JP2705844B2 - Magnesium alloy for galvanic anode - Google Patents

Magnesium alloy for galvanic anode

Info

Publication number
JP2705844B2
JP2705844B2 JP2277711A JP27771190A JP2705844B2 JP 2705844 B2 JP2705844 B2 JP 2705844B2 JP 2277711 A JP2277711 A JP 2277711A JP 27771190 A JP27771190 A JP 27771190A JP 2705844 B2 JP2705844 B2 JP 2705844B2
Authority
JP
Japan
Prior art keywords
alloy
weight
anode
amount
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2277711A
Other languages
Japanese (ja)
Other versions
JPH04157130A (en
Inventor
竜也 蔵本
邦夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2277711A priority Critical patent/JP2705844B2/en
Publication of JPH04157130A publication Critical patent/JPH04157130A/en
Application granted granted Critical
Publication of JP2705844B2 publication Critical patent/JP2705844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉄鋼構造物の電気的防食に好適の流電陽極用
マグネシウム合金に関する。
Description: TECHNICAL FIELD The present invention relates to a magnesium alloy for a galvanic anode suitable for electrical protection of steel structures.

[従来の技術] 従来、海水中、海土中あるいは土中で使用される鉄鋼
構造物の防食法として、防食電流により鉄を腐食に対す
る安定領域に保持する電気防食法が広く用いられてい
る。この電気防食法には、例えば高シリコン鋼、白金な
どの陽極電位の貴な不溶性合金を陽極として用い、被防
食体を陰極としてこれを接続し、その中間に直流電源を
配置して強制的に通電させて防食電流を得る外部電源法
と、アルミニウム合金、亜鉛合金、マグネシウム合金な
どの陽極電位の卑な合金を陽極として用い、陽極が腐食
されることにより発生する余剰電子を防食電流として得
る流電陽極法の2種類がある。このうち、外部電源法は
その設備が大規模となりやすく、また防食する期間中連
続して通電を行わなければならず、コストが高くつくた
め通常は流電陽極法が多く用いられている。
2. Description of the Related Art Conventionally, as a method of preventing corrosion of a steel structure used in seawater, sea soil, or soil, an electrolytic protection method in which iron is kept in a stable region against corrosion by a corrosion protection current has been widely used. In this cathodic protection method, for example, a noble insoluble alloy having an anodic potential such as high silicon steel or platinum is used as an anode, the object to be protected is connected as a cathode, and a direct current power supply is arranged in the middle to forcibly forcibly. An external power supply method in which an anti-corrosion current is obtained by applying a current, and a flow in which a surplus electron generated by corrosion of the anode is used as an anti-corrosion current using a base alloy having a low anode potential such as an aluminum alloy, a zinc alloy, or a magnesium alloy. There are two types of electroanode methods. Of these, the external power supply method is apt to be large-scale and requires continuous energization during the period of anticorrosion, and the cost is high.

このうちマグネシウム合金流電陽極は、アルミニウム
合金あるいは亜鉛合金と比較して最も卑な電位を示し、
被防食体である鉄鋼構造物との電位差を大きく取れるこ
とから土壌中あるいは土の上に設置される埋設管、橋梁
の基礎など比抵抗の高い環境において多く用いられてい
る。
Among them, magnesium alloy galvanic anode shows the lowest potential compared to aluminum alloy or zinc alloy,
It is widely used in environments with high specific resistance, such as buried pipes and bridge foundations installed in or on the soil, because it has a large potential difference from the steel structure that is the anticorrosion body.

[発明が解決しようとする課題] このような従来のマグネシウム合金陽極としては、JI
S H6125に規定されている純Mg(JIS1種)およびAZ63合
金(JIS2種、3種)があり、特にAl5.3〜6.7、Zn2.5〜
3.5、Mn0.15〜0.60各重量%を含有し、残部がMgおよび
不可避不純物からなる組成を有するAZ63合金が主流をな
している。
[Problems to be Solved by the Invention] As such a conventional magnesium alloy anode, JI
There are pure Mg (JIS Class 1) and AZ63 alloy (JIS Class 2 and Class 3) specified in SH6125, especially Al5.3 ~ 6.7, Zn2.5 ~
AZ63 alloy containing 3.5, Mn of 0.15 to 0.60% by weight and the balance of Mg and unavoidable impurities is the mainstream.

