JPH11310840A - Aluminum alloy for galvanic electricity anode - Google Patents

Aluminum alloy for galvanic electricity anode

Info

Publication number
JPH11310840A
JPH11310840A JP10116821A JP11682198A JPH11310840A JP H11310840 A JPH11310840 A JP H11310840A JP 10116821 A JP10116821 A JP 10116821A JP 11682198 A JP11682198 A JP 11682198A JP H11310840 A JPH11310840 A JP H11310840A
Authority
JP
Japan
Prior art keywords
anode
electricity
aluminum alloy
weight
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10116821A
Other languages
Japanese (ja)
Inventor
Kunio Watanabe
邦夫 渡辺
Shiro Matsuda
史朗 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10116821A priority Critical patent/JPH11310840A/en
Publication of JPH11310840A publication Critical patent/JPH11310840A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy for galbvanic electricity anode having a sufficiently basic anode potential and a sufficiently large generating quantity of electricity under a corrosive circumstance by making a specific amount of Zn and Ge contained in an aluminum alloy. SOLUTION: An alloy for galvanic electricity anode is composed of, by weight, 7-50% Zn, 0.01-0.6% Ge, and the balance Al with inevitable impurities. Zn and Ge have an effect of maintaining an anode potential sufficiently basic as well as maintaining a generated amount of electricity sufficiently large by suppressing self-dissolving of the alloy. In order to obtain the most basic anode potential, Zn content is made to be 7-20 weight %, and in order to get the largest generating quantity of electricity, Zn content is made to be 30-50%. In order to obtain an excellent generating quantity of electricity and anode potential well balanced, Zn content is made to be 10-40%. This aluminum alloy for galvanic electricity anode has a generating quantity of electricity sufficiently large as much as >=1,250 A.hr/kg and an anode potential sufficiently basic as low as <=-1,300 mV, so that is suitable for anticorrosion of reinforcing bar in a concrete structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄筋コンクリート
構造物中の鉄筋の防食用に好適な流電陽極用アルミニウ
ム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy for a galvanic anode suitable for preventing corrosion of reinforcing steel in a reinforced concrete structure.

【0002】[0002]

【従来の技術】鉄筋コンクリート構造物中の鉄筋は、コ
ンクリートが強アルカリであるために、通常の環境では
腐食があまり進行しない。しかし、上記構造物が例えば
海水上や海水中に設けられたり、凍結防止用に塩化物が
散布されたりして塩水が浸透する環境に置かれると、腐
食が進行して問題になる。
2. Description of the Related Art Reinforcing bars in a reinforced concrete structure do not corrode much in an ordinary environment because concrete is strongly alkaline. However, if the above-mentioned structure is placed in an environment where salt water penetrates, for example, by being provided on seawater or seawater, or by spraying chlorides for preventing freezing, corrosion progresses and becomes a problem.

【0003】この問題に対して、長期間低廉で安定した
防食ができる可能性のある流電陽極法が注目されてい
る。そして、亜鉛合金を流電陽極に使用する流電陽極法
が検討されている。
[0003] In order to solve this problem, a galvanic anode method, which has the potential to provide stable corrosion prevention at low cost for a long time, has attracted attention. Then, a galvanic anode method using a zinc alloy for the galvanic anode has been studied.

【0004】ところで、流電陽極法は、卑な陽極電位を
有する流電陽極が腐食して発生する電流を防食電流とし
て得る方法であるが、この流電陽極の重要な特性として
は、発生電気量および陽極電位が挙げられる。ここで、
発生電気量とは単位重量当たりの防食電気量のことであ
り、また、陽極電位とは流電陽極の自然電位のことであ
る。発生電気量の値が大きいほど、また陽極電位が卑な
ほど、流電陽極は優れる。
The galvanic anode method is a method in which a current generated by corrosion of a galvanic anode having a low anode potential is obtained as an anticorrosion current. Volume and anodic potential. here,
The amount of generated electricity is the amount of anticorrosive electricity per unit weight, and the anodic potential is the natural potential of the galvanic anode. The greater the value of the amount of generated electricity and the lower the anode potential, the better the galvanic anode.

