JPH11314021A - Method for combustion of hydrogen sulfide - Google Patents

Method for combustion of hydrogen sulfide

Info

Publication number
JPH11314021A
JPH11314021A JP10124580A JP12458098A JPH11314021A JP H11314021 A JPH11314021 A JP H11314021A JP 10124580 A JP10124580 A JP 10124580A JP 12458098 A JP12458098 A JP 12458098A JP H11314021 A JPH11314021 A JP H11314021A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
combustion
air
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10124580A
Other languages
Japanese (ja)
Inventor
Akio Ueda
昭雄 植田
Rikuo Yamada
陸雄 山田
Toshiyuki Ueda
俊之 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10124580A priority Critical patent/JPH11314021A/en
Publication of JPH11314021A publication Critical patent/JPH11314021A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of sulfuric anhydride in a method wherein hydrogen sulfide is burnt with combustion air to produce sulfurous acid gas by keeping the oxygen concentration in the combustion air at more that a specific volume percent and an air ratio at a specific value so that a high concentration hydrogen sulfide is completely burnt. SOLUTION: Coal gas containing hydrogen sulfide generated in a coal gasification furnace is introduced into a hydrogen sulfide absorption tower 2, and hydrogen sulfide in the coal gas is absorbed by using alkanolamine absorption liquid. The desulfurized coal gas is introduced to a gas turbine from a refined gas line 3. Then, an absorbed liquid 8 is introduced into a desorption tower 4, and the hydrogen sulfide is desorbed. The highly concentrated hydrogen sulfide desorbed from the absorbed liquid 8 is introduced into a hydrogen sulfide combustion furnace 11 from a hydrogen sulfide line 10, and burnt. The sulfurous acid gas generated by combustion is introduced into the absorption tower from a combustion exhaust gas line 15. Herein, an oxygen concentration of the air for combustion is allowed to be at least 25 Vol.%, and its air ratio is allowed to be 1.0 to 1.2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫化水素の燃焼方
法に係り、特に石炭ガス化装置からの高濃度硫化水素を
燃焼させ亜硫酸ガスとする硫化水素の燃焼方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for burning hydrogen sulfide, and more particularly to a method for burning high-concentration hydrogen sulfide from a coal gasifier to produce sulfurous acid gas.

【0002】[0002]