流電陽極の特性値としては発生電気量、効率および陽
極電位が挙げられる。発生電気量とは単位重量あたりの
防食電気量のことであり、この値が大きいほど優れた陽
極であることを表している。また同じ重量であれば値が
大きいほど長期にわたり防食電流を得られる、すなわち
長寿命であるということを表している。効率とはこの発
生電気量と、合金の成分組成によって決定される理論発
生電気量(電気化学当量の逆数であり、アルミニウムは
2980A・hr/kg、亜鉛は820A・hr/kg、またマグネシウム
は2205A・hr/kgである)との比であり、全発生電気量の
何%が防食電流として有効に作用したかを表す数値であ
る。また、陽極電位とは合金の自然電位であり、鉄の自
然電位との差が大きいほど広範囲にわたり防食電流を流
すことが可能であることを示している。
The characteristic values of the galvanic anode include the amount of generated electricity, efficiency, and anode potential. The amount of generated electricity is the amount of anticorrosive electricity per unit weight, and the larger this value is, the better the anode is. In addition, when the weight is the same, the larger the value, the longer the anticorrosion current can be obtained, that is, the longer the life. Efficiency is the amount of electricity generated and the theoretical amount of electricity generated by the composition of the alloy (the reciprocal of the electrochemical equivalent; aluminum is
2980 Ahr / kg, zinc is 820 Ahr / kg, and magnesium is 2205 Ahr / kg. It is. The anodic potential is the natural potential of the alloy, and indicates that the larger the difference from the natural potential of iron, the more widely the anticorrosion current can flow.

上記のAZ63合金は効率が約50〜55%(発生電気量とし
て1100〜1250A・hr/kg)といわれ、最近の鉄鋼構造物の
長寿命化を望む要求に対し十分でないという問題点を有
するものであった。
The above-mentioned AZ63 alloy is said to have an efficiency of about 50-55% (generated electricity of 1100-1250 Ahr / kg), which is not sufficient for recent demands for longer life of steel structures. Met.

本発明の目的は発生電気量が大きく、高効率、長寿命
の流電陽極用マグネシウム合金を提供することにある。
An object of the present invention is to provide a magnesium alloy for a galvanic anode having a large amount of generated electricity, high efficiency and long life.

[課題を解決するための手段] 上記目的を達成するため本発明の合金はAl5〜16、Zn
0.5〜10、Mn0.1〜1、Ti0.005〜0.1、B0.001〜0.02各重
量%を含み、残部がマグネシウムと不可避不純物からな
る点に特徴がある。
[Means for Solving the Problems] To achieve the above object, the alloy of the present invention is composed of Al5-16, Zn
It contains 0.5 to 10, Mn 0.1 to 1, Ti 0.005 to 0.1, and B 0.001 to 0.02% by weight, with the balance being magnesium and inevitable impurities.

[作 用] 以下に本発明合金の各成分組成範囲を上記の通りに限
定した理由について述べる。
[Operation] The reasons for limiting the component composition ranges of the alloy of the present invention as described above will be described below.

Alは溶解表面を平滑にするのに有効な作用をする元素
であるが、5重量%未満ではその効果が十分ではなく、
一方、16重量%を超えると陽極電位の貴化を招くのでそ
の含有量を5〜16重量%とする必要がある。
Al is an element that effectively acts to smooth the melting surface, but less than 5% by weight does not have sufficient effect.
On the other hand, if it exceeds 16% by weight, the anodic potential becomes noble, so its content needs to be 5 to 16% by weight.

Znは溶解表面を平滑するのに有効な作用をする元素で
あるが、0.5重量%未満ではその作用が十分ではなく、
一方、10重量%を超えると、Znは理論発生電気量が小さ
く合金の発生電気量の低下を招くのでその含有量を0.5
〜10重量%とする必要がある。
Zn is an element that effectively acts to smooth the melting surface, but less than 0.5% by weight does not have sufficient effect.
On the other hand, when the content exceeds 10% by weight, the theoretical amount of generated electricity of Zn is small and the amount of generated electricity of the alloy is reduced.
It must be ~ 10% by weight.

MnはMg地金中に不可避不純物として含有される鉄の、
発生電気量を低下させるという悪影響を低減するのに有
効な元素であるが、その含有量が0.1重量%未満ではそ
の作用が十分ではなく、一方、1重量%を超えると発生
電気量の低下を招くのでその含有量を0.1〜1重量%と
する必要がある。
Mn is the amount of iron contained as inevitable impurities in Mg ingots,
Although it is an effective element for reducing the adverse effect of reducing the amount of generated electricity, its effect is not sufficient if its content is less than 0.1% by weight, whereas if it exceeds 1% by weight, the amount of generated electricity is reduced. Therefore, its content needs to be 0.1 to 1% by weight.