【0005】しかし、亜鉛合金は、陽極電位が高(貴)
すぎるという問題点がある。
However, zinc alloys have a high anodic potential (noble).
There is a problem that too.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解消し、充分卑な陽極電位および充分大きい発
生電気量を鉄筋コンクリートという鉄筋腐食環境で有す
る流電陽極用アルミニウム合金を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an aluminum alloy for a galvanic anode having a sufficiently low anode potential and a sufficiently large amount of generated electricity in a reinforced corrosion environment called reinforced concrete. It is in.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するものとして、7〜50重量%のZn、および0.
01〜0.6重量%のGeを含み、残部がAlおよび不
可避不純物からなる流電陽極用アルミニウム合金であ
る。
SUMMARY OF THE INVENTION The present invention achieves the above objects by providing 7 to 50% by weight of Zn and 0.1 to 0.5% by weight of Zn.
This is an aluminum alloy for a galvanic anode containing 01 to 0.6% by weight of Ge and the balance of Al and inevitable impurities.

【0008】[0008]

【発明の実施の形態】本発明の流電陽極用アルミニウム
合金において、ZnおよびGeはいずれも、該合金の自
己溶解を抑制することにより発生電気量を充分大きく維
持するとともに、陽極電位を充分卑に維持する作用があ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the aluminum alloy for a galvanic anode according to the present invention, both Zn and Ge maintain a sufficiently large amount of generated electricity by suppressing the self-melting of the alloy, and sufficiently reduce the anode potential. There is an action to maintain.

【0009】また、Znは、その含有量の増大につれ
て、発生電気量を増大させるとともに陽極電位を卑側か
ら貴側に移行させる。従って、Zn含有量を例えば次の
ように選択することによって、所望の発生電気量および
陽極電位を有する本発明の流電陽極用アルミニウム合金
を用いることができる。すなわち、(1)最も卑な陽極
電位を得るために、Zn含有量が7〜20重量%の流電
陽極用アルミニウム合金、(2)最も大きい発生電気量
を得るために、Zn含有量が30〜50重量%の流電陽
極用アルミニウム合金、および(3)優れた発生電気量
および陽極電位をバランスよく得るために、Zn含有量
が10〜40重量%の流電陽極用アルミニウム合金を選
択・使用することができる。
As the content of Zn increases, the amount of generated electricity increases and the anode potential shifts from the base side to the noble side. Therefore, by selecting the Zn content as follows, for example, the aluminum alloy for a galvanic anode of the present invention having a desired amount of generated electricity and an anode potential can be used. That is, (1) an aluminum alloy for a galvanic anode having a Zn content of 7 to 20% by weight to obtain the lowest anode potential; and (2) a Zn content of 30 to obtain the largest generated electricity. Select an aluminum alloy for a galvanic anode of up to 50% by weight, and (3) an aluminum alloy for a galvanic anode having a Zn content of 10 to 40% by weight in order to obtain a good balance between the amount of generated electricity and the anode potential. Can be used.

【0010】Znが7重量%未満、またはGeが0.0
1重量%未満では、上記作用が充分発揮されず発生電気
量が低下する。また、Znが50重量%を超えるか、G
eが0.6重量%を超えると、陽極電位が貴になりやす
い。
When Zn is less than 7% by weight or Ge is 0.0
If the amount is less than 1% by weight, the above effect is not sufficiently exhibited, and the amount of generated electricity decreases. Further, when Zn exceeds 50% by weight or G
When e exceeds 0.6% by weight, the anode potential tends to be noble.

【0011】[0011]

【実施例】[実施例1〜11、比較例1〜10]21種
類のアルミニウム合金を大気溶解後、金型鋳造して、直
径25mm、長さ250mmの丸棒形状の鋳塊を得た。
鋳塊の組成を表1に示す。
EXAMPLES [Examples 1 to 11, Comparative Examples 1 to 10] Twenty-one types of aluminum alloys were melted in the air and then cast in a mold to obtain round bar-shaped ingots having a diameter of 25 mm and a length of 250 mm.
Table 1 shows the composition of the ingot.

【0012】その後、これらの鋳塊を試料として、流電
陽極の性能試験を行った。試験は、(社)腐食防食協会
が制定した流電陽極試験法(「流電陽極試験法および同
解説」、防食技術、Vol.31、p612〜620、
1982)に準拠して実施した。
Thereafter, a performance test of the galvanic anode was performed using these ingots as samples. The test was conducted using the galvanic anode test method established by the Corrosion and Corrosion Protection Association of Japan (“Glectroelectric anode test method and its commentary”, anticorrosion technology, Vol. 31, p 612-620,
1982).

【0013】上記試験法を略述すると次の通りである。
すなわち、サンドペーパーの240番の粗さになるまで
上記試料の表面を研磨した後、側面を20cm2 残し、
他の面はビニールテープを用いて絶縁被覆した。次にK
Cl:32.0g/l、NaOH:24.5g/l、K
OH:10.0g/l、Ca(OH)2 :0.1g/l
なる組成の水溶液をコンクリート模擬試験液として1リ
ットルのビーカー内に満たした。さらに試料を陽極とし
てビーカー中央に配置し、ステンレス円筒板をビーカー
側壁に沿わせて陰極として配置した(極間距離:30m
m)。そして、陽極と陰極との間に直流安定化電源を挟
んで結線した。通電は、陽極電流密度:1.0mA/c
2 の定電流条件で240時間行った。発生電気量は、
通電の開始前と終了後における試料重量減から算出し
た。また、陽極電位は、銀−塩化銀電極を参照電極とし
て通電終了後直ちに測定した。
The above test method is briefly described as follows.
That is, the surface of the sample was polished until the roughness of the sandpaper became 240, leaving 20 cm 2 of the side surface,
The other surface was insulated with vinyl tape. Then K
Cl: 32.0 g / l, NaOH: 24.5 g / l, K
OH: 10.0 g / l, Ca (OH) 2 : 0.1 g / l
An aqueous solution having the following composition was filled in a 1-liter beaker as a concrete simulation test liquid. Further, the sample was disposed as an anode in the center of the beaker, and a stainless steel cylindrical plate was disposed as a cathode along the side wall of the beaker (distance between the electrodes: 30 m).
m). Then, a connection was made with a DC stabilized power supply interposed between the anode and the cathode. Energization is performed at an anode current density of 1.0 mA / c.
The test was performed for 240 hours under a constant current condition of m 2 . The amount of generated electricity is
It was calculated from the weight loss of the sample before and after the start of energization. The anodic potential was measured immediately after the end of energization using a silver-silver chloride electrode as a reference electrode.

【0014】得られた結果を表1に示す。Table 1 shows the obtained results.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上のことから、本発明の流電陽極用ア
ルミニウム合金は、発生電気量が1250A・hr/k
g以上と充分大きく、かつ陽極電位が−1300mV以
下と充分卑であり、鉄筋コンクリート構造物中の鉄筋の
防食用に好適であることが判る。
As described above, the aluminum alloy for a galvanic anode according to the present invention has a generated electric quantity of 1250 A · hr / k.
g or more, and the anode potential is -1300 mV or less, which is sufficiently low, and it is understood that it is suitable for corrosion prevention of reinforcing steel in a reinforced concrete structure.

