保ち、電極素子活物質のインプット量を減らすこと
なく電池厚みの増加を少なくでき、更に、インピーダン
スの上昇を小さくでき、高温保存特性に優れた電池が得
られる。
Therefore, a battery having a concave portion has good adhesion between electrodes even at high temperature storage, and a battery having a concave portion has a small increase in battery thickness without reducing the input amount of the electrode element active material. In addition, a rise in impedance can be reduced, and a battery excellent in high-temperature storage characteristics can be obtained.

【0061】また、60℃で15時間保存後、400m
A定電流で2.75Vまで放電した場合の自己放電率
は、凹部を持たない比較例1では12.8%であるのに
対して、凹部を持った実施例1〜5では8.0〜8.8
%の範囲にある。従って、凹部を形成することにより保
存での自己放電、即ち容量低下を少なくすることができ
る。
After storing at 60 ° C. for 15 hours, 400 m
The self-discharge rate when discharging to 2.75 V at A constant current is 12.8% in Comparative Example 1 having no concave portion, whereas it is 8.0 to 800 in Examples 1 to 5 having the concave portion. 8.8
% Range. Therefore, by forming the concave portions, self-discharge during storage, that is, a decrease in capacity can be reduced.

【0062】図5は初期充電前の凹部加工後のケース内
厚み/電極素子厚みと上記自己放電率の関係を示すグラ
フである。比較例2は凹部が設けられた例であるが、こ
の場合、ケース内厚み/電極素子厚みが0.995であ
って、自己放電率は10.8%である。一方、凹部を設
けた実施例1〜5ではケース内厚み/電極素子厚みが
0.973〜0.988で自己放電率は8.0〜8.8
%と低い値となっている。これらのことから、凹部を形
成してもケース内厚み/電極素子厚みを0.99以下に
することが自己放電率の点から望ましいことが分かる。
FIG. 5 is a graph showing the relationship between the thickness in the case / thickness of the electrode element after the processing of the concave portion before the initial charging and the self-discharge rate. Comparative Example 2 is an example in which a concave portion is provided. In this case, the thickness in the case / the thickness of the electrode element is 0.995, and the self-discharge rate is 10.8%. On the other hand, in Examples 1 to 5 provided with the concave portions, the thickness in the case / the thickness of the electrode element was 0.973 to 0.988, and the self-discharge rate was 8.0 to 8.8.
% Is low. From these facts, it can be seen that it is desirable from the viewpoint of the self-discharge rate that the thickness in the case / the thickness of the electrode element be 0.99 or less even when the concave portion is formed.

【0063】つぎに、表3に示される結果から、素子加
圧板を用いた電池のケース内厚み/電極素子厚みが0.
876以上(実施例3、6〜8)については、内部ショ
ートの発生は0〜2%であるのに対し、素子加圧板を用
いた電池のケース内厚み/電極素子厚みが0.831
(比較例4)では6%と多く、また、素子加圧板を用い
ていない電池のケース内厚み/電極素子厚みが0.94
8(比較例3)でも6%と多くの内部ショートの発生が
認められた。
Next, from the results shown in Table 3, the ratio of the thickness in the case of the battery using the element pressing plate / the thickness of the electrode element to 0.
For 876 or more (Examples 3 and 6 to 8), the occurrence of internal short circuit was 0 to 2%, whereas the thickness of the battery case using the element pressure plate / the thickness of the electrode element was 0.831.
(Comparative Example 4) was as large as 6%, and the ratio of the thickness in the case / electrode element thickness of the battery not using the element pressing plate was 0.94.
8 (Comparative Example 3), occurrence of a large number of internal short circuits was observed at 6%.

【0064】このことから、凹部を形成し素子加圧板を
設けた扁平で角型の電池構造とすることにより、素子加
圧板のバネ性によって、凹部のプレス成型時の衝撃を吸
収し、内部ショートの発生が少なくなるものと思われ
る。
Accordingly, the flat and rectangular battery structure in which the concave portion is formed and the element pressing plate is provided absorbs the shock at the time of press-forming the concave portion due to the spring property of the element pressing plate, and the internal short circuit occurs. It is thought that the occurrence of the occurrence is reduced.

【0065】従って、電池ケースの電極を積層する方向
に対向する面に凹部を形成し、その凹部の充電前のケー
ス内厚みは、電極素子厚みに対して0.84倍以上、
0.99倍以下が好ましく、0.90倍以上、0.99
倍以下がさらに好ましい。
Therefore, a concave portion is formed on the surface of the battery case facing the direction in which the electrodes are stacked, and the thickness of the concave portion in the case before charging is 0.84 times or more the thickness of the electrode element.
0.99 or less, preferably 0.90 or more, 0.99
It is more preferably twice or less.

【0066】また、凹部をプレス成形する際に、凹部の
変形程度を大きくしすぎると、正負電極とセパレータ間
に無理な力が加わり、セパレータが破損して内部ショー
トの発生原因となるが、バネ性を有した素子加圧板を設
けることで、凹部のプレス成形時の衝撃を吸収させ、電
極素子の破損を防ぐことを可能とする。
If the degree of deformation of the concave portion is excessively large when press-forming the concave portion, an excessive force is applied between the positive and negative electrodes and the separator, and the separator is damaged, causing internal short circuit. By providing the element pressure plate having the property, it is possible to absorb the impact at the time of press-forming the concave portion and prevent the electrode element from being damaged.

【0067】更に、本発明による非水電解液二次電池に
は平板な正負極の組み合わせを複数積み重ねてなる積層
式電極素子や、短冊状の正負極を巻回してなる巻回式電
極素子を使用することができる。また、積層式電極素子
の場合は、電極を積層する方向に対向する電池ケース面
に凹部を設けることが好ましく、一方、巻回式電極素子
の場合は、素子の長径に垂直な電池ケース面に凹部を設
けることが好ましい。
Further, the nonaqueous electrolyte secondary battery according to the present invention includes a laminated electrode element formed by stacking a plurality of combinations of flat positive and negative electrodes, and a wound electrode element formed by winding strip-shaped positive and negative electrodes. Can be used. Further, in the case of a stacked electrode element, it is preferable to provide a concave portion in the battery case surface facing the direction in which the electrodes are stacked. Preferably, a recess is provided.