Ti及びBを添加すると、結晶組織が粗大な柱状晶から
微細な粒状晶へと変化し、それに伴って合金の溶出が均
一となり、孔食、溝腐食並びに腐食生成物の付着を防止
する。その結果、溶解表面の均一性と平滑性が向上す
る。Tiは0.005重量%未満、Bは0.001重量%未満ではそ
の効果が十分ではなく、一方、Tiでは0.1重量%、Bで
は0.02重量%を超えると発生電気量の低下を招くのでそ
の含有量をTiは0.005〜0.1重量%、Bは0.001〜0.02重
量%とする必要がある。
When Ti and B are added, the crystal structure changes from coarse columnar crystals to fine granular crystals, whereby the dissolution of the alloy becomes uniform, thereby preventing pitting, groove corrosion and adhesion of corrosion products. As a result, the uniformity and smoothness of the dissolution surface are improved. If the content of Ti is less than 0.005% by weight and the content of B is less than 0.001% by weight, the effect is not sufficient. On the other hand, if the content exceeds 0.1% by weight and the content of B exceeds 0.02% by weight, the amount of generated electricity decreases. Should be 0.005 to 0.1% by weight, and B should be 0.001 to 0.02% by weight.

[実施例] 以下に実施例を示す。[Example] An example will be described below.

第1表に示す組成で添加元素を配合し鋳鋼ルツボを用
いて熔解し、直径20mm、長さ150mmの丸棒状の金型に鋳
造して試験片とした。この試料を(社)腐食防食協会が
制定した「流電陽極試験法」(「流電陽極試験法および
同解説」、防食技術、vol.31、p612−620、1982)に準
拠し、実施した。略述すると、これらの試験片は鋳肌表
面の酸化物の影響を除くために最終的にサンドペーパー
の240番の粗さになるまで表面を研磨し、側面の供試面
積40cm2を残して他はビニールテープを用いて絶縁被覆
した。さらに人工海水に水酸化マグネシウムを飽和させ
た液を1リットルのビーカー内に満たし、これを試験液
とした。試験片は容器中央に配置してこれを陽極とし、
容器側壁に沿って配置したステンレス円筒板を極間距離
を30mmにとり陰極として、間に直流安定化電源をはさん
で結線した。これを陽極電流密度0.1mA/cm2の定電流条
件で240時間通電し、試験片の重量減から発生電気量を
算出した。また終了直前の陽極電位を銀−塩化銀電極を
用いて測定し飽和甘汞電極基準値(SCE)に換算した。
結果を第1表に示す。
The additive elements were blended in the composition shown in Table 1, melted using a cast steel crucible, and cast into a round bar-shaped mold having a diameter of 20 mm and a length of 150 mm to obtain a test piece. This sample was carried out in accordance with the “electrostatic anode test method” established by the Association of Corrosion and Corrosion Prevention (“electrostatic anode test method and its description”, anti-corrosion technology, vol. 31, p612-620, 1982). . Briefly, these test pieces were polished surface until 240 No. roughness ultimately sandpaper to remove the influence of the oxide of the cast skin surface, leaving a test area 40 cm 2 sides Others were insulated with vinyl tape. Further, a solution of artificial seawater saturated with magnesium hydroxide was filled in a 1-liter beaker, and this was used as a test solution. The test piece is placed in the center of the container and this is used as the anode,
A stainless steel cylindrical plate arranged along the side wall of the container was connected to a cathode with a distance between electrodes of 30 mm being used as a cathode and a DC stabilized power supply was interposed therebetween. This was energized under a constant current condition of an anode current density of 0.1 mA / cm 2 for 240 hours, and the amount of generated electricity was calculated from the weight loss of the test piece. The anodic potential immediately before completion was measured using a silver-silver chloride electrode and converted to a saturated calomel electrode reference value (SCE).
The results are shown in Table 1.