【0017】また、優れた発生電気量および陽極電位と
組成との相関性がよいので、使用する鉄筋腐食環境に適
正に対応する組成のものを選択・使用することができる
ことも判る。
Further, it can be seen that the composition and the composition corresponding to the corroding corrosive environment to be used can be selected and used because of excellent correlation between the amount of generated electricity and the anode potential and the composition.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 7〜50重量%のZn、および0.01
〜0.6重量%のGeを含み、残部がAlおよび不可避
不純物からなる流電陽極用アルミニウム合金。
1. A method according to claim 1, wherein said Zn is present in an amount of 7 to 50% by weight.
An aluminum alloy for a galvanic anode containing about 0.6% by weight of Ge and the balance being Al and inevitable impurities.
【請求項2】 Zn含有量が7〜20重量%である請求
項1に記載の流電陽極用アルミニウム合金。
2. The aluminum alloy for a galvanic anode according to claim 1, wherein the Zn content is 7 to 20% by weight.
【請求項3】 Zn含有量が10〜40重量%である請
求項1に記載の流電陽極用アルミニウム合金。
3. The aluminum alloy for a galvanic anode according to claim 1, wherein the Zn content is 10 to 40% by weight.
【請求項4】 Zn含有量が30〜50重量%である請
求項1に記載の流電陽極用アルミニウム合金。
4. The aluminum alloy for a galvanic anode according to claim 1, wherein the Zn content is 30 to 50% by weight.
JP10116821A 1998-04-27 1998-04-27 Aluminum alloy for galvanic electricity anode Pending JPH11310840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10116821A JPH11310840A (en) 1998-04-27 1998-04-27 Aluminum alloy for galvanic electricity anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10116821A JPH11310840A (en) 1998-04-27 1998-04-27 Aluminum alloy for galvanic electricity anode

Publications (1)

Publication Number Publication Date
JPH11310840A true JPH11310840A (en) 1999-11-09

Family

ID=14696470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10116821A Pending JPH11310840A (en) 1998-04-27 1998-04-27 Aluminum alloy for galvanic electricity anode

Country Status (1)

Country Link
JP (1) JPH11310840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156283A1 (en) * 2008-06-24 2009-12-30 Aleris Aluminum Koblenz Gmbh Al-zn-mg alloy product with reduced quench sensitivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156283A1 (en) * 2008-06-24 2009-12-30 Aleris Aluminum Koblenz Gmbh Al-zn-mg alloy product with reduced quench sensitivity
US9890448B2 (en) 2008-06-24 2018-02-13 Aleris Aluminum Koblenz Gmbh Al—Zn—Mg alloy product with reduced quench sensitivity

Similar Documents

Publication Publication Date Title
US3240688A (en) Aluminum alloy electrode
JP2892449B2 (en) Magnesium alloy for galvanic anode
KR100583678B1 (en) Method and product for improving performance of batteries/fuel cells
US3189486A (en) Primary electric cell
US3368958A (en) Aluminum alloy for cathodic protection system and primary battery
US3368952A (en) Alloy for cathodic protection galvanic anode
US2913384A (en) Aluminum anodes
US3418230A (en) Galvanic anode and aluminum alloy therefor
JPH11310840A (en) Aluminum alloy for galvanic electricity anode
JP2015076224A (en) Aluminum air battery
JP3183603B2 (en) Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same
JPH1161307A (en) Aluminum alloy for galvanic anode
JP3183604B2 (en) Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same
Paramasivam et al. Influence of alloying additives on corrosion and hydrogen permeation through commercial aluminium in alkaline solution
JPH1161309A (en) Aluminum alloy for galvanic anode
JP2773971B2 (en) Magnesium alloy for galvanic anode
JPH11217645A (en) Aluminum alloy for sacrifice anode
JP3184516B2 (en) Magnesium alloy for galvanic anode
JPH1161308A (en) Aluminum alloy for galvanic anode
JPH08120382A (en) Aluminum alloy for galvanic anode
JP2006063439A (en) Sprayed coating for corrosion prevention to reinforcing bar in concrete structure
JP6681500B1 (en) Backfill for cathodic protection
US5547560A (en) Consumable anode for cathodic protection, made of aluminum-based alloy
JPH09310131A (en) Production of magnesium alloy for voltaic anode
JP2705844B2 (en) Magnesium alloy for galvanic anode

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040713