JPH11309723A - Method and apparatus for electromagnetic induction heating of laminate - Google Patents

Method and apparatus for electromagnetic induction heating of laminate

Info

Publication number
JPH11309723A
JPH11309723A JP12191398A JP12191398A JPH11309723A JP H11309723 A JPH11309723 A JP H11309723A JP 12191398 A JP12191398 A JP 12191398A JP 12191398 A JP12191398 A JP 12191398A JP H11309723 A JPH11309723 A JP H11309723A
Authority
JP
Japan
Prior art keywords
electromagnetic induction
laminate
heating
unvulcanized rubber
rubber layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12191398A
Other languages
Japanese (ja)
Inventor
Yasunori Tanaka
康則 田中
Shoichi Nagai
正一 長井
Katsuya Matsumura
克也 松村
Masatoshi Umemiya
正稔 梅宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP12191398A priority Critical patent/JPH11309723A/en
Publication of JPH11309723A publication Critical patent/JPH11309723A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Laminated Bodies (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for electromagnetic induction heating of a laminate which curtails the vulcanization time of the laminate remarkably to improve production efficiency and reduces the temperature difference between the outer part and inner part of the laminate during heating to make the quality uniform and to improve the quality as a whole. SOLUTION: In a method for electromagnetic induction-heating an unvulcanized rubber layer by a method in which lines of magnetic force generated by passing alternating current through electromagnetic induction coils 3 arranged around a cylindrical laminate A in which circular thin steel plates and circular unvulcanized rubber layers are laminated alternately are made to penetrate the steel plates of the laminate A perpendicularly so that eddy current is passed through the steel plates to make them emit heat, a central part opening (a) penetrating vertically is formed in advance in the central shaft part of the laminate A in the coil 3, an outer magnetic path type electromagnetic induction heating device 5 equipped with an electromagnetic induction coil 7 is inserted into the opening (a), and the unvulcanized rubber layers are heated from both inside and outside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、円形又は角形の
薄い鋼板と円形又は角形の未加硫ゴム層とを交互に積層
してなる円柱体状又は角柱体状の積層体を、電磁誘導加
熱する方法と、同加熱方法に使用する電磁誘導加熱(In
duction Heating:以下、IHともいう)装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical or prismatic laminate obtained by alternately laminating a circular or square thin steel plate and a circular or square unvulcanized rubber layer. And the electromagnetic induction heating (In
duction heating (hereinafter also referred to as IH) device.

【0002】[0002]

【従来の技術】上記した電磁誘導加熱装置は、一般的に
は、電気抵抗式ヒータに比べて加熱部分がないことから
安全性に優れているとして、すき焼き・鍋もの用や天麩
羅用などのIH加熱調理器およびIH炊飯器などに使用
されている。例えば、IH加熱調理器の場合には、通
常、非磁性体の周囲に電磁誘導コイルを巻装し、その上
面に配設した磁束拡散部材としてのプレート上に、磁性
体からなる鉄鍋やフライパンなどの容器を載置し、交流
電源から電磁誘導コイルに電圧を印加することにより、
電磁誘導コイルで磁力線を発生させ、この磁力線を磁束
拡散部材で容器の底面の幅方向全体に拡散させて、容器
の主に底部を平行に透過させることによって渦電流が流
れてジュール熱を発生させ、容器自体を加熱する間接加
熱方式からなっている。なお、電磁誘導加熱装置の先行
技術に、例えば、特開平6−208888号公報および
特開平8−264272号公報に記載のものがある。
2. Description of the Related Art The above-mentioned electromagnetic induction heating apparatus is generally considered to be superior in safety because it has no heating part as compared with an electric resistance type heater. It is used for cookers and IH rice cookers. For example, in the case of an IH cooking device, usually, an electromagnetic induction coil is wound around a non-magnetic material, and an iron pot or a frying pan made of a magnetic material is placed on a plate as a magnetic flux diffusion member provided on the upper surface thereof. By placing a container such as the above, and applying a voltage to the electromagnetic induction coil from the AC power supply,
Lines of magnetic force are generated by an electromagnetic induction coil, and the lines of magnetic force are diffused by a magnetic flux diffusing member throughout the width of the bottom surface of the container, so that the eddy current flows through the bottom of the container in parallel to generate Joule heat. And an indirect heating method of heating the container itself. In addition, as a prior art of the electromagnetic induction heating device, there are those described in, for example, JP-A-6-208888 and JP-A-8-264272.

【0003】ところで、上記した円形又は角形の薄い鋼
板と円形又は角形の未加硫ゴム層とを交互に積層し、未
加硫ゴム層を加硫してなる円柱体状又は角柱体状の積層
体を備えたものに、免震装置や防振装置や支承装置があ
る。こうした装置は、建物や構造物の基礎部に介設さ
れ、主に地震発生時の振動を吸収して建物や構造物に地
面からの振動が伝わるのを抑制したり防止したりするの
に使用される。この種の積層体の高さは50〜500m
m前後で、円柱状の外径は200mm〜1500mm程
度まで、角柱状のものは200mm〜2000mm角ま
でそれぞれ各種サイズがある。また、積層体の上下にフ
ランジを備えたものがあるが、そのフランジは積層体本
体から半径方向外方に200mm前後張り出す大きさの
ものが一般的である。
[0003] By the way, the circular or square thin steel plate and the circular or square unvulcanized rubber layer are alternately laminated, and the unvulcanized rubber layer is vulcanized to form a cylindrical or prismatic laminate. There are seismic isolation devices, anti-vibration devices, and bearing devices that have a body. These devices are installed at the foundation of buildings and structures, and are mainly used to absorb vibrations during earthquakes and to suppress or prevent vibrations from the ground from being transmitted to buildings and structures. Is done. The height of this type of laminate is 50-500m
m, the outer diameter of the column has various sizes from about 200 mm to 1500 mm, and the outer shape of the prism has various sizes from 200 mm to 2000 mm square. Further, there is a laminate having flanges on the upper and lower sides of the laminate, and the flange is generally large enough to protrude radially outward from the laminate body by about 200 mm.

【0004】鋼板と未加硫ゴム層とを交互に積層して積
層体を成形すると、金型内に収容して一定の圧力下にお
いて金型内に蒸気を流入し、20℃〜130℃前後まで
加熱することにより加硫している。つまり、この種の積
層体では、従来、常温から予熱することなく加硫すると
いうのが一般的な加硫方法である。
[0004] When a laminate is formed by alternately laminating a steel sheet and an unvulcanized rubber layer, steam is introduced into the mold under a certain pressure while being housed in the mold, and the temperature is about 20 ° C to 130 ° C. Vulcanization by heating to That is, it is a general vulcanization method that vulcanization of this type of laminated body is performed without preheating from room temperature.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た免震装置等の積層体の加硫のための従来の加熱方法や
同装置には、次のような問題点がある。すなわち、 1) 図8に外径1000mm・高さ375mmの積層体
の場合の加硫の最高温度と最低温度の温度線図を示すよ
うに、常温から一定の加圧下で加熱して加硫する方法で
は加硫作業の終了までに長時間を要し、生産効率が非常
に低い。
However, the conventional heating method and the conventional apparatus for vulcanizing a laminated body such as the above-described seismic isolation apparatus have the following problems. 1) As shown in the temperature diagram of the maximum and minimum temperatures of vulcanization in the case of a laminate having an outer diameter of 1000 mm and a height of 375 mm in FIG. 8, vulcanization is performed by heating from room temperature under a constant pressure. In the method, it takes a long time to complete the vulcanization operation, and the production efficiency is very low.

【0006】2) 図8に示すように、加硫の全工程を通
じて積層体の内部と外部の温度差(最高温度と最低温度
の差)が大きく、加硫作業の進行に著しい差異が生じ
る。つまり、蒸気を金型を通して積層体の外表面に伝熱
作用により加熱するため、外表面付近のみの温度が上昇
し、内部まで温度が上昇するには長時間を要するので、
積層体のゴム層の品質に悪影響を及ぼすおそれがある。
2) As shown in FIG. 8, the temperature difference between the inside and outside of the laminate (difference between the maximum temperature and the minimum temperature) is large throughout the vulcanization process, causing a significant difference in the progress of the vulcanization operation. In other words, the steam is heated through the mold to the outer surface of the laminate by heat transfer, so that the temperature only near the outer surface rises and it takes a long time for the temperature to rise to the inside,
The quality of the rubber layer of the laminate may be adversely affected.

【0007】この発明は上述の点に鑑みなされたもの
で、積層体の加硫終了までに必要な時間を大幅に短縮し
て生産効率を向上するとともに、加熱時の積層体の内外
の温度差を縮小して品質を均一化して全体的に向上する
ことができる積層体の電磁誘導加熱方法と電磁誘導加熱
装置を提供することを目的としている。
The present invention has been made in view of the above points, and significantly reduces the time required until the vulcanization of a laminate is completed to improve the production efficiency, and the temperature difference between the inside and outside of the laminate during heating. It is an object of the present invention to provide an electromagnetic induction heating method and an electromagnetic induction heating apparatus for a laminate, which can reduce the size of the laminate to make the quality uniform and improve the overall quality.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ために本発明の請求項1にかかる積層体の電磁誘導加熱
方法は、円形又は角形の薄い鋼板と円形又は角形の未加
硫ゴム層とを交互に積層してなる円柱体状又は角柱体状
の積層体を、該積層体の周囲に配置した電磁誘導用コイ
ルに交流を流すことにより発生する磁力線を、積層体の
鋼板を直交する方向に透過させることによって前記鋼板
に渦電流を流して発熱させ、前記未加硫ゴム層を加熱す
る電磁誘導加熱方法であって、前記電磁誘導用コイル内
の前記積層体の中心軸部に、上下に貫通する中心部開口
をあらかじめ設けておき、該開口内に外磁路型電磁誘導
コイルを挿入して内外から前記未加硫ゴム層を加熱する
ものである。
According to a first aspect of the present invention, there is provided a method for electromagnetically heating a laminated body, comprising the steps of: forming a circular or square thin steel plate and a circular or square unvulcanized rubber layer; The magnetic field lines generated by passing an alternating current through an electromagnetic induction coil disposed around the laminate, the columnar or prismatic laminate obtained by alternately laminating the laminate, and the steel sheets of the laminate are orthogonal to each other. An electromagnetic induction heating method for heating the unvulcanized rubber layer by causing an eddy current to flow through the steel sheet and causing the steel sheet to generate heat by allowing the steel sheet to pass through in a direction, wherein the central axis portion of the laminate in the electromagnetic induction coil includes: A central opening penetrating vertically is provided in advance, and the unvulcanized rubber layer is heated from inside and outside by inserting an outer magnetic path type electromagnetic induction coil into the opening.