第1表から本発明の合金はいずれも比較合金ならびに
従来材のAZ63合金に比較しても−1500mV(vs.SCE)前後
の十分に卑な陽極電位と1690〜1720A・hr/kgと十分に高
い発生電気量を具備していることが分る。
Table 1 shows that the alloy of the present invention has a sufficiently low anode potential of about -1500 mV (vs. SCE) and a sufficiently low value of 1690 to 1720 A · hr / kg even when compared with the comparative alloy and the conventional AZ63 alloy. It can be seen that it has a high amount of generated electricity.

[発明の効果] 本発明合金は、土壌中あるいは地上に設置された鉄鋼
構造物の電気防食に使用される場合、十分に卑な陽極電
位を有しながらかつ発生電気量を1690〜1720A・hr/kg
と、合金の効率を従来の50〜55%から76〜78%にまで高
めるものであり、長期間安定して使用され得る長寿命の
流電陽極を得ることができ、実用上顕著な効果を発揮す
るものである。
[Effects of the Invention] When the alloy of the present invention is used for electrolytic protection of a steel structure installed in soil or on the ground, it has a sufficiently low anode potential and generates 1690-1720 A · hr while having a sufficiently low anode potential. /kg
And raises the efficiency of the alloy from 50-55% to 76-78% from the conventional one, and it is possible to obtain a long-life current-carrying anode that can be used stably for a long period of time. To demonstrate.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Al5〜16、Zn0.5〜10、Mn0.1〜1、Ti0.005
〜0.1、B0.001〜0.02各重量%を含み、残部がマグネシ
ウムと不可避不純物からなることを特徴とする流電陽極
用マグネシウム合金。
(1) Al5-16, Zn0.5-10, Mn0.1-1, Ti0.005
A magnesium alloy for a galvanic anode, characterized by containing 0.1% by weight and 0.001 to 0.02% by weight of B, with the balance being magnesium and unavoidable impurities.
JP2277711A 1990-10-18 1990-10-18 Magnesium alloy for galvanic anode Expired - Fee Related JP2705844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2277711A JP2705844B2 (en) 1990-10-18 1990-10-18 Magnesium alloy for galvanic anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2277711A JP2705844B2 (en) 1990-10-18 1990-10-18 Magnesium alloy for galvanic anode

Publications (2)

Publication Number Publication Date
JPH04157130A JPH04157130A (en) 1992-05-29
JP2705844B2 true JP2705844B2 (en) 1998-01-28

Family

ID=17587251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2277711A Expired - Fee Related JP2705844B2 (en) 1990-10-18 1990-10-18 Magnesium alloy for galvanic anode

Country Status (1)

Country Link
JP (1) JP2705844B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271295B1 (en) 2018-07-18 2021-06-29 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610372B2 (en) * 1973-08-23 1981-03-07
JPH0733555B2 (en) * 1988-09-20 1995-04-12 株式会社ナカボーテック Magnesium alloy for galvanic anode used for cathodic protection

Also Published As

Publication number Publication date
JPH04157130A (en) 1992-05-29

Similar Documents

Publication Publication Date Title
JP2892449B2 (en) Magnesium alloy for galvanic anode
US3368958A (en) Aluminum alloy for cathodic protection system and primary battery
US2913384A (en) Aluminum anodes
JP2705844B2 (en) Magnesium alloy for galvanic anode
JP2773971B2 (en) Magnesium alloy for galvanic anode
JP3184516B2 (en) Magnesium alloy for galvanic anode
US3418230A (en) Galvanic anode and aluminum alloy therefor
JPH04157128A (en) Aluminum alloy for galvanic anode
JPH09310131A (en) Production of magnesium alloy for voltaic anode
JPH09157782A (en) Magnesium alloy for galvanic anode
JPH09310130A (en) Production of magnesium alloy for galvanic anode
JPH037735B2 (en)
JP3183604B2 (en) Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same
JP3183603B2 (en) Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same
JPH036978B2 (en)
JPH0733555B2 (en) Magnesium alloy for galvanic anode used for cathodic protection
JPH04157126A (en) Aluminum alloy for calvanic anode
JPH1161307A (en) Aluminum alloy for galvanic anode
JPH036977B2 (en)
US4626329A (en) Corrosion protection with sacrificial anodes
JPH04157127A (en) Aluminum alloy for galvanic anode
JPH1161309A (en) Aluminum alloy for galvanic anode
JP4395820B2 (en) Magnesium alloy for galvanic anode
JPH1161308A (en) Aluminum alloy for galvanic anode
JPH11310840A (en) Aluminum alloy for galvanic electricity anode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees