JPH1131518A - Recovering method for carbon dioxide by fuel cell - Google Patents

Recovering method for carbon dioxide by fuel cell

Info

Publication number
JPH1131518A
JPH1131518A JP10109627A JP10962798A JPH1131518A JP H1131518 A JPH1131518 A JP H1131518A JP 10109627 A JP10109627 A JP 10109627A JP 10962798 A JP10962798 A JP 10962798A JP H1131518 A JPH1131518 A JP H1131518A
Authority
JP
Japan
Prior art keywords
gas
electrode side
fuel cell
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10109627A
Other languages
Japanese (ja)
Inventor
Koji Ikeda
浩二 池田
Satoshi Uchida
聡 内田
Shozo Kaneko
祥三 金子
Nobuaki Murakami
信明 村上
Akihiro Yamashita
晃弘 山下
Tatsuro Miyazaki
達郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10109627A priority Critical patent/JPH1131518A/en
Publication of JPH1131518A publication Critical patent/JPH1131518A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To increasing the concentration of CO2 so as to facilitate the separation and recovery by mixing O2 gas or one part of gas on an air electrode side with the fuel electrode side gas of a solid electrolyte fuel cell main body outlet thereby catalyst-oxidizing to form a gas made of CO2 , H2 O, and a small amount of N2 . SOLUTION: A required amount of O2 gas is added from an oxygen supply line 6 to outlet gas from a fuel supply line 5-connected fuel electrode side gas passage 3, CO and H2 contained together with CO2 and H2 O are converted into the CO2 and the H2 O by a catalyst reactor 7. As air rather than the O2 gas the minimum required amount of produced gas from an air electrode side gas passage 2 may be added via a line 12. The H2 O is separated in a cooling tower 9 via a heat exchanger 8 from gas after conversion by a catalyst. Since this exhaust gas contains dense CO2 and a small amount of or nearly no N2 , the CO2 is easily disposed of as a liquefied CO2 by compression or as clathrate dry ice, or is easily scavenged by a adsorption method, or a solution absorption method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池による二
酸化炭素の回収方法に関する。
The present invention relates to a method for recovering carbon dioxide using a fuel cell.

【0002】[0002]

【従来の技術】周知の如く、化石燃料から生成される炭
酸ガス(CO2 )は、地球温室効果の元凶物質として近
時多大の関心を集めるようになった。しかし、まだ本格
的な取り組みはなされておらず、従来技術と呼べるもの
はない。
2. Description of the Related Art As is well known, carbon dioxide (CO 2 ) generated from fossil fuels has recently attracted a great deal of interest as a source of the global greenhouse effect. However, no serious efforts have been made yet, and nothing can be called conventional technology.

【0003】ところで、現在CO2 低減策が種々検討さ
れている。例えば、化石燃料より生じたCO2 を何らか
の方法で捕集し、深海に投入保存するという方式もその
一つである。この場合、CO2 の捕集には吸着法(PS
A法)、溶液吸収法等が候補として挙げられるが、いず
れの方法でも被処理ガス中のCO2 濃度が濃い状態での
捕集が効率的であり、空気で燃焼してしまった後では多
量のN2 を含むことになり不利である。
[0003] Various measures for reducing CO 2 are currently being studied. For example, the CO 2 generated from fossil fuel is collected in some way, manner, to input stored in the deep sea is one of them. In this case, to capture CO 2 , the adsorption method (PS
A), a solution absorption method and the like are examples of the candidates. In any of the methods, collection in a state where the CO 2 concentration in the gas to be treated is high is efficient, and a large amount is collected after burning with air. is disadvantageous would contain the N 2.

【0004】[0004]

【発明が解決しようとする課題】この発明は上記事情を
考慮してなされたもので、固体電解質を用いる燃料電池
(以下、SOFC)発電プロセス中に高濃度のCO2
含む状態を作出し、もってCO2 の分離回収を容易なら
しめる燃料電池による二酸化炭素の回収方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and creates a state containing a high concentration of CO 2 during a fuel cell (hereinafter, SOFC) power generation process using a solid electrolyte. It is an object of the present invention to provide a method for recovering carbon dioxide by a fuel cell, which facilitates separation and recovery of CO 2 .

【0005】[0005]

【課題を解決するための手段】SOFCでは、一般に電
解質として安定化ジルコニア等の酸素イオン導電体が用
いられる。これは勿論窒素を通さないので、この電解質
は空気中のN2 とO2を分離する第1機能と発電体素子
としての第2機能を併せもっているといえる。第1機能
は、CO2 の分離に有効であり、例えばメタン,プロパ
ン等の炭化水素を燃料とするいわゆる内部改質型のSO
FCでは、燃料極側には空気極側からのO2 との反応に
よってCO2 とH2 Oが生成し、通常の燃焼のように多
量のN2を含むことはない。但し、プロセスの効率上、
通常全てを反応させる様にはしない為、供給メタン,プ
ロパンの10〜15%相当は部分酸化されてCOやH2
の形で残っている。これを一般に考えられるように空気
極側出口の全ての空気で燃焼させることは、技術的には
容易である。
In the SOFC, an oxygen ion conductor such as stabilized zirconia is generally used as an electrolyte. Since this is of course impervious to nitrogen, it can be said that this electrolyte has both the first function of separating N 2 and O 2 in the air and the second function as a power generating element. The first function is effective for separating CO 2 , and is a so-called internal reforming type SO 2 using hydrocarbons such as methane and propane as fuel.
In FC, CO 2 and H 2 O are produced on the fuel electrode side by reaction with O 2 from the air electrode side, and do not contain a large amount of N 2 unlike ordinary combustion. However, due to the efficiency of the process,
Usually, not all are reacted, so that 10 to 15% of the supplied methane and propane is partially oxidized to CO or H 2.
Remains in the form of It is technically easy to burn this with all the air at the cathode side outlet as generally considered.

【0006】しかし、それでは結局多量のN2 でCO
2 ,H2 Oが希釈され、本発明の目的には合致しない。
従って、何らかの対策が必要となるが、本発明者らは近
年急速な進歩をとげている触媒燃焼方式に着目し、高温
度でも安定な燃焼触媒を用いることによって、燃料極側
の生成ガスに必要最小限の酸素あるいは空気を混入さ
せ、CO,H2 を略完全にCO2 ,H2 Oに酸化させ得
ることを見出した。
However, then, after all, a large amount of N 2 and CO
2 , H 2 O is diluted and does not meet the purpose of the present invention.
Therefore, although some countermeasures are required, the present inventors have focused on the catalytic combustion system, which has been making rapid progress in recent years, and by using a stable combustion catalyst even at high temperatures, It has been found that CO and H 2 can be almost completely oxidized to CO 2 and H 2 O by mixing a minimum amount of oxygen or air.

【0007】こうしてCO2 ,H2 Oが大部分を占め、
2 を全く含まないかあるいは少量のN2 を含むに過ぎ
ない生成ガスができれば、後処理は容易である。即ち、
SOFCの電池部温度は一般に900〜1050℃であ
るが、熱交換,排熱回収を行った後の冷却により水分を
回収することができる。回収水分の一部は、内部改質用
として再循環することもできる(勿論内部改質用として
は水分回収前のガスを用いることも可能である)。一
方、N2 を全く含まないか、あるいは少量のN2を含む
CO2 ガスは,圧縮により液化CO2 、あるいはクラス
レ−ト(炭酸ガスの水和物)ドライアイスとして処分さ
れる。必要であれば、前述のように吸着法あるいは溶液
吸収法でCO2 を捕集することも容易である。
Thus, CO 2 and H 2 O occupy the majority,
If the product gas contains only a or a small amount of N 2 does not contain any N 2, the post-processing is easy. That is,
The battery section temperature of the SOFC is generally 900 to 1050 ° C., but water can be recovered by cooling after performing heat exchange and exhaust heat recovery. Part of the recovered water can be recycled for internal reforming (of course, the gas before water recovery can be used for internal reforming). On the other hand, it contains no N 2 at all, or CO 2 gas containing a small amount of N 2 is liquefied CO 2, or Classless by compression - (hydrate of carbon dioxide) bets are disposed of as dry ice. If necessary, it is easy to capture CO 2 by the adsorption method or the solution absorption method as described above.

【0008】[作用]本発明の方法により、濃厚なCO
2 (O2 使用の場合100%空気使用の場合40〜60
%、乾ガス基準)を含むガスを燃料電池プロセス中につ
くることができる。通常の燃料排ガスが空気に起因する
多量のN2 を含むため、4〜15Vol%のCO2 濃度に
過ぎないことと比較するとCO2 の分離回収に格段の利
益がこれによって生ずることは明瞭である。
[Action] According to the method of the present invention, rich CO
2 (40% when using 100% air when using O 2)
%, On a dry gas basis) during the fuel cell process. Since the normal fuel exhaust gas contains a large amount of N 2 due to the air, it is clear that much of the benefit to separation and recovery of CO 2 when compared with that only CO 2 concentration 4~15Vol% are caused by this .

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例について説
明する。 (実施例1)図1は、固体電解質燃料電池による二酸化
炭素の回収方法のフロ−シ−トを示す。図中の符番1は
燃料電池本体を示し、空気極側ガス流路2、燃料極側ガ
ス流路3が設けられている。ここで、前記空気極側ガス
流路2には酸化剤を供給する空気供給ライン4が接続さ
れ、燃料極側ガス流路3には燃料供給ライン5が接続さ
れている。燃料極側の出口ガス組成はCO2 ,H2 Oを
主成分とし、少量のしかし無視できぬ量のCO,H2
含む。これに酸素供給ライン6からO2 ガスを添加し、
(O2 は吸着分離法(PSA法)等により空気から作る
ことができる)触媒反応器7においてCO2 ,H2 Oに
転換せしめる。CO2 ,H2 Oのみとなったガスは熱交
換器8を経て冷却塔9にてH2 OとCO2 が分離せられ
る。
Embodiments of the present invention will be described below. Embodiment 1 FIG. 1 shows a flow chart of a method for recovering carbon dioxide by a solid oxide fuel cell. Reference numeral 1 in the figure denotes a fuel cell main body, which is provided with an air electrode side gas flow path 2 and a fuel electrode side gas flow path 3. Here, an air supply line 4 for supplying an oxidant is connected to the air electrode side gas flow path 2, and a fuel supply line 5 is connected to the fuel electrode side gas flow path 3. The composition of the outlet gas on the fuel electrode side is mainly composed of CO 2 and H 2 O and contains a small but non-negligible amount of CO and H 2 . O 2 gas is added from the oxygen supply line 6 to this,
(O 2 can be produced from air by an adsorption separation method (PSA method) or the like.) In a catalytic reactor 7, it is converted into CO 2 and H 2 O. The gas containing only CO 2 and H 2 O passes through the heat exchanger 8 and is separated into H 2 O and CO 2 in the cooling tower 9.

【0010】H2 Oは一部改質用としてライン10より燃
料電池本体1の入口へ循環せられ、残部は廃却される。
一方、CO2 はライン11より廃却過程へ送られる。他
方、空気極側の生成ガス(N2 とO2 のみより成る)
は、熱交換器8を経て大気中へ放出される。なお、上記
はCO,H2 の酸化剤としてO2 を用いる場合である
が、空気を使用する場合はライン12(破線)を用いるこ
とになる。
H 2 O is partially circulated from the line 10 to the inlet of the fuel cell main body 1 for reforming, and the remainder is discarded.
On the other hand, CO 2 is sent from line 11 to a disposal process. On the other hand, product gas on the air electrode side (consisting of only N 2 and O 2 )
Is released to the atmosphere via the heat exchanger 8. The above is the case where O 2 is used as an oxidizing agent for CO and H 2 , but when air is used, the line 12 (broken line) will be used.

【0011】事実、本発明者らは、図1中の触媒反応器
7に相当する部分の特性を確認するため、実験室で要素
試験を行った。結果は以下に述べる通りである。なお、
燃焼触媒として、BaMnAl1119より成る3mmピ
ッチのハニカム状のものを用いた。また、燃料電池出口
のガスを模擬し、次の組成のガスを空間速度(SV)=
10000hr-1,800℃で流過させた。
In fact, the present inventors conducted an element test in a laboratory in order to confirm the characteristics of a portion corresponding to the catalytic reactor 7 in FIG. The results are as described below. In addition,
As the combustion catalyst, a honeycomb-shaped catalyst made of BaMnAl 11 O 19 and having a pitch of 3 mm was used. In addition, a gas at the outlet of the fuel cell is simulated, and a gas having the following composition is converted into a space velocity (SV) =
The mixture was allowed to flow at 10,000 hr -1 and 800 ° C.

【0012】H2 O:53.1%、CO2 :24.7
%、CO:3.7%、H2 :11.1%、O2 :7.4
%、その結果、出口ガス中のCO,H2 は800時間経
過後も、いずれも0.1%以下、かつ残留O2 濃度も
0.2%以下であり、殆ど理論量に対応するO2 で、C
O,H2 を完全にCO2 ,H2 Oに酸化できることが判
明した。
H 2 O: 53.1%, CO 2 : 24.7
%, CO: 3.7%, H 2: 11.1%, O 2: 7.4
%, As a result, CO in the outlet gas, H 2 is also after 800 hours, both 0.1% or less, and the residual O 2 concentration or less 0.2%, O 2 with little corresponding to the theoretical amount And C
O, it was found that of H 2 can be completely oxidized to CO 2, H 2 O.

【0013】(実施例2)図2は、本発明の実施例2に
係る固体電解質型燃料電池(SOFC)を用いた燃焼装
置のCO2 の分離・回収のシステムを示す。
Embodiment 2 FIG. 2 shows a system for separating and recovering CO 2 of a combustion apparatus using a solid oxide fuel cell (SOFC) according to Embodiment 2 of the present invention.

【0014】図中の符番11は、空気12が供給される空気
予熱器である。この空気予熱器11には、空気供給管13や
空気極排ガス管14を介して固体電解質を備えた固体電解
質燃料電池15が接続されている。また、前記空気予熱器
11には煙突16が接続されている。前記燃料電池15には、
燃料極排ガス管19を介して熱交換器20が接続されてい
る。前記熱交換器20には水供給管21により水22が供給さ
れ、水22はその後前記燃料供給管18に流れるようになっ
ている。前記燃料電池15の燃料極側と熱交換器20間を連
結する前記燃料極排ガス管19には、燃焼器36が配置され
ている。前記熱交換器20にはH2 O分離装置としての冷
却器23が接続され、この冷却器23と前記水供給管21には
ドレン回収管24が設けられている。前記冷却器23にてド
レン回収管24によりH2 O(水)分のみドレンとして回
収し、水供給管21へ送る。一方、冷却器23にて液化した
CO2 は他の貯蔵設備へ送る。また、燃料電池25の空気
極よりの排ガスは排ガス管14より空気予熱器11にて熱交
換し、低温にして煙突16より大気へ放出する。
Reference numeral 11 in the figure denotes an air preheater to which air 12 is supplied. A solid electrolyte fuel cell 15 having a solid electrolyte is connected to the air preheater 11 through an air supply pipe 13 and an air electrode exhaust gas pipe 14. In addition, the air preheater
A chimney 16 is connected to 11. The fuel cell 15 includes:
A heat exchanger 20 is connected via an anode exhaust gas pipe 19. Water 22 is supplied to the heat exchanger 20 by a water supply pipe 21, and the water 22 then flows to the fuel supply pipe 18. A combustor 36 is disposed in the fuel electrode exhaust gas pipe 19 connecting the fuel electrode side of the fuel cell 15 and the heat exchanger 20. The heat exchanger 20 is connected to a cooler 23 as an H 2 O separation device, and the cooler 23 and the water supply pipe 21 are provided with a drain recovery pipe 24. In the cooler 23, only H 2 O (water) is collected as drain by the drain recovery pipe 24 and sent to the water supply pipe 21. On the other hand, the CO 2 liquefied in the cooler 23 is sent to another storage facility. Further, the exhaust gas from the air electrode of the fuel cell 25 exchanges heat with the air preheater 11 from the exhaust gas pipe 14, cools the exhaust gas, and discharges it to the atmosphere from the chimney 16.

【0015】また、図中の符番31は石炭ガス化炉であ
り、符番32はこの石炭ガス化炉に接続された脱硫装置、
符番33はメタノ−ル合成触媒である。本実施例2はメタ
ノ−ル(CH3 OH)を燃料とするものであり、まず石
炭34及び酸素35を投入して石炭ガスを発生させる。その
後、脱硫装置32を通して硫黄(S)分を除去した後、メ
タノ−ル合成触媒33を通すことによってメタノ−ルを生
成し、燃料供給管18より燃料電池15に投入する。
Reference numeral 31 in the figure denotes a coal gasifier, and reference numeral 32 denotes a desulfurization unit connected to the coal gasifier.
Reference numeral 33 denotes a methanol synthesis catalyst. In the second embodiment, methanol (CH 3 OH) is used as a fuel. First, coal 34 and oxygen 35 are charged to generate coal gas. Thereafter, sulfur (S) is removed through a desulfurization unit 32, and then methanol is produced by passing through a methanol synthesis catalyst 33, which is fed into the fuel cell 15 through the fuel supply pipe 18.

【0016】本実施例2では、石炭ガスからメタノ−ル
を合成してこれを燃料として燃料電池の発電システムに
よるCO2 の分離回収のシステムであり、石炭ガス化炉
31により石炭をガス化し、これを脱硫装置を通して硫黄
分を取り除き、水添によりメタノ−ル合成触媒33でメタ
ノ−ルを合成する。このメタノ−ルは蒸気(H2 O)と
ともに燃料電池15に送ると、内部で改質されて発電に用
いられる。燃料極側排ガスは、その後熱交換して冷却器
23でH2 Oをドレンとして除去し、CO2 のみを分離・
回収する。このとき、空気極側排ガスにN2 が含まれて
おり、こちらの方はそのまま空気の予熱に用いられて排
ガスとして系外へ放出される。排ガス中にはNOx数p
pm程度で、SOxの方は全く含まれず、クリ−ンで発
電を行いながら、地球温暖化の元凶物質の1つであるC
2 効果的かつ容易に分離・回収することができる。
The second embodiment is directed to a system for separating and recovering CO 2 by a fuel cell power generation system by synthesizing methanol from coal gas and using this as fuel.
Coal is gasified by 31, the sulfur content is removed through a desulfurizer, and methanol is synthesized by hydrogenation with a methanol synthesis catalyst 33. When this methanol is sent to the fuel cell 15 together with steam (H 2 O), it is reformed inside and used for power generation. The fuel electrode side exhaust gas is then heat-exchanged and cooled.
At 23, H 2 O is removed as drain and only CO 2 is separated.
to recover. At this time, N 2 is contained in the exhaust gas on the cathode side, and this is used as it is for preheating the air and is discharged out of the system as exhaust gas. NOx number p in exhaust gas
pm, SOx is not included at all, and C is one of the main causes of global warming while generating electricity on the clean.
O 2 can be separated and recovered effectively and easily.

【0017】また、実施例2では、燃料電池15の燃料極
側と熱交換器20間を連結する燃料極排ガス管19に燃焼器
36を配置されているので、燃料極側の生成ガスに必要な
最小限の酸素あるいは空気を混入させることで未反応分
として排出されたCO,H2を略完全にCO2 とH2
に酸化させることができる。このように、CO2 ,H2
Oが大部分を占め、N2 を全く含まないかあるいは少量
のN2 を含むに過ぎない燃料側排ガスが生成され、H2
Oをドレンとして取り除けば、非常に効率的なCO2
分離・回収が可能となる。
Also, in the second embodiment, the fuel electrode exhaust gas pipe 19 connecting the fuel electrode side of the fuel cell 15 and the heat exchanger 20 is provided with a combustor.
36, the CO and H 2 discharged as unreacted components are mixed almost completely with CO 2 and H 2 O by mixing minimum necessary oxygen or air into the generated gas on the fuel electrode side.
Can be oxidized to Thus, CO 2 , H 2
O mostly the occupy, fuel side exhaust gas contains only a or a small amount of N 2 containing no N 2 at all is generated, H 2
If O is removed as drain, it is possible to separate and recover CO 2 very efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る固体電解質燃料電池に
よる二酸化炭素の回収方法のフロ−シ−ト。
FIG. 1 is a flowchart of a method for recovering carbon dioxide by a solid oxide fuel cell according to Embodiment 1 of the present invention.

【図2】本発明の実施例2に係る固体電解質型燃料電池
を用いた燃焼装置のCO2 の分離・回収のシステムを示
す説明図。
FIG. 2 is an explanatory diagram showing a system for separating and recovering CO 2 of a combustion device using a solid oxide fuel cell according to Embodiment 2 of the present invention.

【符号の説明】[Explanation of symbols]

1…燃料電池本体、 2…空気極側ガス流路、 3…燃料極側ガス流路、 7…触媒反応器、 8…熱交換器、 9…冷却塔。 11…空気予熱器、 13…空気供給管、 14…空気極排ガス管、 15…固体電解質型燃料電池、 18…燃料供給管、 19…燃料極排ガス管、 20…熱交換器、 21…水供給管、 23…冷却器、 31…石炭ガス化炉、 32…脱硫装置、 36…燃焼器。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell main body, 2 ... Air electrode side gas flow path, 3 ... Fuel electrode side gas flow path, 7 ... Catalytic reactor, 8 ... Heat exchanger, 9 ... Cooling tower. 11 ... air preheater, 13 ... air supply pipe, 14 ... air electrode exhaust gas pipe, 15 ... solid electrolyte type fuel cell, 18 ... fuel supply pipe, 19 ... fuel electrode exhaust gas pipe, 20 ... heat exchanger, 21 ... water supply Pipe, 23 ... cooler, 31 ... coal gasifier, 32 ... desulfurizer, 36 ... combustor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 信明 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎研究所内 (72)発明者 山下 晃弘 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎研究所内 (72)発明者 宮崎 達郎 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Nobuaki Murakami, Inventor 1-1, Akunoura-cho, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Research Institute (72) Inventor Akihiro Yamashita 1-1, Akunoura-cho, Nagasaki City, Nagasaki Prefecture Mitsubishi (72) Inventor Tatsuro Miyazaki Inside Nagasaki Research Laboratory 1-1, Akunouramachi, Nagasaki, Nagasaki Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池により二酸化炭素を回収する方
法において、燃料電池本体の出口の燃料極側ガスにO2
ガスあるいは空気極側のガスの一部を混合して触媒酸化
せしめ、少なくとも少量のN2 しか含まない(CO2
2 O)ガスとすることを特徴とする燃料電池による二
酸化炭素の回収方法。
In a method of recovering carbon dioxide by a fuel cell, O 2 gas is added to a fuel electrode side gas at an outlet of a fuel cell body.
The gas or a part of the gas on the air electrode side is mixed and oxidized by the catalyst, and contains at least a small amount of N 2 (CO 2 +
H 2 O) method of recovering carbon dioxide by the fuel cell, characterized by a gas.
JP10109627A 1990-03-14 1998-04-20 Recovering method for carbon dioxide by fuel cell Pending JPH1131518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10109627A JPH1131518A (en) 1990-03-14 1998-04-20 Recovering method for carbon dioxide by fuel cell

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2-61206 1990-03-14
JP6120690 1990-03-14
JP2-65853 1990-03-16
JP6585390 1990-03-16
JP10109627A JPH1131518A (en) 1990-03-14 1998-04-20 Recovering method for carbon dioxide by fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2308730A Division JP2846105B2 (en) 1990-03-14 1990-11-16 Combustion equipment

Publications (1)

Publication Number Publication Date
JPH1131518A true JPH1131518A (en) 1999-02-02

Family

ID=27297425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10109627A Pending JPH1131518A (en) 1990-03-14 1998-04-20 Recovering method for carbon dioxide by fuel cell

Country Status (1)

Country Link
JP (1) JPH1131518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509345A (en) * 2002-12-10 2006-03-16 アカー クバナー エンジニアリングアンドテクノロジー Exhaust gas treatment method for solid oxide fuel cell power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509345A (en) * 2002-12-10 2006-03-16 アカー クバナー エンジニアリングアンドテクノロジー Exhaust gas treatment method for solid oxide fuel cell power plant

Similar Documents

Publication Publication Date Title
US9631284B2 (en) Electrochemical device for syngas and liquid fuels production
US20050123810A1 (en) System and method for co-production of hydrogen and electrical energy
JP2008163944A (en) Reforming system for partial co2 recovery type cycle plant
EP0497226A2 (en) Method for producing methanol by use of nuclear heat and power generating plant
Eide et al. Precombustion decarbonisation processes
RU2007137645A (en) SYSTEMS AND METHODS USING A FUEL PROCESSOR WITHOUT MIXING
JPH0364866A (en) Fuel cell system
CN105762386A (en) Integration Of Reforming/water Splitting And Electrochemical Systems For Power Generation With Integrated Carbon Capture
CZ20004883A3 (en) Process for producing electric power, steam and carbon dioxide from hydrocarbon starting products
JPH0696790A (en) Method for generation of electric energy from biological raw material
JPH0465066A (en) Fuel cell and carbon dioxide gas fixed compound power generation method
KR101441491B1 (en) Intergrated gasification combined cycle coupled fuel cells system and gas supplying method thereto
US9458014B2 (en) Sytems and method for CO2 capture and H2 separation with three water-gas shift reactions and warm desulfurization
KR101279706B1 (en) Method for integrating production process of synthetic natural gas and process of fuel cell
JP2662298B2 (en) Power plant with carbon dioxide separator
FI81072C (en) FOERFARANDE FOER PRODUKTION AV VAERMEENERGI GENOM FOERBRAENNING AV SYNTESGAS.
JP2846105B2 (en) Combustion equipment
JPH1131518A (en) Recovering method for carbon dioxide by fuel cell
JPS63185432A (en) Method for converting or reducing sulfur oxide to elemental sulfur
JP2909234B2 (en) Methanol production method using nuclear heat
JPS59224074A (en) Treating method of fuel for full cell
JP3926917B2 (en) Combustion system
JPH04334729A (en) Power generating method
JP2000297656A (en) Thermal power generation plant
JPH11246877A (en) Synthesis plant from gasified gas

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010703