【従来の技術】従来、石炭をガス化するガス化炉には、
固定層、流動層、気流層の各方式が提案されている。こ
れらの方式のうち気流層は、石炭を微粉にしたものを酸
化剤と共に石炭灰の融点以上の温度(1300〜160
0℃)のガス化炉に供給してガス化させるため、他の方
式よりガス化効率が高い。また、利用出来る炭種が多
く、環境適合性に優れているという特徴を有し、合成ガ
ス、複合発電、燃料電池の燃料及び原料に適しているの
で開発が進められている。石炭中には硫黄分が含まれ、
この硫黄分はガス化炉で硫化水素、硫化カルボニルに変
換される。その濃度は石炭中の硫黄含有量により支配さ
れるが、数100〜数1000ppmの範囲に有る。ガ
ス化により生成したガスを合成ガス、複合発電、燃料電
池の燃料及び原料に用いる場合、生成したガス中の硫化
水素、硫化カルボニルを除去する必要が有り、その脱硫
方式には乾式法と湿式法が知られている。乾式法は脱硫
剤の鉄、ニッケル酸化物に硫化水素を反応させた後、酸
素を含むガスで酸化させると硫黄を遊離すると共に脱硫
剤を再生するが、脱硫剤が粉化し損失となる欠点が有
る。一方、湿式法はアルカノールアミン吸収液を用いて
硫化水素を吸収させた後、吸収液から硫化水素を脱離さ
せクラウス反応により単体硫黄を回収する。しかし、回
収した硫黄の需要が低迷し、可燃性の危険物であること
により問題が多い。従って石灰石膏脱硫方法により石炭
中の硫黄分を石膏として回収すれば、需要が有り安定し
た性状であるから石炭ガス化複合発電のように大量の石
炭を消費するプラントに適している。石炭ガス化に石灰
石膏脱硫方法を適用するには、好ましくないクラウス法
に代わり湿式法からの高濃度硫化水素を酸化して亜硫酸
ガスとし、石灰石膏脱硫方法で処理すれば良い。硫化水
素の燃焼方法としてはクラウス法の最初の工程で硫化水
素を部分酸化して、モル比で硫化水素の二分の一の亜硫
酸ガスを得ている。 2H2S+3O2→2SO2+2H2O…………(1) 2H2S+SO2→3S+2H2O ……………(2)
2. Description of the Related Art Conventionally, gasifiers for gasifying coal include:
Each system of a fixed bed, a fluidized bed, and an airflow bed has been proposed. Among these methods, the airflow layer is formed by converting coal into fine powder together with an oxidizing agent at a temperature equal to or higher than the melting point of coal ash (1300 to 160).
The gasification efficiency is higher than that of other methods because the gas is supplied to the gasification furnace at 0 ° C.) and gasified. In addition, there are many types of charcoal that can be used, and they are excellent in environmental compatibility, and are suitable for synthesis gas, combined power generation, fuel and fuel of fuel cells, and are being developed. Coal contains sulfur,
This sulfur is converted into hydrogen sulfide and carbonyl sulfide in the gasifier. Its concentration is governed by the sulfur content in the coal, but is in the range of several hundred to several thousand ppm. When the gas generated by gasification is used as fuel and raw material for synthesis gas, combined cycle power generation, and fuel cells, it is necessary to remove hydrogen sulfide and carbonyl sulfide in the generated gas. It has been known. In the dry method, after hydrogen sulfide is reacted with iron and nickel oxides as desulfurizing agents and then oxidized with a gas containing oxygen, sulfur is liberated and the desulfurizing agent is regenerated. Yes. On the other hand, in the wet method, hydrogen sulfide is absorbed using an alkanolamine absorption liquid, and then hydrogen sulfide is desorbed from the absorption liquid to recover elemental sulfur by the Claus reaction. However, the demand for recovered sulfur is sluggish, and there are many problems because it is a flammable dangerous substance. Therefore, if the sulfur content in coal is recovered as gypsum by the lime-gypsum desulfurization method, it is suitable for a plant that consumes a large amount of coal, such as a coal gasification combined cycle power plant, because it has demand and has stable properties. In order to apply the lime-gypsum desulfurization method to coal gasification, instead of the undesired Claus method, high-concentration hydrogen sulfide from a wet method may be oxidized to sulfur dioxide gas and then treated by a lime-gypsum desulfurization method. As a method of burning hydrogen sulfide, hydrogen sulfide is partially oxidized in the first step of the Claus method to obtain a sulfur dioxide gas that is half the hydrogen sulfide in a molar ratio. 2H 2 S + 3O 2 → 2SO 2 + 2H 2 O (1) 2H 2 S + SO 2 → 3S + 2H 2 O (2)

【0003】[0003]