【0068】第2実施形態例 つぎに、図6に示す構成の第2実施形態例に係わる非水
電解液二次電池の実施例9〜17、および比較例5〜6
について説明する。
Second Embodiment Next, Examples 9 to 17 and Comparative Examples 5 to 6 of the nonaqueous electrolyte secondary battery according to the second embodiment having the structure shown in FIG.
Will be described.

【0069】実施例9 まず、負極1を次のようにして作製した。H/C原子比
を0.6〜0.8の範囲から選んだ石油ピッチを粉砕
し、空気気流中で酸化処理して炭素前駆体を得た。この
炭素前駆体のキノリン不溶分(JIS遠心法:K242
5−1983)は80%であり、また、酸素含有率(有
機元素分析法)は15.4重量%であった。
Example 9 First, a negative electrode 1 was produced as follows. A petroleum pitch having an H / C atomic ratio selected from the range of 0.6 to 0.8 was pulverized and oxidized in an air stream to obtain a carbon precursor. Quinoline-insoluble matter of this carbon precursor (JIS centrifugation: K242
5-1983) was 80%, and the oxygen content (organic elemental analysis) was 15.4% by weight.

【0070】この炭素前駆体を窒素気流中で1000℃
に昇温して熱処理した後、粉砕し、平均粒径が10μm
の炭素材料粉末とした。尚、このとき得られた難黒鉛化
炭素材料についてX線回折測定を行った結果、(00
2)面の面間隔は0.381nmであり、真比重は1.
54g/cm3 であった。
The carbon precursor was heated at 1000 ° C. in a nitrogen stream.
And heat-treated, pulverized to an average particle size of 10 μm
Carbon material powder. In addition, as a result of performing X-ray diffraction measurement on the non-graphitizable carbon material obtained at this time, (00
2) The plane spacing is 0.381 nm, and the true specific gravity is 1.
It was 54 g / cm 3 .

【0071】この炭素材料粉末90重量部を、バインダ
ーであるポリフッ化ビニリデン10重量部と混合して負
極混合物を調製し、この負極混合物を溶剤となるN−メ
チル−2−ピロリドンに分散させてスラリー状にし、負
極スラリーを調整した。このようにして得られた負極ス
ラリーを負極集電体となる厚さ10μmの帯状の銅箔の
両面に均一に塗布し、乾燥させた後、ロールプレス機で
圧縮成形し、帯状の負極1を作製した。この負極1は合
剤厚さを両面とも80μmで同一とし、幅を41.5m
m、長さを440mmとした。
90 parts by weight of the carbon material powder was mixed with 10 parts by weight of polyvinylidene fluoride as a binder to prepare a negative electrode mixture, and the negative electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to form a slurry. And a negative electrode slurry was prepared. The negative electrode slurry thus obtained is uniformly applied to both sides of a 10 μm-thick strip-shaped copper foil serving as a negative electrode current collector, dried, and then compression-molded with a roll press to obtain a strip-shaped negative electrode 1. Produced. This negative electrode 1 had the same mixture thickness of 80 μm on both sides and a width of 41.5 m.
m and the length were 440 mm.

【0072】正極2は次のようにして作製した。炭酸リ
チウムと炭酸コバルトを0.5モル:1.0モルの比で
混合し、この混合物を空気中、温度900℃で5時間焼
成してLiCoO2 を得た。このLiCoO2 91重量
部と導電材であるグラファイト6重量部とバインダーで
あるポリフッ化ビニリデン3重量部とを混合して正極混
合物を調製し、この正極混合物を溶剤となるN−メチル
−2−ピロリドンに分散させてスラリー状にし、正極ス
ラリーを調製した。
The positive electrode 2 was manufactured as follows. Lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol: 1.0 mol, and this mixture was calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2 . 91 parts by weight of this LiCoO 2, 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, and this positive electrode mixture was mixed with N-methyl-2-pyrrolidone as a solvent. To prepare a positive electrode slurry.

【0073】このようにして得られた正極スラリーを正
極集電体となる厚さ20μmの帯状のアルミニウム箔の
両面に均一に塗布し、乾燥させた後、ロールプレス機で
圧縮成形し、帯状の正極2を作製した。この正極2は合
剤厚さを両面とも80μmで同一とし、幅を39.5m
m、長さを415mmとした。
The positive electrode slurry thus obtained is uniformly coated on both sides of a 20 μm-thick strip-shaped aluminum foil serving as a positive electrode current collector, dried, and then compression-molded by a roll press to form a strip-shaped aluminum foil. The positive electrode 2 was produced. This positive electrode 2 had the same mixture thickness of 80 μm on both sides and a width of 39.5 m.
m and the length were 415 mm.

【0074】上述したように作製された負極1および正
極2を厚さ30μmの微多孔性ポリプロピレンフィルム
よりなるセパレータ3を介して、負極1、セパレータ
3、正極2、セパレータ3の順に積層して電極積層体を
形成し、この電極積層体を断面が菱形状の巻芯にセパレ
ータ3を固定して多数回巻回する。尚、菱形状の巻芯は
2本の対角線の長さ比が1:3であり、巻芯の各角は円
弧状の曲線仕上げが施されている。
The negative electrode 1 and the positive electrode 2 manufactured as described above are laminated in order of the negative electrode 1, the separator 3, the positive electrode 2, and the separator 3 via the separator 3 made of a microporous polypropylene film having a thickness of 30 μm. A laminate is formed, and the electrode laminate is wound a number of times while fixing the separator 3 to a core having a rhombic cross section. The diamond-shaped core has a length ratio of two diagonal lines of 1: 3, and each corner of the core has an arc-shaped curved finish.

【0075】その後、最外周に位置する負極集電体であ
る銅箔の最終端部を幅40mmの素子接着テープ4で固
定し、更にその後、巻芯を巻回した電極積層体から抜き
取り、直径方向に押しつぶすことで長円状の電極素子5
を作製した。
Thereafter, the final end portion of the copper foil as the negative electrode current collector located at the outermost periphery is fixed with an element adhesive tape 4 having a width of 40 mm. Oval electrode element 5 by crushing in the direction
Was prepared.

【0076】このようにして作製した電極素子5を、ニ
ッケルメッキを施した鉄製の角型の電池ケース6内にニ
ッケルメッキを施したステンレス製の素子加圧板7と共
に収納し、電極素子5の上下両面に絶縁シート8を配置
した。このとき素子加圧板7は電極素子5の最外周の負
極1と電池ケース6の内壁間に配置した。
The electrode element 5 manufactured as described above is housed in a nickel-plated iron square battery case 6 together with a nickel-plated stainless steel element pressing plate 7, The insulating sheets 8 were arranged on both sides. At this time, the element pressing plate 7 was arranged between the outermost negative electrode 1 of the electrode element 5 and the inner wall of the battery case 6.

【0077】つぎに、アルミニウム製の正極リード9を
導出して、予めガスケット10を介して電池蓋11に取
り付けられた正極端子12に溶接し、その後、電池ケー
ス6と電池蓋11とをレーザ溶接により固定した。
Next, the positive electrode lead 9 made of aluminum is led out and welded to the positive electrode terminal 12 attached to the battery cover 11 via the gasket 10 in advance, and then the battery case 6 and the battery cover 11 are laser-welded. And fixed.

【0078】プロピレンカーボネート50容量%とジメ
チルカーボネート50容量%の混合溶媒に、LiPF6
を1モル/lの割合で溶解して電解液を調製し、これを
電解液注入口(図示せず)から電池ケース6内に注入
し、その後、この電解液注入口を溶接して封口し密封す
る。
LiPF 6 was added to a mixed solvent of 50% by volume of propylene carbonate and 50% by volume of dimethyl carbonate.
Was dissolved at a rate of 1 mol / l to prepare an electrolyte, which was injected into the battery case 6 from an electrolyte injection port (not shown), and then the electrolyte injection port was welded and sealed. Seal.

【0079】上述したようにして作成された角型のリチ
ウムイオン二次電池の電池ケース6の寸法は図7に示す
ように、A=48mm、W1 =34mm、W2 =33.
9mm、C=21mm、D=7.5mm、E=5mm、
F=1.25mm、電極素子5の厚みは6.12mm、
素子加圧板7の総厚み0.5mmである。尚、素子加圧
板7は、例えば厚さが0.1mmのステンレスの表面に
凹凸を加工してバネ性を持たせ、総厚みを0.5mmと
したものが用いられる。
As shown in FIG. 7, the dimensions of the battery case 6 of the rectangular lithium ion secondary battery prepared as described above are A = 48 mm, W1 = 34 mm, and W2 = 33.
9 mm, C = 21 mm, D = 7.5 mm, E = 5 mm,
F = 1.25 mm, the thickness of the electrode element 5 is 6.12 mm,
The total thickness of the element pressing plate 7 is 0.5 mm. The element pressing plate 7 is made of, for example, stainless steel having a thickness of 0.1 mm, which is formed with irregularities on the surface so as to have a spring property and has a total thickness of 0.5 mm.

【0080】実施例10 電池ケースの寸法がA=48mm、W1 =34mm、W
2 =33.8mm、C=21mm、D=7.5mm、E
=5mm、F=1.25mmであること以外は実施例9
と同様にして角型のリチウムイオン二次電池を作製し
た。
Example 10 The dimensions of the battery case were A = 48 mm, W1 = 34 mm,
2 = 33.8 mm, C = 21 mm, D = 7.5 mm, E
Example 9 except that F = 1.25 mm and F = 1.25 mm
In the same manner as in the above, a prismatic lithium ion secondary battery was produced.

【0081】実施例11 電池ケースの寸法がA=48mm、W1 =34mm、W
2 =33.6mm、C=21mm、D=7.5mm、E
=5mm、F=1.25mmであること以外は実施例9
と同様にして角型のリチウムイオン二次電池を作製し
た。
Example 11 The dimensions of the battery case were A = 48 mm, W1 = 34 mm,
2 = 33.6 mm, C = 21 mm, D = 7.5 mm, E
Example 9 except that F = 1.25 mm and F = 1.25 mm
In the same manner as in the above, a prismatic lithium ion secondary battery was produced.

【0082】実施例12 電池ケースの寸法がA=48mm、W1 =34mm、W
2 =33.2mm、C=21mm、D=7.5mm、E
=5mm、F=1.25mmであること以外は実施例9
と同様にして角型のリチウムイオン二次電池を作製し
た。
Example 12 The dimensions of the battery case were A = 48 mm, W1 = 34 mm,
2 = 33.2 mm, C = 21 mm, D = 7.5 mm, E
Example 9 except that F = 1.25 mm and F = 1.25 mm
In the same manner as in the above, a prismatic lithium ion secondary battery was produced.

【0083】実施例13 電池ケースの寸法がA=48mm、W1 =34mm、W
2 =32.6mm、C=21mm、D=7.5mm、E
=5mm、F=1.25mmであること以外は実施例9
と同様にして角型のリチウムイオン二次電池を作製し
た。
Example 13 The dimensions of the battery case were A = 48 mm, W1 = 34 mm,
2 = 32.6 mm, C = 21 mm, D = 7.5 mm, E
Example 9 except that F = 1.25 mm and F = 1.25 mm
In the same manner as in the above, a prismatic lithium ion secondary battery was produced.

【0084】実施例14 電池ケースの寸法がA=48mm、W1 =34mm、W
2 =33.6mm、C=16mm、D=7.5mm、E
=5mm、F=1.25mmであること以外は実施例9
と同様にして角型のリチウムイオン二次電池を作製し
た。
Example 14 The dimensions of the battery case were A = 48 mm, W1 = 34 mm,
2 = 33.6 mm, C = 16 mm, D = 7.5 mm, E
Example 9 except that F = 1.25 mm and F = 1.25 mm
In the same manner as in the above, a prismatic lithium ion secondary battery was produced.

