JPH11307804A - Manufacture of semiconductor photodetector - Google Patents

Manufacture of semiconductor photodetector

Info

Publication number
JPH11307804A
JPH11307804A JP10107377A JP10737798A JPH11307804A JP H11307804 A JPH11307804 A JP H11307804A JP 10107377 A JP10107377 A JP 10107377A JP 10737798 A JP10737798 A JP 10737798A JP H11307804 A JPH11307804 A JP H11307804A
Authority
JP
Japan
Prior art keywords
light
face
light receiving
cleavage
incident end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10107377A
Other languages
Japanese (ja)
Other versions
JP3620772B2 (en
Inventor
Hideki Fukano
秀樹 深野
Masahiro Yuda
正宏 湯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10737798A priority Critical patent/JP3620772B2/en
Publication of JPH11307804A publication Critical patent/JPH11307804A/en
Application granted granted Critical
Publication of JP3620772B2 publication Critical patent/JP3620772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method by which a wafer can be cleaved near the light entrance end of a semiconductor photodetector with high yield at the time of cutting the photodetector from the wafer. SOLUTION: In a method for manufacturing a refraction type semiconductor photodetector which is constituted to make incident light to pass through a light receiving layer 13 obliquely to the thickness direction of the layer 13 by refracting the incident light at a light entrance end face 11 by providing a light receiving section composed of a multilayered semiconductor structure containing the light receiving layer 13 formed on the surface of a substrate 15 and the light entrance end face 11 the inward inclined angle of which becomes larger as becoming farther from the surface side and which is provided on the end face of the photodetector, the width 2W between the upper ends of an inverted-mesa etched groove is adjusted to 2W<=2(H+Hc)tanδ (where, H, Hc, and δ respectively represent the depth to the deepest bottom of the etched groove, depth of a cleave scratch, and the half of the opening angle 2δ of the front end section of a needle used for forming the cleavage scratch) after an inverted-mesa etched groove forming process for forming the light entrance end face 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体受光素子の
製造方法に関するものである。
The present invention relates to a method for manufacturing a semiconductor light receiving element.

【0002】[0002]

【従来の技術】屈折型半導体受光素子の概略を図2に示
す。図2中、符号11は光入射端面、12は1μm厚p
−InP 層、13は1μm厚InGaAs光受光層、14は1μ
m厚n−InP 層、15は半絶縁性InP 基板、16はp電
極、17はn電極を各々図示する。図2に示すように、
光入射傾斜端面の近傍より劈開などによりチップを形成
している。この受光素子にファイバ等から光(L)を入
射するとき、ファイバ等からの出射光は距離に対し広が
りがあるため、出射光の広がり方に依存するが、通常、
受光素子の光入射端面はファイバ等の光出射端面から数
十μm程度以下の距離に設定する必要がある。このた
め、図2のように基板15部分の劈開端面18は光入射
端面11の近傍に精度よく製造することが必要である。
2. Description of the Related Art FIG. 2 schematically shows a refraction type semiconductor light receiving element. In FIG. 2, reference numeral 11 denotes a light incident end face, and 12 denotes a 1 μm thick p.
-InP layer, 13: 1 μm-thick InGaAs light receiving layer, 14: 1 μm
An m-thick n-InP layer, 15 is a semi-insulating InP substrate, 16 is a p-electrode, and 17 is an n-electrode. As shown in FIG.
A chip is formed from the vicinity of the light incident inclined end face by cleavage or the like. When light (L) is incident on the light receiving element from a fiber or the like, the light emitted from the fiber or the like spreads with respect to the distance, and thus depends on how the emitted light spreads.
The light incident end face of the light receiving element needs to be set at a distance of about several tens μm or less from the light exit end face such as a fiber. Therefore, as shown in FIG. 2, it is necessary to manufacture the cleavage end face 18 of the substrate 15 in the vicinity of the light incidence end face 11 with high accuracy.