【0009】上記の構成を有する本発明の請求項1にか
かる電磁誘導加熱方法によれば、積層体の外側の電磁誘
導用コイルと中心部開口内の外磁路型電磁誘導コイルに
同時に交流電圧を印加して電流を流すことにより、積層
体の内外で発生する磁力線がそれぞれ鋼板を直交するよ
うに透過する。そして、それらの磁力線により、各鋼板
に対し渦電流が流れて、ジュール熱が発生する。磁力線
の強さは電磁誘導用コイルからの距離が離れるのに従っ
て弱くなっていくため、鋼板の外周部付近と中心部付近
とがそれぞれ強く、その中間部にかけて漸次弱くなる
が、鋼板は熱伝導性が良好であるから、鋼板の半径方向
の中間位置で発生する熱量は外周部および中心部に比べ
て低いが、内外周から中間部にかけて熱伝導され鋼板は
ほぼ均一に熱くなるのに伴って、鋼板間の未加硫ゴム層
もほぼ均一に加熱される。
According to the electromagnetic induction heating method according to the first aspect of the present invention, the AC voltage is simultaneously applied to the electromagnetic induction coil outside the laminate and the external magnetic path type electromagnetic induction coil inside the center opening. Is applied to cause a current to flow, so that the magnetic lines of force generated inside and outside the laminate are transmitted through the steel sheet so as to be orthogonal to each other. And the eddy current flows through each steel plate by those lines of magnetic force, and Joule heat is generated. Since the strength of the magnetic field line becomes weaker as the distance from the electromagnetic induction coil increases, it is strong near the outer periphery and near the center of the steel sheet, and gradually decreases toward the middle of the steel sheet. Is good, the amount of heat generated at the intermediate position in the radial direction of the steel sheet is lower than the outer peripheral part and the central part, but with heat conduction from the inner and outer periphery to the intermediate part, the steel sheet becomes almost uniformly hot, The unvulcanized rubber layer between the steel plates is also heated almost uniformly.

【0010】したがって、本発明にかかる電磁誘導によ
る積層体の加熱方法では、従来の金型内に積層体を収容
して蒸気で加熱する方法と違って未加硫ゴム層の内部
(中心部)も磁力線が透過し、同様に加熱されるため
に、内外の温度差が小さく、品質も大幅に向上する。な
お、積層体の種類によっては、鉄製などの磁性体からな
るフランジを上下に備えたものがあるが、この場合に
は、特にフランジが同時に加熱され、フランジに蓄熱さ
れた熱が積層体に伝達されるので、積層体がより均一に
加熱される。
Therefore, in the method of heating a laminate by electromagnetic induction according to the present invention, unlike the conventional method of housing the laminate in a mold and heating it with steam, the inside (center portion) of the unvulcanized rubber layer is heated. Since the lines of magnetic force are transmitted and heated similarly, the temperature difference between the inside and outside is small, and the quality is greatly improved. Depending on the type of the laminated body, there is a type in which a flange made of a magnetic material such as iron is provided on the upper and lower sides. In this case, particularly, the flange is heated at the same time, and the heat stored in the flange is transmitted to the laminated body. Therefore, the laminate is more uniformly heated.

【0011】請求項2記載の発明は、円形又は角形の薄
い鋼板と円形又は角形の未加硫ゴム層とを交互に積層し
てなる円柱体状又は角柱体状の積層体を、該積層体の周
囲に配置した電磁誘導用コイルに交流を流すことにより
発生する磁力線を、積層体の鋼板を直交する方向に透過
させることによって前記鋼板に渦電流を流して発熱さ
せ、前記未加硫ゴム層を加熱する電磁誘導加熱方法であ
って、前記電磁誘導用コイル内の前記積層体の中心軸部
に、上下に貫通する中心部開口をあらかじめ設けてお
き、該開口内にプラグピン状の蒸気式あるいは温水式の
加熱手段を挿入して内外から前記未加硫ゴム層を加熱す
るものである。
According to a second aspect of the present invention, there is provided a cylindrical or prismatic laminate obtained by alternately laminating a circular or square thin steel plate and a circular or square unvulcanized rubber layer. The lines of magnetic force generated by passing an alternating current through the electromagnetic induction coil disposed around the perimeter of the laminated body are transmitted through the steel sheet of the laminate in a direction orthogonal to the steel sheet, thereby causing an eddy current to flow through the steel sheet to generate heat, and the unvulcanized rubber layer In the electromagnetic induction heating method of heating the electromagnetic induction coil, in the center axis portion of the laminated body in the electromagnetic induction coil, a center opening that penetrates up and down is provided in advance, and a plug pin-shaped steam type or The unvulcanized rubber layer is heated from inside and outside by inserting a hot water type heating means.

【0012】この構成によっても、請求項1の加熱方法
と同様に、積層体を外周側と内側の中心部とから同時に
加熱することができるために、未加硫ゴム層間に積層さ
れている鋼板を介して内外周部から熱伝導され、未加硫
ゴム層がほぼ均等に加熱される。
[0012] According to this configuration, similarly to the heating method of the first aspect, since the laminated body can be simultaneously heated from the outer peripheral side and the inner central portion, the steel sheet laminated between the unvulcanized rubber layers. Through the inner and outer peripheral portions, and the unvulcanized rubber layer is heated substantially uniformly.

【0013】請求項3に記載のように、前記積層体の未
加硫ゴム層を電磁誘導加熱して予熱した後、同積層体を
金型内に挿入し、一定の加圧下で加熱して加硫すること
が好ましい。
According to a third aspect of the present invention, after the unvulcanized rubber layer of the laminate is preheated by electromagnetic induction heating, the laminate is inserted into a mold and heated under a constant pressure. Vulcanization is preferred.

【0014】この構成により、図8に一例を示すよう
に、積層体の未加硫ゴムを加硫するのに際し、積層体を
100℃以上になるまで予熱してから、同積層体を金型
内に挿入して蒸気による従来の加硫作業を行うことで、
従来の常温から加硫する方法に比べて加硫に要する時間
が予熱に要した時間を含めてほぼ1/5と大幅に短縮さ
れる。また、予熱を含めて加硫に要する時間が短縮され
るから、ランニングコストが低減され、経済的である。
According to this configuration, as shown in FIG. 8, when the unvulcanized rubber of the laminate is vulcanized, the laminate is preheated to 100 ° C. or higher, and then the laminate is molded. By performing conventional vulcanization work with steam by inserting
The time required for vulcanization, including the time required for preheating, is greatly reduced to about 1/5 as compared with the conventional method of vulcanizing from normal temperature. Further, since the time required for vulcanization including preheating is reduced, the running cost is reduced, and it is economical.

【0015】請求項4に記載のように、前記積層体の未
加硫ゴム層において、温度センサーを外周面付近の上下
両端および半径方向の中間位置で上下方向の中間位置に
それぞれ挿入し、電磁誘導加熱時に少なくとも前記3点
の温度を測定しながらそれらのうちの最高温度が設定温
度を超えないように電磁誘導加熱に必要な電力量を制御
(例えば、サイリスタ制御)したのち、加硫前に前記温
度センサーを前記未加硫ゴム層から抜き取ることが好ま
しい。
According to a fourth aspect of the present invention, in the unvulcanized rubber layer of the laminate, a temperature sensor is inserted at each of the upper and lower ends near the outer peripheral surface and at the intermediate position in the radial direction at the upper and lower ends, respectively. After measuring the temperatures of at least the three points at the time of induction heating and controlling the amount of electric power necessary for electromagnetic induction heating so that the highest temperature among them does not exceed the set temperature (for example, thyristor control), before vulcanization Preferably, the temperature sensor is withdrawn from the unvulcanized rubber layer.

【0016】積層体のサイズが異なり、サイズごとに鋼
板の厚みや枚数、未加硫ゴム層の厚みや枚数などが相違
するため、従来は各サイズごとに適正な温度に加熱する
ことが困難であったが、請求項4に記載の発明によれ
ば、加熱開始直後は外周部の上下両端が最高温度にな
り、半径方向の中間位置が最低温度になるので、最高温
度点の温度があらかじめ設定した基準温度(例えば、1
00℃)になるように電磁誘導コイルに流す電流を制御
することによって、電磁誘導加熱による最高温度箇所が
設定した基準温度以下に抑えられる。この状態で電磁誘
導加熱を継続する間に鋼板を介した熱伝導作用等で最低
温度箇所の温度が上昇し、基準温度付近に達する。最低
温度箇所が基準温度に達したときには、未加硫ゴム層の
全ての箇所が基準温度に達したことになるので、未加硫
ゴム層が均等に加熱されたことになる。この方法によ
り、サイズや種類の異なる積層体について未加硫ゴム層
を所定(基準)の温度になるように均等に加熱すること
ができる。なお、未加硫ゴム層が完全に加硫されてしま
うと、温度センサー(熱電対など)を抜き取りにくくな
って、ゴム層に傷を付けることにもなるので、加硫前に
温度センサーを抜き取るのが望ましい。
Since the size of the laminate is different and the thickness and the number of steel plates and the thickness and the number of unvulcanized rubber layers are different for each size, it is conventionally difficult to heat to an appropriate temperature for each size. However, according to the invention as set forth in claim 4, immediately after the start of heating, the upper and lower ends of the outer peripheral portion have the highest temperature, and the middle position in the radial direction has the lowest temperature. Reference temperature (for example, 1
By controlling the current flowing through the electromagnetic induction coil so that the temperature becomes equal to (00 ° C.), the highest temperature point due to the electromagnetic induction heating can be suppressed below the set reference temperature. In this state, while the electromagnetic induction heating is continued, the temperature at the lowest temperature point rises due to a heat conduction effect via the steel plate or the like and reaches near the reference temperature. When the lowest temperature point reaches the reference temperature, all the points of the unvulcanized rubber layer have reached the reference temperature, so that the unvulcanized rubber layer is heated evenly. According to this method, the unvulcanized rubber layers of the laminates having different sizes and types can be uniformly heated to a predetermined (reference) temperature. In addition, if the unvulcanized rubber layer is completely vulcanized, it will be difficult to remove the temperature sensor (such as a thermocouple), which may damage the rubber layer. It is desirable.

【0017】上記の方法を実施するための本発明の請求
項5に係る電磁誘導加熱装置は、円形又は角形の薄い鋼
板と円形又は角形の未加硫ゴム層とを交互に積層してな
る円柱体状又は角柱体状の積層体を加熱するための電磁
誘導加熱装置であって、前記積層体を完全に収容可能な
非磁性体からなる筒状ケースの外周面のほぼ全体にわた
って、電磁誘導用コイルを巻装して交流電源に接続する
とともに、前記積層体の中心軸部に上下に貫通する中心
部開口をあらかじめ設け、該開口内に外磁路型電磁誘導
コイルを挿入して内外から前記未加硫ゴム層を加熱でき
るようにしている。
According to a fifth aspect of the present invention, there is provided an electromagnetic induction heating apparatus for carrying out the above method, wherein a circular or square thin steel plate and a circular or square unvulcanized rubber layer are alternately laminated. An electromagnetic induction heating device for heating a body or a prismatic laminate, the electromagnetic induction heating device being provided over substantially the entire outer peripheral surface of a cylindrical case made of a non-magnetic material capable of completely containing the laminate. A coil is wound and connected to an AC power supply, and a center opening that penetrates vertically in the center axis of the laminate is provided in advance, and an external magnetic path type electromagnetic induction coil is inserted into the opening and the inside and outside are inserted. The unvulcanized rubber layer can be heated.

【0018】上記構成を有する本発明の電磁誘導加熱装
置によれば、上記の加熱方法を確実に実施でき、しかも
構造が簡単で、従来の蒸気による加熱のランニングコス
トに比べてかなり低減される。また電磁誘導用コイルか
ら発生する磁束がほぼ平行にかつ鋼板に直交するように
主に外周部と内側中心部とをそれぞれ透過するから、積
層体の鋼板の加熱が内外から同時に行われて加熱状態が
均一化され、未加硫ゴム層の加熱がより均等に行われ
る。
According to the electromagnetic induction heating apparatus of the present invention having the above-described structure, the above-described heating method can be reliably performed, and the structure is simple, and the running cost of heating by steam is considerably reduced. In addition, since the magnetic flux generated from the electromagnetic induction coil passes through the outer peripheral portion and the inner central portion so as to be substantially parallel and perpendicular to the steel plate, the steel plates of the laminated body are simultaneously heated from the inside and outside, and the heating state is maintained. And the heating of the unvulcanized rubber layer is performed more evenly.

【0019】本発明の請求項6に係る電磁誘導加熱装置
は、円形又は角形の薄い鋼板と円形又は角形の未加硫ゴ
ム層とを交互に積層してなる円柱体状又は角柱体状の積
層体を加熱するための電磁誘導加熱装置であって、前記
積層体を完全に収容可能な非磁性体からなる筒状ケース
の外周面のほぼ全体にわたって、電磁誘導用コイルを巻
装して交流電源に接続するとともに、前記積層体の中心
軸部に上下に貫通する中心部開口をあらかじめ設け、該
開口内にプラグピン状の蒸気式あるいは温水式の加熱手
段を挿入して内外から前記未加硫ゴム層を加熱できるよ
うにしている。
According to a sixth aspect of the present invention, there is provided an electromagnetic induction heating apparatus comprising: a cylindrical or prismatic lamination in which a circular or square thin steel plate and a circular or square unvulcanized rubber layer are alternately laminated. An electromagnetic induction heating device for heating a body, wherein an AC power supply is provided by winding an electromagnetic induction coil around substantially the entire outer peripheral surface of a cylindrical case made of a nonmagnetic material capable of completely housing the laminate. And a center opening which penetrates vertically in the center axis of the laminated body, and a plug-pin-shaped steam-type or hot-water-type heating means is inserted into the opening, and the unvulcanized rubber is inserted from inside and outside. The layers can be heated.

【0020】請求項6の電磁誘導加熱装置は、積層体の
中心部側の加熱に蒸気あるいは温水を使用し、外周側に
だけ交流電源を使用するという差異があるが、積層体を
内外から同時に加熱し、未加硫ゴム層をほぼ均等に加熱
できるという点で請求項5の発明による作用と共通して
いる。
In the electromagnetic induction heating apparatus according to the sixth aspect, there is a difference that steam or hot water is used for heating the central portion of the laminate and an AC power source is used only on the outer peripheral side. The operation according to the fifth aspect of the present invention is common in that the unvulcanized rubber layer can be heated substantially uniformly.

【0021】請求項7に記載のように、非磁性体からな
る前記筒状ケースの外周面のほぼ全体にわたって電磁誘
導用コイルを巻装するとともに、前記筒状ケースと同一
高さで一定幅の帯状で厚みの非常に薄いケイ素鋼板を多
数枚積層して角柱体状に形成した複数の電磁波(磁束)
収集体を、電磁誘導用コイルの外周に円周方向に間隔を
あけて配設することが望ましい。
According to a seventh aspect of the present invention, an electromagnetic induction coil is wound around substantially the entire outer peripheral surface of the cylindrical case made of a non-magnetic material, and has a predetermined width at the same height as the cylindrical case. Multiple electromagnetic waves (magnetic flux) formed in a prismatic shape by laminating a number of strip-shaped and extremely thin silicon steel sheets
It is desirable to dispose the collecting body on the outer circumference of the electromagnetic induction coil at intervals in the circumferential direction.

【0022】請求項7記載の発明によれば、薄板状のケ
イ素鋼板の磁束収集体が電磁誘導用コイルにより発生し
ケースの外方に向く磁力線を収集する作用を有するが、
薄板状ケイ素鋼板を積層して形成した角柱状磁束収集体
は発熱がほとんど起こらないために、磁束(磁力線)の
収集にだけ有効に作用する。またケイ素鋼板の角柱状磁
束収集体を設けることで、磁力線が外方へ逃げることを
防止するためにコイルの外側に通常は設けられる非磁性
体のケースを省くことができるから、放熱性が向上し、
磁力線発生時のコイルの発熱も大幅に削減される。
According to the seventh aspect of the present invention, the magnetic flux collector made of a thin silicon steel plate has the function of collecting magnetic lines of force generated by the electromagnetic induction coil and directed outward of the case.
Since the prismatic magnetic flux collector formed by laminating thin silicon steel plates hardly generates heat, it works effectively only for collecting magnetic flux (lines of magnetic force). In addition, by providing a prismatic magnetic flux collector made of silicon steel plate, it is possible to omit the case of a non-magnetic material that is usually provided outside the coil to prevent the lines of magnetic force from escaping outward, improving heat dissipation And
Heat generation of the coil when the lines of magnetic force are generated is greatly reduced.

【0023】[0023]

【発明の実施の形態】以下、この発明にかかる鋼板と未
加硫ゴム層からなる積層体の加熱方法と電磁誘導加熱装
置の実施の形態を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method for heating a laminate comprising a steel sheet and an unvulcanized rubber layer and an electromagnetic induction heating apparatus according to the present invention will be described below with reference to the drawings.

【0024】図1は電磁誘導加熱装置の一例を示す正面
図である。図2は積層体の成形工程を示す側面図であ
る。
FIG. 1 is a front view showing an example of the electromagnetic induction heating device. FIG. 2 is a side view showing a forming process of the laminate.

【0025】図1に示すように、免震装置用の積層体を
予熱するための電磁誘導加熱装置1が、前後左右および
上面が開放された枠状架台11上に一体に設置されてい
る。加熱装置1は免震装置用の積層体Aに対応する上下
両端を開口した円筒体からなり、非磁性体のステンレス
製の円筒状ケース2の外周面に、絶縁被覆したアルミニ
ウムの電磁誘導用コイル3が上端から下端にわたり巻装
されている。また、コイル3の外周側に非磁性体のステ
ンレス製の円筒状ケース4が被装されている。内外のケ
ース2・4は、各ケース2・4の円周方向に渦電流が生
じて発熱するのを防ぐため、円周方向の一部が長さ方向
に切断され、いわゆる切れ目2a(図5(b)参照)が設
けられている。
As shown in FIG. 1, an electromagnetic induction heating device 1 for preheating a laminated body for a seismic isolation device is integrally mounted on a frame-shaped gantry 11 whose front, rear, left, right, and top surfaces are open. The heating device 1 is made of a cylindrical body having upper and lower ends opened corresponding to the laminated body A for the seismic isolation device. The outer surface of the non-magnetic stainless steel cylindrical case 2 is insulated and coated with an aluminum electromagnetic induction coil of aluminum. 3 is wound from the upper end to the lower end. Further, a cylindrical case 4 made of a nonmagnetic material made of stainless steel is mounted on the outer peripheral side of the coil 3. The inner and outer cases 2 and 4 are cut in the length direction in a part of the circumferential direction to prevent generation of heat due to the generation of eddy current in the circumferential direction of each case 2 and 4, so-called cut 2a (FIG. 5). (see (b)).

【0026】積層体Aは、本例では鋼材(SS)からな
る円柱状の中芯31の下端が下記のフランジFの中心部
に螺着されていたり、あるいは中心部が空間になってい
たりする。図2に示すように、本例ではフランジF上
に、中心部開口cを備えた最下層の薄い円形鋼板Cが載
置され、円形鋼板C上に、中心部開口bを備えた薄い円
形の未加硫ゴム層Bが載置されている。この未加硫ゴム
層Bを上面に設けた円形鋼板Cが順に積み重ねられ、鋼
板Cと未加硫ゴム層Bを交互に積層した積層体Aが成形
される。また積層体Aの上下両端には、本例では、磁性
体である鉄製のフランジFが取り付けられており、この
フランジFは積層体Aの外周面より半径方向外方に張り
出す大きさにしてある。なお、フランジFは、通常、積
層体Aの上下両端に取り付けられたまま最終製品とな
る。また積層体Aの種類によっては、フランジFを備え
ていないものもある。
In the laminate A, in this embodiment, the lower end of a cylindrical core 31 made of steel (SS) is screwed to the center of a flange F described below, or the center is a space. . As shown in FIG. 2, in the present example, a thin circular steel plate C having a lowermost layer having a central opening c is placed on a flange F, and a thin circular steel plate having a central opening b is placed on the circular steel plate C. The unvulcanized rubber layer B is placed. The circular steel sheets C having the unvulcanized rubber layers B provided on the upper surface are stacked in order, and a laminate A in which the steel sheets C and the unvulcanized rubber layers B are alternately laminated is formed. Further, in this example, iron flanges F, which are magnetic materials, are attached to both upper and lower ends of the laminate A. The flanges F have a size such that they protrude radially outward from the outer peripheral surface of the laminate A. is there. In addition, the flange F is usually a final product while being attached to the upper and lower ends of the laminate A. Some types of the laminate A do not include the flange F.

【0027】積層体Aは台車21上で成形されたり搬送
されたりするが、台車21上には油圧シリンダ(図示せ
ず)の伸縮動により昇降するパンタグラフ式昇降機構2
2が搭載されており、昇降機構22の上端のリング状載
置台23に積層体Aの下部フランジFが載置され支持さ
れる。そして、台車21を架台11内の中心部に搬入し
た状態で、昇降機構22により載置台23を上昇させる
ことにより、積層体Aは加熱装置1内に挿入される。
The laminate A is formed or conveyed on a cart 21. On the cart 21, a pantograph type lifting mechanism 2 which moves up and down by the expansion and contraction of a hydraulic cylinder (not shown).
2 is mounted, and the lower flange F of the stacked body A is mounted and supported on the ring-shaped mounting table 23 at the upper end of the elevating mechanism 22. The stack A is inserted into the heating device 1 by raising the mounting table 23 by the elevating mechanism 22 in a state where the carriage 21 is carried into the center of the gantry 11.

【0028】本発明の第1実施例に係る電磁誘導加熱装
置11 では、図4に示すように、フランジF付き積層体
Aの中心部を上下方向に貫通する中心部開口a内にも、
小型の電磁誘導加熱装置5を挿入している。この加熱装
置5は外磁路型の電磁誘導加熱装置で、非磁性体のステ
ンレス製の小口径円管状ケース6の外周面に、絶縁被覆
したアルミニウムの電磁誘導用コイル7が上端から下端
にわたり巻装され、コイル3の外周側に非磁性体のステ
ンレス製の円管状ケース8が被装されている。電磁誘導
加熱装置5は電磁誘導加熱装置11 と構造が同一で、本
例では高さも等しい。加熱装置11 の電磁誘導コイル3
の部分の高さは、本例では積層体Aの高さのほぼ3倍に
設定されているが、1.5倍以上あればよい。
[0028] In the electromagnetic induction heating apparatus 1 1 according to a first embodiment of the present invention, as shown in FIG. 4, also the center in the opening a passing through the center portion of the flange F with laminate A in the vertical direction,
A small electromagnetic induction heating device 5 is inserted. This heating device 5 is an electromagnetic induction heating device of an external magnetic path type. An electromagnetic induction coil 7 made of insulating aluminum is wound around the outer peripheral surface of a nonmagnetic stainless steel small-diameter circular tubular case 6 from the upper end to the lower end. The outer peripheral side of the coil 3 is covered with a nonmagnetic stainless steel tubular case 8. The electromagnetic induction heating device 5 has the same structure as the electromagnetic induction heating device 11, and has the same height in this example. Electromagnetic induction coil 3 of heating device 1 1
The height of the portion is set to be approximately three times the height of the laminate A in this example, but may be 1.5 times or more.

【0029】この状態で、交流電源により電圧(本例で
は50〜60Hz・200V)を加熱装置1の電磁誘導
コイル3と加熱装置5の電磁誘導コイル7とに同時に印
加することにより、各加熱装置1・3から積層体Aの鋼
板Cを上下方向に平行に透過する交流磁界(磁力線)が
発生する。なお、図3は加熱装置1にだけ交流電流を印
加した場合の磁束の発生状況を示している。また、電磁
誘導用コイル3の部分の高さを積層体の1.5倍以上
(本例では3倍)にしたから、積層体を透過する磁束の
直線性が図られ、均熱化が得られるので、磁束による発
熱作用が最大限に発揮される。そして、ケース2内に
は、積層体Aの鋼板Cが水平方向に何重にも積層されて
位置し、それらの鋼板Cを上下方向に直交するように磁
力線が透過するので、この磁力線により、各鋼板Cに対
し渦電流が流れて、ジュール熱が発生する。磁力線の強
さは内外の加熱装置1・5から離れるほど、いいかえれ
ば鋼板Cの外周部と中心部が強く、内外周から半径方向
の中間位置にかけて漸次弱くなる。また、鋼板Cは導電
体であり熱伝導性に富むから、鋼板Cの半径方向の中間
位置で発生する熱量は内外周部に比べて低いが、鋼板C
はほぼ均一に熱くなるため、鋼板C間の未加硫ゴム層B
もほぼ均一に加熱される。
In this state, by applying a voltage (50 to 60 Hz, 200 V in this example) to the electromagnetic induction coil 3 of the heating device 1 and the electromagnetic induction coil 7 of the heating device 5 at the same time by the AC power supply, An alternating magnetic field (line of magnetic force) that passes through the steel sheet C of the laminate A in the vertical direction is generated from 1.3. FIG. 3 shows the state of generation of magnetic flux when an alternating current is applied only to the heating device 1. In addition, since the height of the portion of the electromagnetic induction coil 3 is set to 1.5 times or more (three times in this embodiment) the height of the laminated body, linearity of the magnetic flux passing through the laminated body is achieved, and a uniform temperature is obtained. As a result, the heat generated by the magnetic flux is maximized. In the case 2, the steel sheets C of the laminate A are positioned in multiple layers in the horizontal direction, and the lines of magnetic force penetrate the steel sheets C so as to be orthogonal to the vertical direction. An eddy current flows through each steel plate C to generate Joule heat. As the strength of the magnetic field lines is increased away from the inner and outer heating devices 1 and 5, in other words, the outer peripheral portion and the central portion of the steel sheet C are stronger, and gradually become weaker from the inner and outer circumferences to the intermediate position in the radial direction. Further, since the steel sheet C is a conductor and has a high thermal conductivity, the amount of heat generated at a radially intermediate position of the steel sheet C is lower than that of the inner and outer peripheral portions.
Heats almost uniformly, so the unvulcanized rubber layer B between the steel sheets C
Is also heated almost uniformly.

【0030】さらに、内周側の加熱装置5の電磁誘導用
コイル7の部分の高さを外周側の加熱装置1と同様に高
くしているので、発生する磁力線が鋼板Cに対して直交
するとともに平行になって透過する。このため、所定の
交流電圧を印加した場合の電磁誘導により鋼板Cが発熱
する効率(加熱効率)が高い。さらにまた、積層体Aの
上下両面に鉄製のフランジFを取り付けているため、電
磁誘導の磁束がフランジFに集約され、積層体Aを直交
する方向に透過するとともに、フランジFに対しても渦
電流が流れてジュール熱が発生し、フランジFに蓄熱さ
れ、その熱が積層体Aに徐々に伝熱されていく。
Further, since the height of the portion of the electromagnetic induction coil 7 of the inner peripheral side heating device 5 is set to be the same as that of the outer peripheral side heating device 1, the generated magnetic force lines are orthogonal to the steel sheet C. The light is transmitted in parallel with. Therefore, the efficiency (heating efficiency) at which the steel sheet C generates heat by electromagnetic induction when a predetermined AC voltage is applied is high. Furthermore, since the iron flanges F are attached to the upper and lower surfaces of the laminate A, the magnetic flux of electromagnetic induction is concentrated on the flange F, penetrates the laminate A in a direction perpendicular to the laminate A, and vortices the flange F as well. An electric current flows to generate Joule heat, which is stored in the flange F, and the heat is gradually transferred to the laminate A.

【0031】図5(a)(b)は本発明の電磁誘導加熱装置
の別の実施例を示すものである。この第2実施例の加熱
装置12 が上記実施例と相違するところは、次の点であ
る。すなわち、内周側加熱装置5の高さを積層体Aと同
一の高さになるように低くしたこと、加熱装置1の外側
のケース4を省いたこと、そして代わりにケース2と同
一の高さで所定幅の薄板状の多数の鋼板を積層して角柱
状体に形成した複数本(例えば、8本)の磁束(電磁
波)収集体10を、ケース2の外周面に巻装した電磁誘
導用コイル3の外周面上に角柱状磁束収集体10を円周
方向に等間隔に配設したことである。その他の構成につ
いては、上記第1実施例の加熱装置11 と共通するの
で、共通の部材には同一の符号を用いて示し、説明を省
略する。
FIGS. 5A and 5B show another embodiment of the electromagnetic induction heating apparatus of the present invention. The difference between the heating device 12 of the second embodiment and the above embodiment is as follows. That is, the height of the inner peripheral side heating device 5 was reduced so as to be the same height as the laminate A, the case 4 outside the heating device 1 was omitted, and instead, the same height as the case 2 was used. A plurality of (for example, eight) magnetic flux (electromagnetic wave) collectors 10 formed by laminating a large number of thin steel plates having a predetermined width to form a prismatic body are wound around the outer peripheral surface of the case 2. That is, prismatic magnetic flux collectors 10 are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the coil 3 for use. Since other structures common to the heating device 1 1 of the first embodiment, the same members denoted by the same reference numerals, and description thereof is omitted.

【0032】本例の加熱装置12 によると、電磁誘導用
コイル3および電磁誘導用コイル7に対し交流電源によ
り電圧を印加することにより交流磁界(磁力線)が発生
し、この磁力線のうち外方へ拡散する磁力線は複数の磁
束収集体10に収集されるので、外側のケース4がなく
ても外方へ拡散することが防止される。このため磁力線
が積層体Aの加熱に高効率で機能し、また電磁誘導用コ
イル3の外側にケース4がないから、コイル3自体が発
熱しても放熱性が良好で、熱くなりにくい。そして、積
層体Aの外周部だけでなく中心部付近も加熱装置5によ
り発生する磁力線で鋼板Cが発熱して加熱される。また
鋼板Cは導電体であり熱伝導性に富むから、鋼板Cの半
径方向の中間位置で発生する熱量は内外周部に比べて低
いとしても、時間が経過するのに伴って鋼板Cの中間位
置も内外周縁部とほぼ同様に熱くなっていくため、鋼板
C間の未加硫ゴム層Bも外周縁部と中心部だけでなく中
間位置にかけてもほぼ均一に加熱される。さらに、積層
体Aの上下両面に鉄製のフランジFを取り付けているた
め、上記第1実施例と同様に電磁誘導の磁束がフランジ
Fに集約され、積層体Aを直交する方向に透過するとと
もに、フランジFに対しても渦電流が流れてジュール熱
が発生し、フランジFに蓄熱され、その熱が積層体Aに
徐々に伝熱されていく。
[0032] According to the heating device 1 2 of the present embodiment, alternating magnetic field (magnetic field lines) is generated by applying a voltage by the AC power supply to the electromagnetic induction coil 3 and the electromagnetic induction coil 7, out outward of the magnetic force lines Since the lines of magnetic force that diffuse to the outside are collected by the plurality of magnetic flux collectors 10, they are prevented from diffusing outward without the outer case 4. Therefore, the lines of magnetic force function with high efficiency for heating the laminate A, and since there is no case 4 outside the electromagnetic induction coil 3, even if the coil 3 itself generates heat, the heat radiation is good and the coil 3 is not easily heated. The steel sheet C is heated by the magnetic lines of force generated by the heating device 5 and heated not only at the outer peripheral portion but also at the central portion of the laminate A. Further, since the steel sheet C is a conductor and has a high thermal conductivity, the amount of heat generated at a radially intermediate position of the steel sheet C is lower than that of the inner and outer peripheral parts, but the heat amount generated in the middle of the steel sheet C as time passes. Since the position becomes hot almost similarly to the inner and outer peripheral edges, the unvulcanized rubber layer B between the steel plates C is also heated substantially uniformly not only at the outer peripheral edge and the center but also at the intermediate position. Further, since the flanges F made of iron are attached to both the upper and lower surfaces of the laminate A, the magnetic flux of electromagnetic induction is concentrated on the flanges F as in the first embodiment, and penetrates the laminate A in a direction orthogonal thereto. An eddy current also flows to the flange F, generating Joule heat, which is stored in the flange F, and the heat is gradually transferred to the laminate A.

【0033】図6は本発明の電磁誘導加熱装置の第3実
施例を示すもので、この第3実施例に係る加熱装置13
が上記第1・第2実施例と相違するところは次の点であ
る。すなわち、円柱状の蒸気加熱式プラグピン12を積
層体Aの中心部開口a内に挿入したことである。プラグ
ピン12の底部に、蒸気の導入口12aと排出口12b
とを設け、蒸気源からの蒸気をホース(図示せず)を介
して導入口12aよりプラグピン12内に導入し、プラ
グピン12内を流通させて排出口12bから排出させる
ことにより、積層体Aの内側中心部を加熱する。その他
の構成については、上記各実施例の加熱装置11・12
共通するので、共通の部材には同一の符号を用いて示
し、説明を省略する。
FIG. 6 shows a third embodiment of an electromagnetic induction heating apparatus of the present invention, the heating device 1 3 according to the third embodiment
Are different from the first and second embodiments in the following points. That is, the column-shaped steam-heated plug pin 12 is inserted into the center opening a of the laminate A. A steam inlet 12a and a steam outlet 12b are provided at the bottom of the plug pin 12.
And the steam from the steam source is introduced into the plug pin 12 from the inlet 12a via a hose (not shown), and is circulated through the plug pin 12 and discharged from the outlet 12b, thereby forming the laminate A. Heat the inner center. Since other structures common to the heating device 1 1, 1 2 of the above embodiments, the same members denoted by the same reference numerals, and description thereof is omitted.

【0034】本例の加熱装置13 によると、電磁誘導用
コイル3に対し交流電源により電圧を印加することによ
り交流磁界(磁力線)が発生し、この磁力線が積層体A
の加熱、特に積層体Aの外周部寄りの加熱に寄与し、ま
たプラグピン12に導入する蒸気により積層体Aの中心
部付近が加熱される。鋼板Cは導電体であり熱伝導性に
富むとともに、鋼板Cの外周部と中心部で同時に加熱さ
れるから、半径方向の中間部は内外周部に比べて温度が
低いとしても、鋼板Cを介して熱伝導されるから時間が
経過するのに伴って鋼板Cの中間部も中心部や外周縁部
とほぼ同じ位の温度まで上昇するため、鋼板C間の未加
硫ゴム層Bも外周縁部や中心部だけでなく半径方向の中
間部にかけてもほぼ均一に加熱される。さらに、積層体
Aの上下両面に鉄製のフランジFを取り付けているた
め、上記第1実施例と同様に電磁誘導の磁束がフランジ
Fに集約され、積層体Aを直交する方向に透過するとと
もに、フランジFに対しても渦電流が流れてジュール熱
が発生しフランジFに蓄熱され、その熱が積層体Aに徐
々に伝熱されていく。なお、蒸気による加熱では積層体
Aの中心部の温度上昇が急激過ぎる場合には、蒸気に代
えて温水を使用することができる。
[0034] According to the heating device 1 3 of the present embodiment, alternating magnetic field (magnetic field lines) is generated by applying a voltage by the AC power supply to the electromagnetic induction coil 3, the magnetic field lines laminate A
, In particular, near the outer periphery of the laminate A, and the steam introduced into the plug pins 12 heats the vicinity of the center of the laminate A. Since the steel sheet C is a conductor and has high thermal conductivity, and is heated simultaneously at the outer peripheral part and the central part of the steel sheet C, even if the temperature in the middle part in the radial direction is lower than that of the inner and outer peripheral parts, the steel sheet C is used. Since the temperature of the intermediate portion of the steel sheet C rises to approximately the same temperature as that of the central portion and the outer peripheral portion as time elapses since the heat is transmitted through the uncured rubber layer B between the steel plates C, The heating is substantially uniform not only at the peripheral portion and the central portion but also at the radially intermediate portion. Further, since the flanges F made of iron are attached to both the upper and lower surfaces of the laminate A, the magnetic flux of electromagnetic induction is concentrated on the flanges F as in the first embodiment, and penetrates the laminate A in a direction orthogonal thereto. An eddy current also flows through the flange F to generate Joule heat, which is stored in the flange F, and the heat is gradually transferred to the laminate A. In the case where the temperature rise at the center of the laminate A is too rapid by heating with steam, hot water can be used instead of steam.

【0035】図7(a)は本発明の電磁誘導加熱装置の第
4実施例を示すもので、この第4実施例に係る電磁誘導
加熱装置については上記第3実施例の加熱装置13 ある
いは上記第2実施例の加熱装置12 と特に変わりがな
い。相違するところは、積層体Aの外周部を加熱する電
磁誘導加熱装置1の電圧制御方法に工夫を施した点であ
る。すなわち、未加硫ゴム層Bと鋼板Cとを交互に積層
して積層体Aを積層する際に、温度センサー、本例では
3つの熱電対15・16・17のうち、熱電対15を下
端に位置する未加硫ゴム層Bの外周部、熱電対16を上
下方向の中間に位置する未加硫ゴム層Bの半径方向の中
間位置に、および熱電対17を上端に位置する未加硫ゴ
ム層Bの外周部にそれぞれ挿入してセットしておく。そ
の他の構成については、上記各実施例の加熱装置11
3 と共通するので、共通の部材には同一の符号を用い
て示し、説明を省略する。
[0035] FIG. 7 (a) shows a fourth embodiment of an electromagnetic induction heating apparatus of the present invention, or heating device 1 3 of the third embodiment is the electromagnetic induction heating device according to the fourth embodiment the particular change is not the heating device 1 2 of the second embodiment. The difference is that the voltage control method of the electromagnetic induction heating device 1 for heating the outer peripheral portion of the laminate A is devised. That is, when the laminate A is laminated by alternately laminating the unvulcanized rubber layer B and the steel sheet C, the thermocouple 15 of the three thermocouples 15, 16, and 17 in this example is placed at the lower end. , The thermocouple 16 is located at a radially intermediate position of the unvulcanized rubber layer B located in the middle in the vertical direction, and the thermocouple 17 is located at the upper end of the unvulcanized rubber layer B. It is inserted and set on the outer peripheral portion of the rubber layer B, respectively. For other configurations, the heating devices 11 to
Since common with 1 3, the same members denoted by the same reference numerals, and description thereof is omitted.

【0036】そして、加熱装置1の電磁誘導加熱用コイ
ル3に交流電圧を印加した時の、積層体Aの加熱調整
は、図7(b)に示すように加熱装置1により最も加熱さ
れやすく、温度がすぐに上昇する外周部に配置した熱電
対15・17により測定される温度(実線で表示)が、
あらかじめ設定した温度t1 (例えば、100℃)以上
にならないように、例えば100℃に達すると交流電圧
の印加を中止し、所定の温度t2 (例えば、98℃)ま
で下がると再び交流電圧を印加するという電源のON・
OFFを繰り返す断続的な制御、あるいは交流電圧の最
高電圧を下げることによって加熱装置1による単位時間
当たりの加熱容量を全体的に低下させることによって、
最高温度位置の温度があらかじめ設定した温度(例え
ば、100℃)を超えないようにするサイリスタ制御な
どの方法によって行うことができる。このように積層体
A内の最高温度点を所定温度の範囲内におさまるように
制御する間に、熱電対16により測定される最低温度点
の温度(点線で表示)が鋼板Cを介した熱伝導により図
7(b)のように上昇し、最高温度近くまで達する。この
状態で、積層体A内の温度が全体的に均一に加熱された
ことになる。
The heating adjustment of the laminate A when an AC voltage is applied to the electromagnetic induction heating coil 3 of the heating device 1 is most easily heated by the heating device 1 as shown in FIG. The temperature (indicated by a solid line) measured by thermocouples 15 and 17 arranged on the outer peripheral portion where the temperature rises immediately is
To prevent the temperature from reaching a preset temperature t 1 (for example, 100 ° C.) or more, when the temperature reaches, for example, 100 ° C., the application of the AC voltage is stopped, and when the temperature falls to a predetermined temperature t 2 (for example, 98 ° C.), the AC voltage is reduced again. Turn on the power to apply
By intermittently controlling turning off or lowering the maximum voltage of the AC voltage to lower the heating capacity of the heating device 1 per unit time as a whole,
It can be performed by a method such as thyristor control that prevents the temperature at the highest temperature position from exceeding a preset temperature (for example, 100 ° C.). As described above, while controlling the highest temperature point in the laminate A to be within the predetermined temperature range, the temperature of the lowest temperature point measured by the thermocouple 16 (indicated by a dotted line) is changed by the heat passing through the steel sheet C. By conduction, it rises as shown in FIG. 7 (b) and reaches near the maximum temperature. In this state, the temperature inside the laminate A is uniformly heated as a whole.

【0037】本例の加熱装置14 の場合には、積層体A
の内側中心部を加熱する装置にも電磁誘導加熱装置5を
使用し、つまり第2実施例に係る加熱装置13 において
熱電対15・16・17による測定温度に基づいて加熱
装置1と加熱装置5の両方の交流電圧を同時に制御する
のが最も効果的である。この場合には、上下方向の中間
に位置する未加硫ゴム層Bの半径方向の中間位置ととも
に内周部にも熱電対(図示せず)を挿入し、加熱装置5
による加熱状態も測定できるようにしておくのが望まし
い。しかし、積層体Aの内側中心部をプラグピン12を
介して蒸気や温水で加熱しながら、加熱装置1の交流電
圧だけを制御しても同様に有効であることは言うまでも
ない。
[0037] When the heating device 1 4 of the present embodiment, the laminated body A
Also using an electromagnetic induction heating apparatus 5 to a device for heating the inner center portion, i.e. the heating device 1 and the heating device based on the temperature measured by the thermocouple 15, 16, 17 in the heating apparatus 1 3 according to the second embodiment It is most effective to control both AC voltages simultaneously. In this case, a thermocouple (not shown) is inserted into the inner peripheral portion together with the radially intermediate position of the unvulcanized rubber layer B located in the middle in the vertical direction, and the heating device 5
It is desirable to be able to measure the state of heating by the method. However, it is needless to say that controlling only the AC voltage of the heating device 1 while heating the inner central portion of the stacked body A with steam or hot water via the plug pins 12 is similarly effective.

【0038】また、上記のようにして構成される図1の
電磁誘導加熱装置1により、外径1000mm、高さ3
75mmの積層体Aの上下両端に外径1400mmのフ
ランジFを取り付けた状態で、200V(60Hz)の
電圧を電磁誘導用コイル3に印加して電流を流したとこ
ろ、図8に示すとおり、積層体A内の未加硫ゴム層Bの
温度が従来の加硫時間の1/40程度で100℃以上ま
で上昇し、しかも外周部と中心部の温度差はほとんどな
くなった。そこで、予熱工程を終了し、従来と基本的に
同様の方法で蒸気による加硫を行ったところ、従来の加
硫時間の約1/5前後の時間で未加硫ゴム層Bは加硫さ
れた。結果的に、予熱・加硫工程に費やした時間は、従
来の蒸気による加硫時間に比べて、1/5程度に大幅に
短縮されたことになる。
Further, the electromagnetic induction heating apparatus 1 of FIG.
When a voltage of 200 V (60 Hz) was applied to the electromagnetic induction coil 3 while a flange F having an outer diameter of 1400 mm was attached to the upper and lower ends of a 75 mm laminate A and a current was passed, the laminate was laminated as shown in FIG. The temperature of the unvulcanized rubber layer B in the body A rose to 100 ° C. or more in about 1/40 of the conventional vulcanization time, and the temperature difference between the outer peripheral portion and the central portion almost disappeared. Then, the preheating step was completed, and vulcanization was performed by steam in a manner basically similar to the conventional method. As a result, the unvulcanized rubber layer B was vulcanized in about 1/5 of the conventional vulcanization time. Was. As a result, the time spent in the preheating / vulcanization step is greatly reduced to about 1/5 compared to the conventional vulcanization time using steam.

【0039】上記に本発明に係る電磁誘導加熱装置の一
例を示したが、本発明は下記のように実施することがで
きる。
Although one example of the electromagnetic induction heating apparatus according to the present invention has been described above, the present invention can be implemented as follows.

【0040】a.積層体Aは円柱体に限らず、角柱体の
場合があるが、この場合には、ケースの形状を積層体A
の形状に対応して角筒状に形成する。
A. The laminate A is not limited to a cylinder, but may be a prism. In this case, the shape of the case is changed to the laminate A.
It is formed in a rectangular tube shape corresponding to the shape of.

【0041】b.本発明は免震装置用の積層体に限ら
ず、鋼板と未加硫ゴム層とを交互に積層してなる各種積
層体の加熱(予熱)に適用できることは言うまでもな
い。
B. It is needless to say that the present invention is not limited to the laminated body for the seismic isolation device, and can be applied to heating (preheating) of various laminated bodies in which steel plates and unvulcanized rubber layers are alternately laminated.

【0042】c.フランジF付きの積層体Aについての
み例示したが、フランジFを具備しない積層体Aについ
ても本発明を適用できることは言うまでもない。
C. Although only the laminate A with the flange F has been illustrated, it is needless to say that the present invention can be applied to the laminate A without the flange F.

【0043】[0043]

【発明の効果】以上説明したことから明らかなように、
本発明にかかる積層体の電磁誘導加熱方法とその装置に
は、次のような優れた効果がある。
As is apparent from the above description,
The method and apparatus for electromagnetic induction heating of a laminate according to the present invention have the following excellent effects.

【0044】(1) 請求項1の発明では、従来の金型内に
積層体を収容して蒸気で加熱する方法と違って、電磁誘
導加熱により未加硫ゴム層の内部(中心部)も外周部と
同時に加熱されるために、内外の温度差が小さく、品質
も大幅に向上する。また、予熱を含めて加硫に要する時
間が短縮されるから、ランニングコストが低減され、経
済的である。
(1) According to the first aspect of the present invention, unlike the conventional method in which the laminate is housed in a mold and heated by steam, the inside (center portion) of the unvulcanized rubber layer is also heated by electromagnetic induction heating. Since it is heated simultaneously with the outer periphery, the temperature difference between the inside and outside is small, and the quality is greatly improved. Further, since the time required for vulcanization including preheating is reduced, the running cost is reduced, and it is economical.

【0045】(2) 請求項2の発明では、請求項1の加熱
方法と同様に、積層体を外周側と内側の中心部とから同
時に加熱することができるために、未加硫ゴム層間に積
層されている鋼板を介して内外周部から熱伝導され、未
加硫ゴム層をほぼ均等に加熱することができる。これに
より、品質も大幅に向上し、また予熱を含めて加硫に要
する時間が短縮されるから、ランニングコストが低減さ
れる。
(2) According to the second aspect of the present invention, similarly to the heating method of the first aspect, since the laminate can be simultaneously heated from the outer peripheral side and the inner central portion, the laminate is provided between the unvulcanized rubber layers. Heat is conducted from the inner and outer peripheral portions through the laminated steel plates, and the unvulcanized rubber layer can be heated substantially uniformly. As a result, the quality is greatly improved, and the time required for vulcanization including preheating is reduced, so that the running cost is reduced.

【0046】(3) 請求項3の発明では、積層体の未加硫
ゴムを加硫するのに際し、積層体を所定温度(100℃
以上)になるまで予熱してから、同積層体を金型内に挿
入して蒸気による従来の加硫を行うことで、従来の常温
から加硫する方法に比べて加硫に要する時間が予熱に要
した時間を含めてほぼ1/5と大幅に短縮される。
(3) In the invention of claim 3, when the unvulcanized rubber of the laminate is vulcanized, the laminate is heated to a predetermined temperature (100 ° C.).
Preheating until the above), then the same laminate is inserted into the mold and the conventional vulcanization with steam is performed. Including the time required for the above, is greatly reduced to about 1/5.

【0047】(4) 請求項4記載の発明では、加熱開始直
後は外周部の上下両端が最高温度になり、半径方向の中
間位置が最低温度になるので、最高温度点の温度があら
かじめ設定した基準温度になるように電磁誘導コイルに
流す電流を制御することによって、電磁誘導加熱による
最高温度箇所が設定した基準温度以下に抑えられ、この
間に鋼板を介した熱伝導作用等で最低温度箇所の温度が
上昇し、基準温度付近に達する。この結果、サイズや種
類の異なる積層体について未加硫ゴム層を所定温度にな
るように均等に加熱することができる。
(4) According to the fourth aspect of the invention, immediately after the start of heating, the upper and lower ends of the outer peripheral portion have the highest temperature, and the middle position in the radial direction has the lowest temperature. By controlling the current flowing through the electromagnetic induction coil so as to reach the reference temperature, the highest temperature point due to the electromagnetic induction heating can be suppressed below the set reference temperature, and during this time, the lowest temperature point due to the heat conduction effect via the steel plate etc. The temperature rises and approaches the reference temperature. As a result, it is possible to uniformly heat the unvulcanized rubber layer to a predetermined temperature for the laminates having different sizes and types.

【0048】(5) 請求項5の発明では、本発明に係る上
記の加熱方法を確実に実施でき、しかも構造が簡単で、
従来の蒸気による加熱のランニングコストに比べてかな
り低減される。また、積層体の内外周部を磁力線が透過
するために、電磁誘導効率が向上し、積層体の鋼板の加
熱状態がより均一化され、未加硫ゴム層の加熱がより均
等に行われる。
(5) According to the fifth aspect of the present invention, the above-described heating method according to the present invention can be reliably performed, and the structure is simple.
Significantly reduced compared to the running cost of conventional steam heating. In addition, since the lines of magnetic force penetrate the inner and outer peripheral portions of the laminate, the electromagnetic induction efficiency is improved, the heating state of the steel sheet of the laminate is made more uniform, and the unvulcanized rubber layer is more uniformly heated.

【0049】(6) 請求項6記載の発明では、積層体の中
心部側の加熱に蒸気あるいは温水を使用し、外周側にだ
け交流電源を使用するという差異があるが、積層体を内
外から同時に加熱し、未加硫ゴム層をほぼ均等に加熱で
きるという請求項5の発明とほぼ同様の効果を奏する。
(6) In the invention according to claim 6, there is a difference in that steam or hot water is used for heating the central portion of the laminate and an AC power source is used only for the outer peripheral side. At the same time, the unvulcanized rubber layer can be heated substantially evenly, which is almost the same effect as the invention of claim 5.

【0050】(7) 請求項7記載の発明では、薄板状のケ
イ素鋼板の角柱状磁束収集体が電磁誘導用コイルにより
発生しケースの外方に向く磁力線を収集するので、磁力
線が外方へ逃げることを防止するためにコイルの外側に
通常は設けられる非磁性体のケースを省くことができる
から、放熱性が向上し、通電時のコイルの発熱が削減さ
れる。また、薄板状のケイ素鋼板を積層して形成した磁
束収集体は発熱がほとんど起こらないために、磁束(磁
力線)の収集にだけ有効に働くという効果がある。
(7) According to the seventh aspect of the present invention, the prismatic magnetic flux collector made of a thin silicon steel plate collects magnetic lines of force generated by the electromagnetic induction coil and directed to the outside of the case. Since the case of a non-magnetic material usually provided outside the coil to prevent the escape can be omitted, the heat radiation property is improved, and the heat generation of the coil during energization is reduced. Further, since a magnetic flux collector formed by laminating thin silicon steel plates hardly generates heat, there is an effect that it works effectively only for collecting magnetic flux (lines of magnetic force).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電磁誘導加熱装置の一例を示す正
面図である。
FIG. 1 is a front view showing an example of an electromagnetic induction heating device according to the present invention.

【図2】図2(a)および(b)は積層体の成形工程を示す
側面図である。
FIGS. 2A and 2B are side views showing a forming process of a laminate.

【図3】図3(a)は本発明の電磁誘導加熱の原理を示す
中央縦断面図、図3(b)は積層体A中の鋼板Cを示す斜
視図である。
FIG. 3A is a central longitudinal sectional view showing the principle of electromagnetic induction heating according to the present invention, and FIG. 3B is a perspective view showing a steel sheet C in a laminate A.

【図4】本発明の第1実施例に係る電磁誘導加熱装置を
示す正面視断面図である。
FIG. 4 is a front sectional view showing the electromagnetic induction heating device according to the first embodiment of the present invention.

【図5】図5(a)は本発明の第2実施例に係る電磁誘導
加熱装置を示す正面視断面図、図5(b)は外周側の電磁
誘導加熱装置を示す斜視図である。
FIG. 5A is a front sectional view showing an electromagnetic induction heating device according to a second embodiment of the present invention, and FIG. 5B is a perspective view showing an electromagnetic induction heating device on the outer peripheral side.

【図6】本発明の第3実施例に係る電磁誘導加熱装置を
示す正面視断面図である。
FIG. 6 is a front sectional view showing an electromagnetic induction heating device according to a third embodiment of the present invention.

【図7】図7(a)は本発明の第4実施例に係る電磁誘導
加熱装置を示す正面視断面図、図7(b)は積層体A内の
3点の温度が変化する状況を示す温度線図である。
FIG. 7A is a front sectional view showing an electromagnetic induction heating apparatus according to a fourth embodiment of the present invention, and FIG. It is a temperature diagram shown.

【図8】外径1000mm・高さ375mmの積層体の
場合に置ける本発明による予熱時・加硫時の最高温度と
最低温度を示す温度線図と、従来の蒸気による加硫時の
最高温度と最低温度を示す温度線図である。
FIG. 8 is a temperature diagram showing the maximum and minimum temperatures during preheating and vulcanization according to the present invention in the case of a laminate having an outer diameter of 1000 mm and a height of 375 mm, and a conventional maximum temperature during vulcanization with steam. FIG. 3 is a temperature diagram showing a minimum temperature.

【符号の説明】[Explanation of symbols]

1・11・12・13・14 電磁誘導加熱装置 2・4 円筒状ケース 3 電磁誘導用コイル 5 電磁誘導加熱装置 6・8 円管状ケース 7 電磁誘導用コイル 10 角柱状磁束(電磁波)収集体 11 枠状架台 12 プラグピン 15・16・17 熱電対(温度センサー) 21 台車 22 昇降機構 23 載置台 31 中芯 A 積層体 B 未加硫ゴム層 C 鋼板 F フランジ1.1 1・ 1 2・ 1 3・ 1 4 Electromagnetic induction heating device 2.4 Cylindrical case 3 Electromagnetic induction coil 5 Electromagnetic induction heating device 6.8 Cylindrical case 7 Electromagnetic induction coil 10 Rectangular magnetic flux (electromagnetic wave) ) Collecting body 11 Frame-shaped gantry 12 Plug pin 15.16.17 Thermocouple (Temperature sensor) 21 Cart 22 Lifting mechanism 23 Mounting table 31 Core A Laminated body B Unvulcanized rubber layer C Steel plate F Flange