【発明が解決しようとする課題】ところが、高濃度硫化
水素を燃焼させて亜硫酸ガスとし、石灰石膏脱硫方法で
処理しようとすると様々な問題が予測される。 1)従来の硫化水素燃焼技術は部分酸化であるから燃焼
排ガス中に未燃の硫化水素を残さないという配慮が無
く、排ガス中の有毒な硫化水素が石灰石膏脱硫方法の吸
収塔で吸収されず排ガスと共に環境に放出される。 2)燃焼排ガス中に未燃の硫化水素を残留させないため
には、(1)式において硫化水素に対して過剰の酸素を
供給すればよい。例えば空気比1.5で硫化水素を燃焼
させれば未燃分の問題は解消するが、過剰の酸素は
(3)式のように硫化水素を燃焼させて生成した亜硫酸
ガスを更に酸化して無水硫酸とし、(4) 式のように
無水硫酸は水と反応して微細な硫酸ミストになり石灰石
膏脱硫方法 の吸収塔で吸収されず排ガスと共に環境に
放出される。また、脱硫装置の煙道 を腐食させる原因
となる。 2SO2+O2→2SO3 ……………………(3) SO3+H2O→H2SO4……………………(4) 本発明の目的は、高濃度の硫化水素を完全燃焼させ、無
水硫酸の生成を防止することにある。
However, various problems are expected when high-concentration hydrogen sulfide is burned into sulfur dioxide to be treated by a lime-gypsum desulfurization method. 1) Since conventional hydrogen sulfide combustion technology is partial oxidation, there is no consideration that unburned hydrogen sulfide does not remain in the combustion exhaust gas, and toxic hydrogen sulfide in the exhaust gas is not absorbed by the absorption tower of the lime gypsum desulfurization method. Released into the environment along with the exhaust gases. 2) In order to prevent unburned hydrogen sulfide from remaining in the combustion exhaust gas, excess oxygen may be supplied to the hydrogen sulfide in the formula (1). For example, burning hydrogen sulfide at an air ratio of 1.5 solves the problem of unburned components, but excess oxygen further oxidizes the sulfur dioxide gas generated by burning hydrogen sulfide as shown in equation (3). Sulfuric anhydride is converted into fine sulfuric acid mist by reacting with water as shown in formula (4), and is not absorbed by the absorption tower in the lime gypsum desulfurization method and is released to the environment together with exhaust gas. It may also cause the flue of the desulfurization unit to corrode. 2SO 2 + O 2 → 2SO 3 (3) SO 3 + H 2 O → H 2 SO 4 (4) An object of the present invention is to provide a high-concentration hydrogen sulfide. In order to prevent the generation of sulfuric anhydride.

【0004】[0004]