【0003】通常、劈開は基板厚を100μm程度に薄
くし、図3のように屈折型半導体受光素子部分が逆メサ
の溝部分に並列に並んだ構造のウエハに、溝の劈開する
部分の端部の一部分にニードル19等により劈開キズ2
0を付け、ここに機械的ショックを与えることによりこ
のキズ部分が劈開の起点となり、ウエハ全体にわたって
劈開がなされるようにして行う。ここで、劈開キズ20
を形成するニードル19は先端部を円錐ないし角錐状に
して最先端が極細に加工されているが、屈折型半導体受
光素子のように深いメサが存在する場合、メサ部分の溝
幅は、ニードル19がメサ部に接触しないように十分広
く形成され、劈開キズ20が形成されるが、逆メサ上端
部分にニードルが接触しないようにするためには、逆メ
サ上端より数十μm以上離して劈開キズ20を形成する
必要があった。
Usually, the cleavage is performed by reducing the thickness of the substrate to about 100 μm, and as shown in FIG. 3, a wafer having a structure in which a refraction type semiconductor light receiving element portion is arranged in parallel with a groove portion of an inverted mesa is provided at an end of a portion where the groove is cleaved. A part of the part is cleaved by needle 19 etc. 2
When a mechanical shock is applied thereto, the scratch portion becomes a starting point of cleavage, and cleavage is performed over the entire wafer. Here, cleavage 20
The tip of the needle 19 is formed into a conical or pyramid shape, and the tip is processed to be extremely fine. However, when a deep mesa exists as in a refraction type semiconductor light receiving element, the groove width of the mesa portion is set to the needle 19. Is formed sufficiently wide so as not to contact the mesa, and the cleavage flaw 20 is formed. However, in order to prevent the needle from contacting the upper end of the inverted mesa, the cleavage flaw is separated from the upper end of the inverted mesa by several tens μm or more. 20 had to be formed.

【0004】また、ファイバ等からの出射光の広がり角
が大きい場合、ファイバを入射端面の極近傍まで近づけ
ることが重要であり、このため、入射端面の極近傍に劈
開キズ20をつける必要があり、このような場合、強制
的にニードル19を入射端面の極近傍に押し付け劈開キ
ズを形成するが、劈開キズ20をつける位置近傍の入射
端面11のメサ部分にニードルの円錐ないし角錐状部が
接触するため、キズを付ける位置がずれてしまったり、
位置ばらつきが大きくなってしまうという問題点があっ
た。これらのために、ウエハより切り出されるチップの
収率が低くなってしまうという問題点があった。
When the spread angle of light emitted from a fiber or the like is large, it is important to bring the fiber as close as possible to the vicinity of the incident end face. For this reason, it is necessary to make a cleavage flaw 20 very close to the incident end face. In such a case, the needle 19 is forcibly pressed to the vicinity of the incident end face to form a cleavage flaw, but the conical or pyramid-shaped part of the needle contacts the mesa portion of the incidence end face 11 near the position where the cleavage flaw 20 is formed. The position to be scratched is shifted,
There has been a problem that the position variation becomes large. For these reasons, there is a problem that the yield of chips cut out from the wafer is reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、屈折
型光受光素子の製造において、ウエハより素子を切り出
す際、歩留まりよく光入射端近傍で劈開することのでき
る製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing a refraction type light receiving element which can cleave the element near a light incident end with high yield when cutting out the element from a wafer. is there.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
半導体受光素子の製造方法は、基板上の表面に形成され
た光受光層を含む半導体多層構造よりなる受光部分と、
端面に表面側から離れるに従い内側に傾斜した光入射端
面を設けることにより、該光入射端面で入射光を屈折さ
せて、入射光が前記光受光層を層厚方向に対し斜めに通
過するようにした屈折型半導体受光素子の製造におい
て、光入射端面形成のための逆メサエッチング溝形成工
程後に、該光入射端面の上辺からエッチング溝の最底面
までの深さをH、劈開キズの深さをHcとし、劈開キズ
を形成するための針の先端部開き角を2δとした時に、
逆メサエッチング溝上端の溝幅2Wが、2W≦2(H+
Hc)tan δであることを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor light receiving device, comprising: a light receiving portion having a semiconductor multilayer structure including a light receiving layer formed on a surface of a substrate;
By providing a light incident end face that is inclined inward as the end face moves away from the surface side, the incident light is refracted at the light incident end face so that the incident light passes through the light receiving layer obliquely to the layer thickness direction. In the manufacture of the refraction type semiconductor light receiving element, after the step of forming the reverse mesa etching groove for forming the light incident end face, the depth from the upper side of the light incident end face to the bottom of the etching groove is H, and the depth of the cleavage flaw is Hc, and the opening angle of the tip of the needle for forming the cleavage flaw is 2δ,
When the groove width 2W at the upper end of the reverse mesa etching groove is 2W ≦ 2 (H +
Hc) tan δ.