【0085】実施例15 電池ケースの寸法がA=48mm、W1 =34mm、W
2 =33.6mm、C=26mm、D=7.5mm、E
=5mm、F=1.25mmであること以外は実施例9
と同様にして角型のリチウムイオン二次電池を作製し
た。
Example 15 The dimensions of the battery case were A = 48 mm, W1 = 34 mm,
2 = 33.6 mm, C = 26 mm, D = 7.5 mm, E
Example 9 except that F = 1.25 mm and F = 1.25 mm
In the same manner as in the above, a prismatic lithium ion secondary battery was produced.

【0086】実施例16 電池ケースの寸法がA=48mm、W1 =34mm、W
2 =33.6mm、C=21mm、D=7.5mm、E
=3mm、F=2.25mmであること以外は実施例9
と同様にして角型のリチウムイオン二次電池を作製し
た。
Example 16 The dimensions of the battery case were A = 48 mm, W1 = 34 mm,
2 = 33.6 mm, C = 21 mm, D = 7.5 mm, E
Example 9 except that = 3 mm and F = 2.25 mm
In the same manner as in the above, a prismatic lithium ion secondary battery was produced.

【0087】実施例17 電池ケースの寸法がA=48mm、W1 =34mm、W
2 =33.8mm、C=21mm、D=7.5mm、E
=5mm、F=1.25mmとし、凹部6aは一方の側
面にのみ形成したこと以外は実施例9と同様にして角型
のリチウムイオン二次電池を作製した。
Example 17 The dimensions of the battery case were A = 48 mm, W1 = 34 mm,
2 = 33.8 mm, C = 21 mm, D = 7.5 mm, E
= 5 mm, F = 1.25 mm, and a prismatic lithium ion secondary battery was produced in the same manner as in Example 9 except that the concave portion 6a was formed only on one side surface.

【0088】比較例5 凹部を有しない電池ケースを用いること以外は実施例9
と同様にして角型のリチウムイオン二次電池を作製し
た。
Comparative Example 5 Example 9 except that a battery case having no concave portion was used.
In the same manner as in the above, a prismatic lithium ion secondary battery was produced.

【0089】比較例6 電池ケースの寸法がA=48mm、W1 =34mm、W
2 =33.95mm、C=21mm、D=7.5mm、
E=5mm、F=1.25mmであること以外は実施例
9と同様にして角型のリチウムイオン二次電池を作製し
た。
Comparative Example 6 The dimensions of the battery case were A = 48 mm, W1 = 34 mm,
2 = 33.95 mm, C = 21 mm, D = 7.5 mm,
A prismatic lithium ion secondary battery was produced in the same manner as in Example 9 except that E = 5 mm and F = 1.25 mm.

【0090】上述した実施例9〜17、および比較例
5、6の二次電池のそれぞれ50個について、つぎのよ
うな測定を行った。
The following measurements were performed on each of the 50 secondary batteries of Examples 9 to 17 and Comparative Examples 5 and 6.

【0091】まず、実施例9〜17、および比較例5、
6のそれぞれの電池について、定電圧4.2V、定電流
400mAで5時間の初期充電後、1KHzにおける電
池のインピーダンス、および電池ケース6の厚みDを測
定した。その結果を表4に示す。
First, Examples 9 to 17 and Comparative Example 5,
For each of the batteries No. 6, after initial charging for 5 hours at a constant voltage of 4.2 V and a constant current of 400 mA, the impedance of the battery at 1 KHz and the thickness D of the battery case 6 were measured. Table 4 shows the results.

【0092】[0092]

【表4】 [Table 4]

【0093】つぎに、上記充電した電池を、60℃で5
日間保存した後の1KHzにおける電池のインピーダン
ス、および電池ケース6の厚みDを測定した。更に、こ
れらの電池を60℃で15時間保存後、400mA定電
流で2.75Vまで放電した条件で自己放電率を測定し
た。その結果を表5に示す。尚、自己放電率(%)とは
100−(保存後容量÷保存前容量×100)で示され
る値である。また、電池厚みは図7のDで示す値の最大
値である。
Next, the charged battery was charged at 60 ° C. for 5 hours.
After storage for one day, the impedance of the battery at 1 KHz and the thickness D of the battery case 6 were measured. Further, after storing these batteries at 60 ° C. for 15 hours, the self-discharge rate was measured under the condition of discharging to 2.75 V at a constant current of 400 mA. Table 5 shows the results. The self-discharge rate (%) is a value represented by 100- (capacity after storage / capacity before storage × 100). The battery thickness is the maximum value indicated by D in FIG.

【0094】[0094]

【表5】 [Table 5]

【0095】まず、表4に示される測定結果から、初期
充電後の電池厚みは、凹部を持たない比較例5では7.
75mmであるのに対して、凹部を持った実施例9〜1
7では7.59〜7.67mmの範囲にあり、電池厚み
の増加が少ないことが分かる。また、初期充電後のイン
ピーダンスは凹部を持たない比較例5では58mΩであ
るのに対して、実施例9〜17では52〜54mΩの範
囲で内部抵抗の少ないことが分かる。
First, from the measurement results shown in Table 4, the battery thickness after the initial charge was 7.
Embodiments 9 to 1 having a concave portion in contrast to 75 mm
7 is in the range of 7.59 to 7.67 mm, and it can be seen that the increase in the battery thickness is small. In addition, the impedance after the initial charge is 58 mΩ in Comparative Example 5 having no concave portion, whereas the internal resistance is small in the range of 52 to 54 mΩ in Examples 9 to 17.

【0096】従って、凹部を持たない電池に対して凹部
を持った電池は電極間の密着性を良好にし、電極素子活
物質のインプット量を減らすことなく電池厚みの増加を
少なくでき、更に、重負荷放電特性等の電池性能に影響
を与える電池のインピーダンスを小さくできることが分
かる。
Therefore, a battery having a concave portion has better adhesion between electrodes than a battery having no concave portion, and can reduce an increase in battery thickness without reducing an input amount of an electrode element active material. It can be seen that the impedance of the battery, which affects battery performance such as load discharge characteristics, can be reduced.

【0097】つぎに、表5に示される測定結果から、充
電した電池の60℃で5日間保存した後の電池厚みは、
凹部を持たない比較例5では7.90mmであるのに対
して、凹部を持った実施例9〜17では7.67〜7.
76mmの範囲にあり、電池厚みの増加が少ないことが
分かる。また、インピーダンスは凹部を持たない比較例
5では73mΩであるのに対して、凹部を持った実施例
9〜17では59〜63mΩの範囲で内部抵抗の少ない
ことが分かる。
Next, from the measurement results shown in Table 5, the thickness of the charged battery after being stored at 60 ° C. for 5 days is as follows:
In Comparative Example 5 having no concave portion, the length is 7.90 mm, whereas in Examples 9 to 17 having the concave portion, it is 7.67 to 7.90 mm.
In the range of 76 mm, it can be seen that the increase in battery thickness is small. In addition, while the impedance is 73 mΩ in Comparative Example 5 having no concave portion, the internal resistance is small in the range of 59 to 63 mΩ in Examples 9 to 17 having the concave portion.

【0098】従って、凹部を持たない電池に対して凹部
を持った電池は高温保存においても電極間の密着性を良
好に保ち、電極素子活物質のインプット量を減らすこと
なく電池厚みの増加を少なくでき、更に、インピーダン
スの上昇を小さくでき、高温保存特性に優れた電池が得
られる。
Therefore, a battery having a concave portion has good adhesion between electrodes even in a high-temperature storage, and a battery having a concave portion has a small increase in battery thickness without reducing the input amount of the electrode element active material. In addition, a rise in impedance can be reduced, and a battery excellent in high-temperature storage characteristics can be obtained.

【0099】また、60℃で15時間保存後、400m
A定電流で2.75Vまで放電した場合の自己放電率
は、凹部を持たない比較例5では12.0%と高いのに
対して、凹部を持った実施例9〜17では7.9〜9.
1%の範囲で低いことが分かる。従って、凹部を形成す
ることにより保存での自己放電、即ち容量低下を少なく
することができる。
After storing at 60 ° C. for 15 hours, 400 m
The self-discharge rate when discharging to 2.75 V at A constant current is as high as 12.0% in Comparative Example 5 having no concave portion, whereas it is 7.9 to 9% in Examples 9 to 17 having the concave portion. 9.
It can be seen that it is low in the range of 1%. Therefore, by forming the concave portions, self-discharge during storage, that is, a decrease in capacity can be reduced.

【0100】図8は充電前(a)と充電後(b)の横断
面図であって、電極素子5が充電後膨張して電池ケース
6を内部から押圧しているが、凹部6aが設けられてい
ることによって、電池ケース6の膨張が抑圧されている
状態を模式的に表している。この抑圧により上述した作
用が得られている。
FIG. 8 is a cross-sectional view before (a) and after (b) charging. The electrode element 5 expands after charging and presses the battery case 6 from the inside. Thus, the state where the expansion of the battery case 6 is suppressed is schematically illustrated. The above-described operation is obtained by this suppression.

【0101】図9は電極素子挿入前の凹部ケース外幅と
ケース外幅との比と、自己放電率の関係を示すグラフで
ある。尚、凹部ケース外幅は図7(b)に示すW2 であ
り、ケース外幅はW1 である。図9より比較例6の凹部
ケース外幅/ケース外幅が0.999で自己放電率が1
0.5%と高い値であるのに対して、実施例9〜17で
は凹部ケース外幅/ケース外幅が0.959〜0.99
7で自己放電率は7.9〜9.1%と低い値となってい
る。これらのことから、凹部を形成しても凹部ケース外
幅/ケース外幅が0.999以上になると自己放電率が
高くなることが分かる。
FIG. 9 is a graph showing the relationship between the ratio of the outer case width to the outer case width before the insertion of the electrode element and the self-discharge rate. The outer width of the concave case is W2 shown in FIG. 7B, and the outer width of the case is W1. From FIG. 9, the outer width of the recessed case / outer case width of Comparative Example 6 is 0.999 and the self-discharge rate is 1
In contrast to the high value of 0.5%, in Examples 9 to 17, the concave case outer width / case outer width is 0.959 to 0.99.
At 7, the self-discharge rate is a low value of 7.9 to 9.1%. From these facts, it can be seen that the self-discharge rate is increased when the recess outer case width / case outer width is 0.999 or more even when the recess is formed.

【0102】従って、電池ケースの電極を積層する方向
に直角方向の側面に凹部を形成し、電極素子挿入前の凹
部ケース外幅はケース外幅に対して0.8倍以上、0.
998倍以下が好ましく、0.90倍以上、0.990
倍以下がさらに好ましい。
Therefore, a concave portion is formed on the side surface perpendicular to the direction in which the electrodes of the battery case are stacked, and the outer width of the concave case before inserting the electrode element is 0.8 times or more the outer width of the case.
998 times or less, preferably 0.90 times or more, 0.990 times
It is more preferably twice or less.

【0103】凹部ケース外幅はケース外幅に対して0.
8倍より小さくなると、電極素子を電池ケースに挿入す
る際に電極素子を破損させる虞れがあり、また、電極素
子挿入が非常に困難になり、電池ケースに収めることの
できる電極素子の容量が減少してエネルギー体積密度が
小さくなるためである。
The outer width of the recessed case is 0.1 mm relative to the outer width of the case.
If it is smaller than 8 times, the electrode element may be damaged when the electrode element is inserted into the battery case, and it becomes very difficult to insert the electrode element, and the capacity of the electrode element that can be accommodated in the battery case is reduced. This is because the energy volume density decreases and the energy volume density decreases.

【0104】尚、凹部は直線、曲線、破線等の溝が使用
できる。また、凹部に替わって凸形状の溝も使用可能で
あるが、この場合、電池体積が増加し、エネルギー体積
密度が低下するので好ましくない。
The concave portion may be a groove such as a straight line, a curved line, or a broken line. In addition, a convex groove can be used instead of the concave portion. However, in this case, the battery volume increases and the energy volume density decreases, which is not preferable.

【0105】上述した第1実施形態例および第2実施形
態例に示す非水電解液二次電池において、正負極材料の
種類によって電極素子の膨張する程度も異なり、また、
電極素子形状によっても電池ケース膨張時の最大膨張点
が異なることから、それらに合わせて電池ケースの材
質、寸法、変形部分の形状、個数を適宜選択する必要が
ある。
In the non-aqueous electrolyte secondary batteries described in the first embodiment and the second embodiment, the degree of expansion of the electrode element differs depending on the type of the positive and negative electrode materials.
Since the maximum expansion point when the battery case expands differs depending on the shape of the electrode element, it is necessary to appropriately select the material, dimensions, shape and number of deformed portions of the battery case in accordance with them.

【0106】また、本発明に用いる電池ケースの材料と
して、鉄、ニッケル、ステンレス、アルミニウム等が使
用できる。非水電解液等で腐食が起こる場合はメッキ等
を施すことにより使用可能となる。
As the material of the battery case used in the present invention, iron, nickel, stainless steel, aluminum and the like can be used. If corrosion occurs in a non-aqueous electrolytic solution or the like, it can be used by plating or the like.

【0107】また、角型の電池ケースの製造方法として
は、例えばNiメッキ鋼板を金型でしごき、深絞り加工
する方法が用いられる。さらに絞り成形前、あるいは成
形後に別の金型でプレス成形して凹部を形成することが
可能である。
As a method for manufacturing a rectangular battery case, for example, a method in which a Ni-plated steel plate is ironed with a mold and deep drawn is used. Further, it is possible to form a concave portion by press molding with another mold before or after drawing.

【0108】また、本発明に用いる素子加圧板の材料と
して、鉄、ニッケル、ステンレス、アルミニウム、銅
等、バネ性を有する素子加圧板が構成できるものであれ
ばいずれも使用できる。非水電解液等で腐食が起きる場
合はメッキ等を施すことにより使用可能となる。
As the material of the element pressing plate used in the present invention, any material such as iron, nickel, stainless steel, aluminum and copper can be used as long as the element pressing plate having a spring property can be constituted. If corrosion occurs with a non-aqueous electrolyte or the like, it can be used by plating.

【0109】また、凹部の寸法はケース材質、電極素子
の膨張と密接な関係があり、膨張の小さい電極素子を用
いた場合には、電池ケースの凹部高さを大きくしすぎる
と、凹部はもどらなくなり、電池ケースに収められる電
極素子数が減少し、エネルギー体積密度の減少となる。
The dimensions of the concave portion are closely related to the case material and the expansion of the electrode element. When an electrode element having a small expansion is used, if the height of the concave portion of the battery case is too large, the concave portion will return. As a result, the number of electrode elements housed in the battery case decreases, and the energy volume density decreases.

【0110】更に、本発明による非水電解液二次電池に
は平板な正負極の組み合わせを複数積み重ねてなる積層
式電極素子や、短冊状の正負極を巻回してなる巻回式電
極素子を使用することができる。
Further, the nonaqueous electrolyte secondary battery according to the present invention includes a laminated electrode element formed by stacking a plurality of combinations of flat positive and negative electrodes, and a wound electrode element formed by winding strip-shaped positive and negative electrodes. Can be used.

【0111】尚、本発明は上述した実施例に限ることな
く、本発明の技術的思想を具現化する種々の構成が採り
えることは当然である。
It is to be noted that the present invention is not limited to the above-described embodiments, but can adopt various configurations for embodying the technical idea of the present invention.

【0112】[0112]

【発明の効果】以上の説明からも明らかなように本発明
によると、充電による電極素子の膨張を電池ケースに設
けた凹部によって抑え、電極間を十分密着させることで
イオンの移動がスムーズになって優れた電池特性を示す
と共に、電池を高温に曝しても電池厚みの増加を抑制し
て優れた高温保存特性を有し、更に、内部ショートの少
ない高信頼性と高エネルギー密度を有する非水電解液二
次電池を提供することができる。
As is clear from the above description, according to the present invention, the expansion of the electrode element due to charging is suppressed by the concave portion provided in the battery case, and the movement of the ions is made smooth by sufficiently adhering the electrodes. Non-aqueous non-aqueous solution that has excellent high-temperature storage characteristics by suppressing the increase in battery thickness even when the battery is exposed to high temperatures, and has high reliability and high energy density with few internal short circuits. An electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態例に係わる角型の非水
電解液二次電池の断面図である。
FIG. 1 is a cross-sectional view of a prismatic nonaqueous electrolyte secondary battery according to a first embodiment of the present invention.

【図2】 第1実施形態例に係わる角型の非水電解液二
次電池の電池ケースに凹部を形成する方法を示す斜視図
である。
FIG. 2 is a perspective view showing a method for forming a concave portion in a battery case of the rectangular nonaqueous electrolyte secondary battery according to the first embodiment.

【図3】 第1実施形態例に係わる角型の非水電解液二
次電池の凹部が設けられた電池ケースの形状であって、
(a)は一部を破断した側面図であり、(b)は正面図
である。
FIG. 3 is a view showing a shape of a battery case provided with a concave portion of the rectangular nonaqueous electrolyte secondary battery according to the first embodiment,
(A) is a side view with a part broken, and (b) is a front view.

【図4】 第1実施形態例の効果を説明するための図で
あって、(a)は電極素子の膨張前の状態を、(b)は
膨張後の状態を示す縦断面図である。
FIGS. 4A and 4B are diagrams for explaining the effect of the first embodiment, wherein FIG. 4A is a longitudinal sectional view showing a state before expansion of an electrode element, and FIG. 4B is a longitudinal sectional view showing a state after expansion.

【図5】 第1実施形態例に係わる角型の非水電解液二
次電池の、ケース内厚み/電極素子厚みと自己放電率の
関係を示す図である。
FIG. 5 is a view showing the relationship between the thickness in the case / the thickness of the electrode element and the self-discharge rate of the rectangular nonaqueous electrolyte secondary battery according to the first embodiment.

【図6】 本発明の第2実施形態例に係わる角型の非水
電解液二次電池の断面図である。
FIG. 6 is a sectional view of a prismatic non-aqueous electrolyte secondary battery according to a second embodiment of the present invention.

【図7】 第2実施形態例に係わる角型の非水電解液二
次電池であって、(a)は側面図であり、(b)は正面
図である。
7A and 7B are side views and a front view, respectively, of a rectangular nonaqueous electrolyte secondary battery according to a second embodiment.