【課題を解決するための手段】上記目的は、硫化水素を
燃焼用空気により燃焼させて亜硫酸ガスを生成する硫化
水素の燃焼方法において、燃焼用空気の酸素濃度を25
Vol%以上とし、空気比を1.0〜1.2とすること
により達成される。上記目的は、石炭をガス化して得た
石炭ガスから分離した硫化水素を燃焼用空気により燃焼
させて亜硫酸ガスとする硫化水素燃焼工程と、亜硫酸ガ
スを石灰石スラリにより吸収する脱硫工程とを有する石
炭ガス化方法において、燃焼用空気の酸素濃度を25V
ol%以上とし、空気比を1.0〜1.2とすることに
より達成される。燃焼用空気の酸素濃度を空気分離によ
り得た酸素を用いて25Vol%以上とすることが望ま
しい。燃焼用空気の酸素濃度を酸化剤の酸素を用いて2
5Vol%以上とすることが望ましい。上記構成によれ
ば、酸素分圧を高めることにより硫化水素を完全に酸化
し、残留硫化水素を無くすことができる。また、酸素分
圧を高めることにより反応温度が上昇し酸化反応が促進
される。そして、硫化水素の酸化後に残留する酸素を最
小限にすることにより、無水硫酸の生成を防止すること
ができる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for burning hydrogen sulfide, in which hydrogen sulfide is combusted with combustion air to produce sulfurous acid gas.
It is achieved by setting the air ratio to 1.0% to 1.2% by volume or more. The above object is a coal having a hydrogen sulfide combustion step in which hydrogen sulfide separated from coal gas obtained by gasifying coal is burned with combustion air to produce sulfurous acid gas, and a desulfurization step of absorbing sulfurous acid gas with limestone slurry. In the gasification method, the oxygen concentration of the combustion air is 25 V
ol% or more and an air ratio of 1.0 to 1.2. It is desirable that the oxygen concentration of the combustion air be 25 vol% or more using oxygen obtained by air separation. The oxygen concentration of the combustion air was adjusted to 2 using the oxidant oxygen.
It is desirable to be 5 Vol% or more. According to the above configuration, by increasing the oxygen partial pressure, hydrogen sulfide can be completely oxidized, and residual hydrogen sulfide can be eliminated. Also, by increasing the oxygen partial pressure, the reaction temperature rises and the oxidation reaction is promoted. By minimizing the amount of oxygen remaining after the oxidation of hydrogen sulfide, the production of sulfuric anhydride can be prevented.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を図に
より説明する。図1は本発明の実施の形態の構成を示す
フローチャートである。1は図示せざる石炭ガス化炉3
0で発生した硫化水素を含む石炭ガスを導く石炭ガスラ
イン、2はアルカノールアミン吸収液を用いて石炭ガス
中の硫化水素を吸収する硫化水素吸収塔、3は脱硫した
石炭ガスを図示せざるガスタービン90へ導く精製ガス
ライン、4は吸収液8から硫化水素を脱離させる脱離
塔、11は吸収液8から脱離した高濃度の硫化水素を燃
焼させる硫化水素燃焼炉、15は燃焼により生成した亜
硫酸ガスを図示せざる吸収塔70へ導く燃焼排ガスライ
ン、16はファン14から燃焼用空気を硫化水素燃焼炉
11へ導く燃焼用空気ライン、12は燃焼用空気ライン
16へ酸素源から高濃度の酸素を注入する酸素ラインで
ある。本実施の形態ではこのようにして燃焼用空気の酸
素濃度を25Vol%以上とし、空気比を1.0〜1.
2としている。本実施の形態の燃焼方法により硫化水素
燃焼炉11で未燃の硫化水素、無水硫酸を発生すること
無く高濃度の硫化水素を亜硫酸ガスに変換する。硫化水
素燃焼炉11の制御は燃焼用空気ライン16中の燃焼用
空気の酸素濃度を検出し、酸素ライン12から注入する
酸素量を調節し酸素濃度が25Vol%以上となるよう
にする。あるいはファン14から硫化水素燃焼炉11へ
供給する燃焼用空気を調節する弁の開度に対応して酸素
ライン12から注入する酸素量を調節する弁の開度を連
動させてもよい。また、硫化水素供給量に応じて酸素ラ
イン12から注入する酸素量を調節してもよい。要する
に、燃焼用空気の酸素濃度25Vol%以上とし、空気
比を1.0〜1.2とする条件が満足できれば手段は問
わない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing the configuration of the embodiment of the present invention. 1 is a coal gasifier 3 not shown
A coal gas line for introducing coal gas containing hydrogen sulfide generated in 0, a hydrogen sulfide absorption tower for absorbing hydrogen sulfide in coal gas using an alkanolamine absorbent, and a gas not shown for desulfurized coal gas A purified gas line leading to the turbine 90, 4 is a desorption tower for desorbing hydrogen sulfide from the absorbent 8, 11 is a hydrogen sulfide combustion furnace for burning high-concentration hydrogen sulfide desorbed from the absorbent 8, and 15 is a combustion sulfide furnace. A flue gas line that guides the generated sulfurous acid gas to an absorption tower 70 (not shown), a combustion air line 16 that guides combustion air from a fan 14 to a hydrogen sulfide combustion furnace 11, and a combustion air line 12 that flows from an oxygen source to a combustion air line 16. An oxygen line for injecting oxygen at a concentration. In this embodiment, the oxygen concentration of the combustion air is set to 25 Vol% or more and the air ratio is set to 1.0 to 1.
It is 2. According to the combustion method of the present embodiment, high-concentration hydrogen sulfide is converted into sulfur dioxide gas without generating unburned hydrogen sulfide and sulfuric anhydride in the hydrogen sulfide combustion furnace 11. The control of the hydrogen sulfide combustion furnace 11 detects the oxygen concentration of the combustion air in the combustion air line 16 and adjusts the amount of oxygen injected from the oxygen line 12 so that the oxygen concentration becomes 25 Vol% or more. Alternatively, the opening of the valve for adjusting the amount of oxygen injected from the oxygen line 12 may be linked to the opening of the valve for adjusting the combustion air supplied from the fan 14 to the hydrogen sulfide combustion furnace 11. Further, the amount of oxygen injected from the oxygen line 12 may be adjusted according to the supply amount of hydrogen sulfide. In short, any means can be used as long as the condition that the oxygen concentration of the combustion air is 25% by volume or more and the air ratio is 1.0 to 1.2 can be satisfied.

【0006】次に本発明の根拠となるデータを説明す
る。図2は本発明の実施の形態のデータを示す図表であ
る。本図は燃焼試験の結果を図表にしたもので、横軸は
供給する燃焼用空気の酸素濃度を示し、縦軸は燃焼ガス
中の残留硫化水素及び生成無水硫酸の濃度を示す。燃焼
試験は50Vol%濃度の硫化水素に対し、空気比が
1.1から2.0までの4ケースにつきそれぞれ燃焼用
空気の酸素濃度を変化させ、燃焼ガス中の残留硫化水素
及び生成無水硫酸の濃度を分析した。酸素濃度21Vo
l%以上は空気に酸素ボンベから酸素を注入した。試験
の結果、空気比の如何に拘らず酸素濃度を25Vol%
以上とすれば残留硫化水素は検出限界以下となり、空気
比を1.0〜1.2とすれば酸素濃度の如何に拘らず生
成無水硫酸は検出限界以下となった。従って、空気比を
1.0〜1.2として過剰な酸素による無水硫酸の生成
を抑制し、酸素濃度を25Vol%以上として硫化水素
を完全に酸化し硫化水素の残留を抑制できる。
Next, data serving as a basis of the present invention will be described. FIG. 2 is a chart showing data of the embodiment of the present invention. This figure is a chart showing the results of the combustion test, in which the horizontal axis represents the oxygen concentration of the supplied combustion air, and the vertical axis represents the concentrations of residual hydrogen sulfide and the produced sulfuric anhydride in the combustion gas. In the combustion test, the oxygen concentration of the combustion air was changed for each of the four cases where the air ratio was 1.1 to 2.0 with respect to 50% by volume of hydrogen sulfide, and the residual hydrogen sulfide and the generated sulfuric anhydride in the combustion gas were changed. The concentration was analyzed. Oxygen concentration 21 Vo
For 1% or more, oxygen was injected into the air from an oxygen cylinder. As a result of the test, the oxygen concentration was 25 Vol% regardless of the air ratio.
With the above, the residual hydrogen sulfide was below the detection limit, and when the air ratio was 1.0 to 1.2, the generated sulfuric anhydride was below the detection limit regardless of the oxygen concentration. Therefore, it is possible to suppress the generation of sulfuric anhydride due to excess oxygen by setting the air ratio to 1.0 to 1.2, and to completely oxidize hydrogen sulfide by setting the oxygen concentration to 25 vol% or more, thereby suppressing the residual hydrogen sulfide.

【0007】次に本発明の他の実施の形態を説明する。
図3は本発明の他の実施の形態の構成を示すフローチャ
ートである。本図に示す基本的な構成は図1と同じであ
るが、大気を空気分離装置20へ供給して窒素を分離し
酸素濃度を25Vol%以上に高めて硫化水素燃焼炉1
1の燃焼用空気としている。空気分離装置20には酸素
濃度を25Vol%に高める場合、モレキュラシーブを
用いた吸着式が設備費、運転費共に安くなる。
Next, another embodiment of the present invention will be described.
FIG. 3 is a flowchart showing the configuration of another embodiment of the present invention. The basic configuration shown in this figure is the same as that of FIG. 1 except that the atmosphere is supplied to an air separation device 20 to separate nitrogen and increase the oxygen concentration to 25 Vol% or more, and the hydrogen sulfide combustion furnace 1
1 combustion air. When the oxygen concentration of the air separation device 20 is increased to 25% by volume, the adsorption type using the molecular sieve reduces both the equipment cost and the operation cost.

【0008】図4は本発明の他の実施の形態の構成を示
すフローチャートである。本図は石炭ガス化装置に図1
に示す実施の形態を適用した例を示す。石炭ガス化装置
の酸化剤の酸素を空気分離装置50から酸素ライン53
により導き酸素ライン12から燃焼用空気ライン16内
へ注入して酸素濃度を25Vol%以上に高める例であ
る。本図では燃焼用空気を供給するファン14を示して
いるが、空気圧縮機80による圧縮空気を供給しても良
い。また、燃焼用空気に代わり深冷式の空気分離装置5
0で分離した酸素のみを硫化水素燃焼炉11へ供給して
も良い。
FIG. 4 is a flowchart showing the configuration of another embodiment of the present invention. This diagram shows the coal gasifier
An example in which the embodiment shown in FIG. The oxidant oxygen of the coal gasifier is removed from the air separation device 50 to the oxygen line 53.
This is an example in which the oxygen concentration is increased to 25% by volume or more by injecting the oxygen from the oxygen line 12 into the combustion air line 16 by the following method. Although the drawing shows the fan 14 for supplying the combustion air, the compressed air by the air compressor 80 may be supplied. Also, instead of combustion air, a cryogenic air separation device 5
Only the oxygen separated at 0 may be supplied to the hydrogen sulfide combustion furnace 11.

【0009】[0009]

【発明の効果】本発明によれば、酸素分圧を高めること
により硫化水素を完全に酸化して残留硫化水素を無く
し、硫化水素の酸化後に残留する酸素を最小限にするこ
とにより、無水硫酸の生成を防止することができる。
According to the present invention, hydrogen sulfide is completely oxidized by increasing the oxygen partial pressure to eliminate residual hydrogen sulfide, and oxygen remaining after oxidation of hydrogen sulfide is minimized. Can be prevented from being generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の構成を示すフローチャー
トである。
FIG. 1 is a flowchart showing a configuration of an embodiment of the present invention.

【図2】本発明の実施の形態のデータを示す図表であ
る。
FIG. 2 is a table showing data of the embodiment of the present invention.

【図3】本発明の他の実施の形態の構成を示すフローチ
ャートである。
FIG. 3 is a flowchart showing a configuration of another embodiment of the present invention.

【図4】本発明の他の実施の形態の構成を示すフローチ
ャートである。
FIG. 4 is a flowchart showing a configuration of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 石炭ガスライン 2 硫化水素吸収塔 3 精製ガスライン 4 脱離塔 8 吸収液 10 硫化水素ライン 11 硫化水素燃焼炉 12 酸素ライン 13 空気ライン 14 ファン 15 燃焼排ガスライン 16 燃焼用空気ライン 20 空気分離装置 21 窒素ライン 30 石炭ガス化炉 40 石炭 50 空気分離装置 53 酸素ライン 60 脱塵装置 62 脱硫装置 70 吸収塔 71 排ガスライン 80 空気圧縮機 81 圧縮空気ライン 82 圧縮空気ライン 90 ガスタービン 100 廃熱回収ボイラ 110 煙突 DESCRIPTION OF SYMBOLS 1 Coal gas line 2 Hydrogen sulfide absorption tower 3 Purification gas line 4 Desorption tower 8 Absorbent 10 Hydrogen sulfide line 11 Hydrogen sulfide combustion furnace 12 Oxygen line 13 Air line 14 Fan 15 Combustion exhaust gas line 16 Combustion air line 20 Air separation device 21 Nitrogen Line 30 Coal Gasifier 40 Coal 50 Air Separator 53 Oxygen Line 60 Deduster 62 Desulfurizer 70 Absorption Tower 71 Exhaust Gas Line 80 Air Compressor 81 Compressed Air Line 82 Compressed Air Line 90 Gas Turbine 100 Waste Heat Recovery Boiler 110 chimney