【0007】本発明の請求項2に係る半導体受光素子の
製造方法は、基板上の表面に形成された光受光層を含む
半導体多層構造よりなる受光部分と、端面に表面側から
離れるに従い内側に傾斜した光入射端面を設けることに
より、該光入射端面で入射光を屈折させて、入射光が前
記光受光層を層厚方向に対し斜めに通過するようにした
屈折型半導体受光素子の製造において、光入射端面形成
のための逆メサエッチング溝形成工程後に、該メサエッ
チング溝上端の溝幅が30μm以下であることを特徴と
する半導体受光素子の製造方法。
According to a second aspect of the present invention, there is provided a method for manufacturing a semiconductor light receiving element, comprising: a light receiving portion having a semiconductor multilayer structure including a light receiving layer formed on a surface of a substrate; In the manufacture of a refraction-type semiconductor light receiving element in which an inclined light incident end face is provided to refract incident light at the light incident end face so that the incident light passes through the light receiving layer obliquely to the layer thickness direction. A method of manufacturing a semiconductor light receiving element, wherein after the step of forming a reverse mesa etching groove for forming a light incident end face, a groove width of an upper end of the mesa etching groove is 30 μm or less.

【0008】[0008]

【発明の実施の形態】本発明の半導体受光素子の製造方
法は、屈折型半導体受光素子の製造において、光入射端
面形成のための逆メサエッチング溝形成工程後における
逆メサエッチング溝上端の溝幅を狭く設定することによ
り、端面形成エッチング後に図1に示すような形状の溝
が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor light receiving device according to the present invention is directed to a method of manufacturing a refraction type semiconductor light receiving device, in which a groove width at an upper end of a reverse mesa etching groove after a step of forming a reverse mesa etching groove for forming a light incident end face. Is set narrow, a groove having a shape as shown in FIG. 1 is formed after etching for forming the end face.

【0009】図1には、同時に劈開キズを形成するため
のニードルも模式的に図示されている。図1に示すよう
に、光入射端面11の上辺から最底面までの深さをH、
劈開キズの深さをHcとし、劈開キズを形成するための
針の先端部開き角を2δとすると、光入射端面の製造後
における逆メサ上端の溝幅を、図中、2W≦2(H+H
c)tan δになるようにし、劈開用ニードル19を上方
より溝中央付近に降下させると、両逆メサ上辺がガイド
として働き、ほぼ中央に再現性よく劈開キズが形成でき
る。なお、溝幅が狭くなり、ニードル19の傾斜部分の
接触により、両メサ上辺部が破損しても、その部分は常
にガイドとして働き、従って、中央部分に再現性よく劈
開キズが形成できる。このため、機械的ショックをあた
えることにより劈開キズのついた部分を起点として再現
性よく劈開が起きる。また、溝幅2Wを10μm以下に
設定すれば光入射端面から5μm以下の極近傍で劈開が
できることになる。
FIG. 1 also schematically shows a needle for simultaneously forming a cleavage flaw. As shown in FIG. 1, the depth from the upper side to the bottom surface of the light incident end face 11 is H,
Assuming that the depth of the cleavage flaw is Hc and the opening angle of the tip of the needle for forming the cleavage flaw is 2δ, the groove width of the upper end of the inverted mesa after manufacturing the light incident end face is 2W ≦ 2 (H + H
c) When the cleavage needle 19 is lowered from above to the vicinity of the center of the groove so as to have tan δ, the upper sides of the opposite mesas serve as guides, and a cleavage flaw can be formed almost at the center with high reproducibility. In addition, even if the groove width is narrowed and the upper portions of both mesas are damaged by the contact of the inclined portions of the needle 19, the portions always function as guides, and therefore, the cleavage flaws can be formed in the central portion with good reproducibility. For this reason, by applying a mechanical shock, the cleavage occurs with good reproducibility starting from the portion with the cleavage flaw. Further, if the groove width 2W is set to 10 μm or less, cleavage can be performed very close to 5 μm or less from the light incident end face.

【0010】図4は、エッチング溝幅が十分広い場合の
ブロム系エッチングにより(001)表面のInP 基板1
5をエッチングして(111)面を出して逆メサ形状
(θ=55度)を形成した時のエッチング断面の模式図
である。劈開キズの深さをHcとし、光入射端面の製造
後における逆メサ上端の溝幅2Wを2W≦2(H+H
c)tan δになるようにすると、ニードルの両側に逆メ
サ部分が形成されることにより、劈開用ニードルを上方
より溝中央付近に降下させると、両逆メサ上辺がガイド
として働き、ほぼ中央に再現性よく劈開キズが形成でき
る。
FIG. 4 shows an InP substrate 1 having a (001) surface by bromide etching when the etching groove width is sufficiently large.
FIG. 5 is a schematic view of an etched cross section when an inverted mesa shape (θ = 55 degrees) is formed by etching 5 to expose a (111) plane. The depth of the cleavage flaw is assumed to be Hc, and the groove width 2W at the upper end of the inverted mesa after manufacturing the light incident end face is set to 2W ≦ 2 (H + H
c) When tan δ is set, inverted mesa portions are formed on both sides of the needle. When the cleavage needle is lowered from above to the vicinity of the center of the groove, the upper sides of both inverted mesas serve as guides, and the center of the inverted mesa is almost at the center. Cleavage flaws can be formed with good reproducibility.

【0011】ここで、典型的な例として、石英系シング
ルモードファイバ(SMF)からの光を屈折型半導体受
光素子でレンズ系無しに高効率に受光する場合、石英系
シングルモードファイバ(SMF:スポットサイズは1
0μm)からの出射光はビーム径15μmで99%以上
の光強度を含んでいるため、光入射端面11部分の深さ
Dとしては最低15μm必要である。Dを15μmとす
るためには、実験によるとHとしては26μm必要であ
った。また、通常、自動劈開キズ形成装置に用いられる
針の先端部開き角は2δ=60度程度以上のものが多
い。
Here, as a typical example, when light from a silica-based single mode fiber (SMF) is highly efficiently received without a lens system by a refractive semiconductor light receiving element, a silica-based single mode fiber (SMF: spot) is used. Size is 1
0 μm), the beam diameter is 15 μm and the light intensity includes 99% or more, so the depth D of the light incident end face 11 needs to be at least 15 μm. According to experiments, 26 μm was required for H in order to make D 15 μm. Usually, the tip opening angle of a needle used in an automatic cleavage flaw forming apparatus is often 2δ = about 60 degrees or more.

【0012】ここで、2δ=60度とし、劈開キズ深さ
Hcを零とおくと、光入射端面の製造後における逆メサ
上端の溝幅として、30μm以下(2×(26×tan
(30度))=30)になるように端面形成メサエッチ
ングを施し、劈開用ニードルを上方より溝中央付近に降
下させると、両逆メサ上辺がガイドとして働き、ほぼ中
央に再現性よく劈開キズが形成できる。現実には、有限
の劈開キズ深さHcだけニードルをさらに下降させるた
め、確実に逆メサ部にニードルの傾斜部分が接触し、ガ
イドすることになる。このため、機械的ショックをあた
えることにより劈開キズのついた部分を起点として再現
性よく劈開が起きる。
Here, when 2δ = 60 degrees and the cleavage flaw depth Hc is set to zero, the groove width at the upper end of the inverted mesa after the manufacture of the light incident end face is 30 μm or less (2 × (26 × tan).
(30 degrees)) = 30), and the cleaving needle is lowered from above to near the center of the groove. Can be formed. In reality, the needle is further lowered by a finite cleavage flaw depth Hc, so that the inclined portion of the needle comes into contact with and guides the inverted mesa portion without fail. For this reason, by applying a mechanical shock, the cleavage occurs with good reproducibility starting from the portion with the cleavage flaw.

【0013】従来技術とは、劈開キズ形成において、キ
ズを付ける位置ずれがほとんど発生せず、入射端面の近
傍に、所望の精度で劈開ができる点が異なる。
The difference from the prior art is that, in the formation of cleavage flaws, there is almost no displacement of the flaws, and the cleavage can be performed with a desired accuracy near the incident end face.

【0014】このように、本製造方法は、劈開キズ形成
の位置ずれのばらつきがほとんどなく、入射端面の近傍
で劈開ができる。このため、ファイバ等との光結合のた
めに求められる光入射端面までの距離を十分満足しなが
ら容易な素子の切り出しが可能となる。また、エッチン
グした溝の両側を共に光入射端面として素子を切り出し
出来るため、ウエハからの素子の収率が大きく向上す
る。
As described above, according to the present manufacturing method, there is almost no variation in the positional shift in the formation of the cleavage flaw, and the cleavage can be performed in the vicinity of the incident end face. Therefore, it is possible to easily cut out the element while sufficiently satisfying the distance to the light incident end face required for optical coupling with a fiber or the like. In addition, since both sides of the etched groove can be cut out as light incident end faces, the yield of the elements from the wafer is greatly improved.