フロントページの続き (51)Int.Cl.6 識別記号 FI B29L 9:00 (72)発明者 梅宮 正稔 兵庫県神戸市兵庫区明和通3丁目2番15号 バンドー化学株式会社内Continued on the front page (51) Int.Cl. 6 Identification symbol FIB29L 9:00 (72) Inventor Masatoshi Umemiya 3-2-1-15 Meiwadori, Hyogo-ku, Kobe-shi, Hyogo BANDO CHEMICAL CO., LTD.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 円形又は角形の薄い鋼板と円形又は角形
の未加硫ゴム層とを交互に積層してなる円柱体状又は角
柱体状の積層体を、該積層体の周囲に配置した電磁誘導
用コイルに交流を流すことにより発生する磁力線を、積
層体の鋼板を直交する方向に透過させることによって前
記鋼板に渦電流を流して発熱させ、前記未加硫ゴム層を
加熱する電磁誘導加熱方法であって、 前記電磁誘導用コイル内の前記積層体の中心軸部に、上
下に貫通する中心部開口をあらかじめ設けておき、該開
口内に外磁路型電磁誘導コイルを挿入して内外から前記
未加硫ゴム層を加熱することを特徴とする積層体の電磁
誘導加熱方法。
1. An electromagnetic device comprising: a cylindrical or prismatic laminated body obtained by alternately laminating a circular or square thin steel plate and a circular or square unvulcanized rubber layer around a periphery of the laminated body. Electromagnetic induction heating for heating the unvulcanized rubber layer by passing eddy currents through the steel sheet of the laminate by causing magnetic flux lines generated by passing an alternating current through the induction coil to pass through the steel sheet in a direction perpendicular to the steel sheet, thereby heating the unvulcanized rubber layer. A method wherein a center opening penetrating vertically is provided in advance in a center axis portion of the laminated body in the electromagnetic induction coil, and an external magnetic path type electromagnetic induction coil is inserted into the opening so that the inside and outside are opened. And heating the unvulcanized rubber layer from above.
【請求項2】 円形又は角形の薄い鋼板と円形又は角形
の未加硫ゴム層とを交互に積層してなる円柱体状又は角
柱体状の積層体を、該積層体の周囲に配置した電磁誘導
用コイルに交流を流すことにより発生する磁力線を、積
層体の鋼板を直交する方向に透過させることによって前
記鋼板に渦電流を流して発熱させ、前記未加硫ゴム層を
加熱する電磁誘導加熱方法であって、 前記電磁誘導用コイル内の前記積層体の中心軸部に、上
下に貫通する中心部開口をあらかじめ設けておき、該開
口内にプラグピン状の蒸気式あるいは温水式の加熱手段
を挿入して内外から前記未加硫ゴム層を加熱することを
特徴とする積層体の電磁誘導加熱方法。
2. An electromagnetic device comprising: a cylindrical or prismatic laminate formed by alternately laminating a circular or square thin steel plate and a circular or square unvulcanized rubber layer, and disposing the laminate around the laminate. Electromagnetic induction heating for heating the unvulcanized rubber layer by passing eddy currents through the steel sheet of the laminate by causing magnetic flux lines generated by passing an alternating current through the induction coil to pass through the steel sheet in a direction perpendicular to the steel sheet, thereby heating the unvulcanized rubber layer. In the method, a central opening that penetrates vertically is provided in advance in the central axis portion of the laminated body in the electromagnetic induction coil, and a plug-pin-shaped steam-type or hot-water type heating means is provided in the opening. An electromagnetic induction heating method for a laminate, comprising: inserting and heating the unvulcanized rubber layer from inside and outside.
【請求項3】 前記積層体を電磁誘導加熱して予熱した
後、同積層体を金型内に挿入し、一定の加圧下で加熱し
て加硫する請求項1又は2記載の積層体の電磁誘導加熱
方法。
3. The laminate according to claim 1, wherein after the laminate is heated by electromagnetic induction and preheated, the laminate is inserted into a mold, and is heated and vulcanized under a constant pressure. Electromagnetic induction heating method.
【請求項4】 前記積層体の未加硫ゴム層において、温
度センサーを外周面付近の上下両端および半径方向の中
間位置で上下方向の中間位置にそれぞれ挿入し、電磁誘
導加熱時に少なくとも前記3点の温度を測定しながらそ
れらのうちの最高温度が設定温度を超えないように電磁
誘導加熱に必要な電力量を制御したのち、加硫前に前記
温度センサーを前記未加硫ゴム層から抜き取る請求項1
〜3のいずれかに記載の積層体の電磁誘導加熱方法。
4. In the unvulcanized rubber layer of the laminate, a temperature sensor is inserted at each of the upper and lower ends near the outer peripheral surface and at the intermediate position in the radial direction at the upper and lower ends, and at least the three points during electromagnetic induction heating. After controlling the amount of electric power necessary for electromagnetic induction heating so that the highest temperature among them does not exceed the set temperature while measuring the temperature of, the temperature sensor is extracted from the unvulcanized rubber layer before vulcanization. Item 1
4. The method of electromagnetically heating a laminate according to any one of claims 1 to 3.
【請求項5】 円形又は角形の薄い鋼板と円形又は角形
の未加硫ゴム層とを交互に積層してなる円柱体状又は角
柱体状の積層体を加熱するための電磁誘導加熱装置であ
って、 前記積層体を完全に収容可能な非磁性体からなる筒状ケ
ースの外周面のほぼ全体にわたって、電磁誘導用コイル
を巻装して交流電源に接続するとともに、 前記積層体の中心軸部に上下に貫通する中心部開口をあ
らかじめ設け、該開口内に外磁路型電磁誘導コイルを挿
入して内外から前記未加硫ゴム層を加熱できるように構
成したことを特徴とする積層体の電磁誘導加熱装置。
5. An electromagnetic induction heating apparatus for heating a cylindrical or prismatic laminate obtained by alternately laminating a circular or square thin steel plate and a circular or square unvulcanized rubber layer. A coil for electromagnetic induction is wound around almost the entire outer peripheral surface of a cylindrical case made of a non-magnetic material capable of completely housing the laminate, and connected to an AC power supply. The laminated body characterized in that it is provided in advance with a central opening penetrating up and down, and an external magnetic path type electromagnetic induction coil is inserted into the opening to heat the unvulcanized rubber layer from inside and outside. Electromagnetic induction heating device.
【請求項6】 円形又は角形の薄い鋼板と円形又は角形
の未加硫ゴム層とを交互に積層してなる円柱体状又は角
柱体状の積層体を加熱するための電磁誘導加熱装置であ
って、 前記積層体を完全に収容可能な非磁性体からなる筒状ケ
ースの外周面のほぼ全体にわたって、電磁誘導用コイル
を巻装して交流電源に接続するとともに、 前記積層体の中心軸部に上下に貫通する中心部開口をあ
らかじめ設け、該開口内にプラグピン状の蒸気式あるい
は温水式の加熱手段を挿入して内外から前記未加硫ゴム
層を加熱できるように構成したことを特徴とする積層体
の電磁誘導加熱装置。
6. An electromagnetic induction heating apparatus for heating a cylindrical or prismatic laminate obtained by alternately laminating circular or square thin steel plates and circular or square unvulcanized rubber layers. A coil for electromagnetic induction is wound around almost the entire outer peripheral surface of a cylindrical case made of a non-magnetic material capable of completely housing the laminate, and connected to an AC power supply. A central opening penetrating vertically is provided in advance, and the unvulcanized rubber layer can be heated from inside and outside by inserting a plug pin-shaped steam or hot water type heating means into the opening. Electromagnetic induction heating device for laminates.
【請求項7】 非磁性体からなる前記筒状ケースの外周
面のほぼ全体にわたって電磁誘導用コイルを巻装すると
ともに、 前記筒状ケースと同一高さで一定幅の帯状で厚みの非常
に薄いケイ素鋼板を多数枚積層して角柱体状に形成した
複数の電磁波収集体を、電磁誘導用コイルの外周に円周
方向に間隔をあけて配設した請求項5又は6に記載の積
層体の電磁誘導加熱装置。
7. A coil for electromagnetic induction is wound around substantially the entire outer peripheral surface of the cylindrical case made of a non-magnetic material, and a strip having a constant width and the same height as the cylindrical case is very thin. The laminate according to claim 5 or 6, wherein a plurality of electromagnetic wave collectors formed in a prismatic shape by laminating a plurality of silicon steel sheets are arranged on the outer periphery of the coil for electromagnetic induction at intervals in the circumferential direction. Electromagnetic induction heating device.
JP12191398A 1998-05-01 1998-05-01 Method and apparatus for electromagnetic induction heating of laminate Pending JPH11309723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12191398A JPH11309723A (en) 1998-05-01 1998-05-01 Method and apparatus for electromagnetic induction heating of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12191398A JPH11309723A (en) 1998-05-01 1998-05-01 Method and apparatus for electromagnetic induction heating of laminate

Publications (1)

Publication Number Publication Date
JPH11309723A true JPH11309723A (en) 1999-11-09

Family

ID=14823021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12191398A Pending JPH11309723A (en) 1998-05-01 1998-05-01 Method and apparatus for electromagnetic induction heating of laminate

Country Status (1)

Country Link
JP (1) JPH11309723A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176530A (en) * 2011-02-25 2012-09-13 Bridgestone Corp Steam hole arrangement determination method of laminated rubber
JP2014038710A (en) * 2012-08-10 2014-02-27 Tokuden Co Ltd Induction heating-type mold device
JP2016066576A (en) * 2014-09-17 2016-04-28 トヨタ自動車株式会社 Heating method for rotor core, and heating device
CN106703210A (en) * 2017-02-21 2017-05-24 安徽工业大学 Self-locking shearing laminated rubber steel plate rod type axial seismic mitigation and absorption device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176530A (en) * 2011-02-25 2012-09-13 Bridgestone Corp Steam hole arrangement determination method of laminated rubber
JP2014038710A (en) * 2012-08-10 2014-02-27 Tokuden Co Ltd Induction heating-type mold device
JP2016066576A (en) * 2014-09-17 2016-04-28 トヨタ自動車株式会社 Heating method for rotor core, and heating device
CN106703210A (en) * 2017-02-21 2017-05-24 安徽工业大学 Self-locking shearing laminated rubber steel plate rod type axial seismic mitigation and absorption device

Similar Documents

Publication Publication Date Title
JP3553627B2 (en) Electromagnetic induction heat converter
AU646466B2 (en) Electromagnetic device for heating metal elements
TWI443198B (en) Annealing method of amorphous core
CN102484071A (en) Apparatus for heat-treating semiconductor substrate
JPH11309723A (en) Method and apparatus for electromagnetic induction heating of laminate
JP2003319618A (en) Stator for use in electric motor with low core loss, and its manufacturing method
CN111385931B (en) Fused salt heater based on electromagnetic induction
US6109903A (en) Apparatus for manufacturing a rubber-metal plate composite
JP3243741B2 (en) Electromagnetic induction heating method and apparatus for laminate
JPH11114907A (en) Method and device for heating hot press
JP2965948B2 (en) Electromagnetic induction heating method and apparatus for laminate
JPH0729673A (en) High frequency electromagnetic induction heater
US20110155719A1 (en) Multi-Level and Vertical Assembling Type PTFE Heater and Methods of Manufacture Thereof
JP3756261B2 (en) Induction heating roller device
CN103428929B (en) Induction heater for unwinding motor stators
JP2009123603A (en) Induction heating cooker
CN206226767U (en) Electromagnetic heating coil disc and Electromagnetic Heating kitchen tools
KR101415671B1 (en) induction heater
JP7222252B2 (en) Motor core annealing apparatus and motor core annealing method
KR101824071B1 (en) Induction heating and heat transfer system
CA2356432C (en) Heating of calender roll surfaces
US6571692B1 (en) Heating of calender roll surfaces
JP2019094558A (en) Annealing device of motor core and annealing method of motor core
KR101824073B1 (en) Induction double heating and heat transfer system
JP2003319587A (en) Small core loss inner rotor motor and its manufacturing method