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硫化水素を燃焼用空気により燃焼させて
亜硫酸ガスを生成する硫化水素の燃焼方法において、前
記燃焼用空気の酸素濃度を25Vol%以上とし、空気
比を1.0〜1.2とすることを特徴とする硫化水素の
燃焼方法。
1. A method for combusting hydrogen sulfide with combustion air to generate sulfurous acid gas, wherein the combustion air has an oxygen concentration of 25 vol% or more and an air ratio of 1.0 to 1.2. A method for burning hydrogen sulfide.
【請求項2】 石炭をガス化して得た石炭ガスから分離
した硫化水素を燃焼用空気により燃焼させて亜硫酸ガス
とする硫化水素燃焼工程と、該亜硫酸ガスを石灰石スラ
リにより吸収する脱硫工程とを有する石炭ガス化方法に
おいて、 前記燃焼用空気の酸素濃度を25Vol%以上とし、空
気比を1.0〜1.2とすることを特徴とする石炭ガス
化方法。
2. A hydrogen sulfide combustion step in which hydrogen sulfide separated from coal gas obtained by gasifying coal is burned with combustion air to produce sulfurous acid gas, and a desulfurization step in which the sulfurous acid gas is absorbed by limestone slurry. A coal gasification method, comprising: setting the oxygen concentration of the combustion air to 25 Vol% or more and setting the air ratio to 1.0 to 1.2.
【請求項3】 前記燃焼用空気の酸素濃度を空気分離に
より得た酸素を用いて25Vol%以上とすることを特
徴とする請求項2に記載の石炭ガス化方法。
3. The coal gasification method according to claim 2, wherein the oxygen concentration of the combustion air is adjusted to 25% by volume or more using oxygen obtained by air separation.
【請求項4】 前記燃焼用空気の酸素濃度を酸化剤の酸
素を用いて25Vol%以上とすることを特徴とする請
求項2に記載の石炭ガス化方法。
4. The coal gasification method according to claim 2, wherein the oxygen concentration of the combustion air is set to 25% by volume or more using oxygen as an oxidizing agent.
JP10124580A 1998-05-07 1998-05-07 Method for combustion of hydrogen sulfide Pending JPH11314021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10124580A JPH11314021A (en) 1998-05-07 1998-05-07 Method for combustion of hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10124580A JPH11314021A (en) 1998-05-07 1998-05-07 Method for combustion of hydrogen sulfide

Publications (1)

Publication Number Publication Date
JPH11314021A true JPH11314021A (en) 1999-11-16

Family

ID=14888996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10124580A Pending JPH11314021A (en) 1998-05-07 1998-05-07 Method for combustion of hydrogen sulfide

Country Status (1)

Country Link
JP (1) JPH11314021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060590A (en) * 2018-10-19 2018-12-21 河南理工大学 Coal seam hydrogen sulfide gas assay system and measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060590A (en) * 2018-10-19 2018-12-21 河南理工大学 Coal seam hydrogen sulfide gas assay system and measuring method
CN109060590B (en) * 2018-10-19 2021-02-05 河南理工大学 System and method for measuring content of hydrogen sulfide gas in coal seam

Similar Documents

Publication Publication Date Title
JPH0593519A (en) Power generation plant comprising gasification
JPS6248527B2 (en)
JP2009262047A (en) Method for utilizing waste material containing sludge in coal boiler for power generation
AU638543B2 (en) Process for purifying high-temperature reducing gases and integrated coal gasification combined cycle power generation plant
CN103962115A (en) Desulphurization activated carbon regeneration process combined with Claus device
JP5766397B2 (en) Ammonia production method and apparatus
JPH11314021A (en) Method for combustion of hydrogen sulfide
JPH10235128A (en) Dry desulfurization device and electric power plant with the same
JP3702396B2 (en) Coal gasification combined power generation system
JP3700073B2 (en) Method and apparatus for burning hydrogen sulfide-containing gas
US20070031311A1 (en) Regeneration of calcium oxide or calcium carbonate from waste calcium sulphide
JPS59204687A (en) Fuel gas desulfurization
JP4658350B2 (en) Method and apparatus for reducing sulfur compounds
JP2000015052A (en) Lime gypsum desulfurizing method
JPH06293888A (en) Method for recovering sulfur from plant for gasifying coal and device therefor
JP3233628B2 (en) Gasification power plant
JP4519338B2 (en) Method for treating ammonia-containing gas and coal gasification combined power plant
JP2575771B2 (en) Dry and wet desulfurization method for high-temperature gas
JPS6012521B2 (en) Method for removing harmful gases from combustion waste gas in power generation equipment
JPH11221431A (en) Recovery of sulfur component
AU2010201203B2 (en) Ammonia generating method and apparatus therefor
JP2626787B2 (en) Method for recovering sulfur from hydrogen sulfide-containing gas
US20040258592A1 (en) Regeneration of calcium oxide or calcium carbonate from waste calcium sulphide
JPH07114927B2 (en) ▲ High ▼ Refining method of warm reducing gas
JPH0350296A (en) Technique for recovery of sulfur in coal gasification