【図8】 第2実施形態例の効果を説明するための図で
あって、(a)は電極素子の膨張前の状態を、(b)は
膨張後の状態を示す横断面図である。
FIGS. 8A and 8B are views for explaining effects of the second embodiment, wherein FIG. 8A is a cross-sectional view showing a state before expansion of an electrode element, and FIG. 8B is a cross-sectional view showing a state after expansion.

【図9】 第2実施形態例に係わる角型の非水電解液二
次電池の、凹部ケース外幅/ケース外幅と自己放電率の
関係を示す図である。
FIG. 9 is a view showing a relationship between a concave case outer width / case outer width and a self-discharge rate of the rectangular nonaqueous electrolyte secondary battery according to the second embodiment.

【図10】 従来の角型の非水電解液二次電池であっ
て、(a)は膨張前の状態を、(b)は膨張後の状態を
示す縦断面図である。
FIG. 10 is a longitudinal sectional view showing a conventional rectangular non-aqueous electrolyte secondary battery, in which (a) shows a state before expansion and (b) shows a state after expansion.

【図11】 従来の角型の非水電解液二次電池であっ
て、(a)は膨張前の状態を、(b)は膨張後の状態を
示す横断面図である。
11A and 11B are cross-sectional views of a conventional rectangular nonaqueous electrolyte secondary battery, in which FIG. 11A shows a state before expansion and FIG. 11B shows a state after expansion.

【図12】 従来の角型の非水電解液二次電池の膨張の
発生状態を説明するための図である。
FIG. 12 is a view for explaining a state of expansion of a conventional rectangular nonaqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、3…セパレータ、4…素子接着テ
ープ、5…電極素子、6…電池ケース、6a…凹部、7
…素子加圧板、8…絶縁シート、9…正極リード、10
…ガスケット、11…電池蓋、12…正極端子、13…
プレス金型
DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Element adhesive tape, 5 ... Electrode element, 6 ... Battery case, 6a ... Depression, 7
... Element pressing plate, 8 ... Insulating sheet, 9 ... Positive electrode lead, 10
... gasket, 11 ... battery cover, 12 ... positive electrode terminal, 13 ...
Press mold

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 多孔質セパレータで正極と負極とを絶縁
した電極を積層して電極素子を形成し、該電極素子を電
池ケース内に収納すると共に、前記電池ケース内に非水
電解液を注入してなる角型の非水電解液二次電池におい
て、 前記電池ケースの少なくとも1つの側面に、少なくとも
1つの凹部が形成されていることを特徴とする非水電解
液二次電池。
An electrode element is formed by laminating electrodes in which a positive electrode and a negative electrode are insulated by a porous separator, and the electrode element is housed in a battery case and a non-aqueous electrolyte is injected into the battery case. A non-aqueous electrolyte secondary battery according to claim 1, wherein at least one concave portion is formed on at least one side surface of the battery case.
【請求項2】 前記電池ケースの側面に形成する凹部
は、 電極を積層する方向に対向する電池ケース側面に、底面
が平面である凹部で形成されていることを特徴とする、
請求項1に記載の非水電解液二次電池。
2. A concave portion formed on a side surface of the battery case, wherein a concave portion having a flat bottom surface is formed on a side surface of the battery case opposed to a direction in which electrodes are stacked.
The non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】 前記電池ケースの凹部を有する面に垂直
な方向におけるケース内厚みが、電極素子厚みに対して
0.84倍以上、0.99倍以下であることを特徴とす
る、請求項2に記載の非水電解液二次電池。
3. The battery case according to claim 1, wherein a thickness in the case in a direction perpendicular to a surface having the concave portion of the battery case is 0.84 times or more and 0.99 times or less with respect to the thickness of the electrode element. 3. The non-aqueous electrolyte secondary battery according to 2.
【請求項4】 前記電池ケースの凹部を有する面に垂直
な方向におけるケース内厚みが、電極素子厚みに対して
0.90倍以上、0.99倍以下であることを特徴とす
る、請求項2に記載の非水電解液二次電池。
4. The battery case according to claim 1, wherein the thickness of the battery case in a direction perpendicular to the surface having the concave portion is 0.90 times or more and 0.99 times or less with respect to the thickness of the electrode element. 3. The non-aqueous electrolyte secondary battery according to 2.
【請求項5】 前記電池ケースの凹部は、電池ケース内
に電極素子を収納した後、電極を積層する方向に対向す
る電池ケース側面の少なくとも一方の面に、金型を押圧
して底部が平面である凹部を設けることを特徴とする、
請求項2に記載の非水電解液二次電池の製造方法。
5. The concave portion of the battery case is formed by pressing a mold on at least one of the battery case side surfaces facing the direction in which the electrodes are stacked after the electrode element is housed in the battery case, and the bottom portion is flat. Characterized by providing a concave portion,
A method for manufacturing the non-aqueous electrolyte secondary battery according to claim 2.
【請求項6】 前記電池ケースの側面に形成する凹部
は、 電極を積層する方向とは直角方向の側面の少なくとも一
方の面に形成されていることを特徴とする、請求項1に
記載の非水電解液二次電池。
6. The battery according to claim 1, wherein the concave portion formed on the side surface of the battery case is formed on at least one of the side surfaces in a direction perpendicular to the direction in which the electrodes are stacked. Water electrolyte secondary battery.
【請求項7】 電極を積層する方向とは直角方向の側面
に設けた凹部における、電極を積層する方向の電池ケー
ス幅は凹部以外における電池ケース幅の80%以上、9
9.8%以下であることを特徴とする、請求項6に記載
の非水電解液二次電池。
7. The width of the battery case in the direction in which the electrodes are stacked is 80% or more of the width of the battery case other than the recesses in the recess provided on the side surface perpendicular to the direction in which the electrodes are stacked.
The nonaqueous electrolyte secondary battery according to claim 6, wherein the content is 9.8% or less.
【請求項8】 前記電池ケースの凹部はプレス加工によ
り形成することを特徴とする、請求項6に記載の非水電
解液二次電池の製造方法。
8. The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 6, wherein the concave portion of the battery case is formed by press working.
【請求項9】 電極を積層する方向の電池ケース内壁と
電極素子との間にバネ性を有する素子加圧板を設けるこ
とを特徴とする、請求項2または請求項6に記載の非水
電解液二次電池。
9. The non-aqueous electrolyte according to claim 2, wherein an element pressure plate having a spring property is provided between the inner wall of the battery case in the direction in which the electrodes are stacked and the electrode element. Rechargeable battery.
JP9298690A 1997-02-19 1997-10-30 Nonaqueous electrolyte secondary battery and manufacture thereof Pending JPH1131523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9298690A JPH1131523A (en) 1997-02-19 1997-10-30 Nonaqueous electrolyte secondary battery and manufacture thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3527597 1997-02-19
JP9-124418 1997-05-14
JP12441897 1997-05-14
JP9-35275 1997-05-14
JP9298690A JPH1131523A (en) 1997-02-19 1997-10-30 Nonaqueous electrolyte secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1131523A true JPH1131523A (en) 1999-02-02

Family

ID=27288709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9298690A Pending JPH1131523A (en) 1997-02-19 1997-10-30 Nonaqueous electrolyte secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1131523A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198098A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Sheet-like lithium secondary cell
JP2003525522A (en) * 1999-08-18 2003-08-26 マックスウェル エレクトロニック コンポーネンツ グループ インコーポレイテッド Multi-electrode double-layer capacitor with hermetic electrolyte seal
KR100563029B1 (en) * 1999-03-22 2006-03-24 삼성에스디아이 주식회사 Cap assembly used in secondary battery and method for assembling the same
KR100759395B1 (en) 2005-12-29 2007-09-19 삼성에스디아이 주식회사 Secondary battery
KR100788553B1 (en) 2006-02-27 2007-12-26 삼성에스디아이 주식회사 Can for lithium secondary battery and Lithium secondary battery using the same
JP2011054567A (en) * 2009-09-01 2011-03-17 Sb Limotive Co Ltd Secondary battery
CN102694192A (en) * 2011-03-24 2012-09-26 株式会社东芝 Secondary battery and method of manufacturing secondary battery
JP2014103101A (en) * 2012-10-23 2014-06-05 Shin Kobe Electric Mach Co Ltd Large-capacity lithium ion battery
JP2014232735A (en) * 2014-08-11 2014-12-11 三菱自動車工業株式会社 Battery module
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
JP2023060607A (en) * 2021-10-18 2023-04-28 プライムプラネットエナジー&ソリューションズ株式会社 Rectangular battery and manufacturing method for rectangular battery
CN118156586A (en) * 2024-05-11 2024-06-07 晶科储能科技有限公司 Secondary battery, battery pack and energy storage box

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563029B1 (en) * 1999-03-22 2006-03-24 삼성에스디아이 주식회사 Cap assembly used in secondary battery and method for assembling the same
JP2003525522A (en) * 1999-08-18 2003-08-26 マックスウェル エレクトロニック コンポーネンツ グループ インコーポレイテッド Multi-electrode double-layer capacitor with hermetic electrolyte seal
JP2002198098A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Sheet-like lithium secondary cell
KR100759395B1 (en) 2005-12-29 2007-09-19 삼성에스디아이 주식회사 Secondary battery
KR100788553B1 (en) 2006-02-27 2007-12-26 삼성에스디아이 주식회사 Can for lithium secondary battery and Lithium secondary battery using the same
US8697272B2 (en) 2009-09-01 2014-04-15 Samsung Sdi Co., Ltd. Secondary battery having an insulating member
JP2011054567A (en) * 2009-09-01 2011-03-17 Sb Limotive Co Ltd Secondary battery
CN102694192A (en) * 2011-03-24 2012-09-26 株式会社东芝 Secondary battery and method of manufacturing secondary battery
JP2012204104A (en) * 2011-03-24 2012-10-22 Toshiba Corp Secondary battery, and manufacturing method therefor
JP2014103101A (en) * 2012-10-23 2014-06-05 Shin Kobe Electric Mach Co Ltd Large-capacity lithium ion battery
JP2014232735A (en) * 2014-08-11 2014-12-11 三菱自動車工業株式会社 Battery module
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
US10840031B2 (en) 2016-05-20 2020-11-17 Avx Corporation Ultracapacitor for use at high temperatures
JP2023060607A (en) * 2021-10-18 2023-04-28 プライムプラネットエナジー&ソリューションズ株式会社 Rectangular battery and manufacturing method for rectangular battery
CN118156586A (en) * 2024-05-11 2024-06-07 晶科储能科技有限公司 Secondary battery, battery pack and energy storage box

Similar Documents

Publication Publication Date Title
US20170092922A1 (en) Non-aqueous electrolyte battery
JP4752574B2 (en) Negative electrode and secondary battery
JP3932653B2 (en) Non-aqueous electrolyte secondary battery
JP2001057179A (en) Secondary battery and case thereof
JP3536391B2 (en) Wound electrode element body, method of manufacturing the same, and method of manufacturing battery using wound electrode element body
JP5541957B2 (en) Multilayer secondary battery
JPH11185820A (en) Nonaqueous electrolyte secondary battery
JP3338071B2 (en) Battery
JPH1131523A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH11219731A (en) Organic electrolyte secondary battery
JP3033563B2 (en) Non-aqueous electrolyte secondary battery
JP3466631B2 (en) Non-aqueous electrolyte secondary battery
JP2002279956A (en) Nonaqueous electrolyte battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP4199839B2 (en) Swirl type lithium ion battery electrode and spiral type lithium ion battery using the same
JPH1167276A (en) Nonaqueous electrolyte secondary battery
WO2019107049A1 (en) Cylindrical secondary battery
JP6709991B2 (en) Lithium ion secondary battery
JPH10247522A (en) Nonaqueous electrolyte secondary battery
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JPH11273743A (en) Cylindrical nonaqueous electrolyte secondary battery
CN110676517B (en) Battery cell and battery
WO2020080245A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH10261391A (en) Non-aqueous electrolyte secondary battery
JP3246553B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110219

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12