【0015】[0015]

【実施例】以下、本発明の好適な実施例について説明す
るが、本発明はこれに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

【0016】〔実施例1〕図5は本発明の第1の実施例
を説明する図である。11は光入射端面、12は1μm
厚p−InP 層、13は1μm厚InGaAs光受光層、14は
1μm厚n−InP層、15は半絶縁性InP 基板、16は
p電極、17はn電極である。素子の受光層面積は14
μm×20μmである。光入射端面11は、窒化シリコ
ン膜マスクを用い、ブロムメタノールを用いてウエット
エッチングを行い形成した。この時、光入射端面11
は、(001)表面のウエハをブロムメタノールを用い
たウエットエッチングでは(111)A面が図のように
逆メサ形状で形成されることを利用して形成した。この
工程後における逆メサエッチング溝上端の溝幅は7μm
である。逆メサエッチング溝上端の溝幅は7μmと極め
て狭幅であっても、光入射端面11の深さDは20μm
と深く、底部までの深さHは約35μmあり、良好な入
射端面が形成できている。
[Embodiment 1] FIG. 5 is a view for explaining a first embodiment of the present invention. 11 is a light incident end face, 12 is 1 μm
A thick p-InP layer, 13 is a 1 μm thick InGaAs light receiving layer, 14 is a 1 μm thick n-InP layer, 15 is a semi-insulating InP substrate, 16 is a p electrode, and 17 is an n electrode. The light-receiving layer area of the device is 14
μm × 20 μm. The light incident end face 11 was formed by wet etching using bromomethanol using a silicon nitride film mask. At this time, the light incident end face 11
The (001) surface was formed by utilizing the fact that the (111) A surface was formed in an inverted mesa shape as shown in the figure by wet etching using bromomethanol. The groove width at the upper end of the reverse mesa etching groove after this step is 7 μm.
It is. Even if the groove width at the upper end of the reverse mesa etching groove is as narrow as 7 μm, the depth D of the light incident end face 11 is 20 μm.
The depth H to the bottom is about 35 μm, and a good incident end face can be formed.

【0017】針の円錐形の先端部開き角が2δ=20度
程度の細いニードル19を上方より溝中央付近に降下さ
せ、劈開キズ深さHcを10μm程度にすると、円錐形
部分が両逆メサ上辺と接触し、この部分がガイドとして
働き、ほぼ中央に再現性よく劈開キズが形成できた。こ
れは、請求項1の条件2W=7<2×(35+10)×
tan(10度)=15.9μmを満たしている。劈開キ
ズHcはウエハ端の一部分に200μm程度の長さに亙
って形成した。もちろん、ニードルより半導体の方が強
度が弱いため、ニードルが接触する部分の逆メサ部分は
細かく破損するが、依然、メサ部分は、ガイドとして作
用し、溝の中央部分に再現性よく劈開キズが形成でき
た。従って、ここに、機械的ショックをあたえることに
より、劈開キズを起点に数センチ以上にわたって良好な
劈開が実施でき、この劈開の両側が受光素子の光入射端
面として用いることができた。
When a thin needle 19 having an opening angle of about 2δ = 20 degrees at the tip of the cone of the needle is lowered from above to the vicinity of the center of the groove, and the cleavage flaw depth Hc is set to about 10 μm, the conical part becomes a double inverted mesa. The portion contacted the upper side, and this portion served as a guide, and a cleavage flaw could be formed almost at the center with good reproducibility. This is because the condition 2W = 7 <2 × (35 + 10) ×
tan (10 degrees) = 15.9 μm is satisfied. The cleavage flaw Hc was formed on a part of the wafer edge over a length of about 200 μm. Of course, since the strength of the semiconductor is lower than that of the needle, the reverse mesa portion where the needle contacts is finely broken, but the mesa portion still functions as a guide, and the cleavage flaws are reproduced with good reproducibility in the center of the groove. Could be formed. Therefore, by applying a mechanical shock here, good cleavage could be performed over several centimeters starting from the cleavage flaw, and both sides of this cleavage could be used as light incident end faces of the light receiving element.

【0018】本実施例では、光入射端面形成のための逆
メサエッチング溝形成工程後における逆メサエッチング
溝上端の溝幅は7μmとしているが、15μmにしても
同様に良好な劈開が溝中央で可能であった。逆メサ部は
他のウエットエッチング液やドライエッチング法を用い
て形成してもよいし、他の結晶面を利用したり、エッチ
ングマスクの密着性を利用し角度を制御して形成しても
よい。
In the present embodiment, the groove width at the upper end of the reverse mesa etching groove after the step of forming the reverse mesa etching groove for forming the light incident end face is 7 μm. It was possible. The reverse mesa portion may be formed by using another wet etching solution or a dry etching method, may be formed by using another crystal plane, or may be formed by controlling an angle by using adhesion of an etching mask. .

【0019】入射端面に無反射膜を形成し、先球ファイ
バを用いて、波長1.55μmの光を導入すると、印加
逆バイアス3Vで受光感度0.9A/W以上の大きな値
が得られるし、3dB帯域40GHzの高速動作が可能
であった。この時、光入射端面部分の直下にある基板部
分の出っ張りは数ミクロンと小さく、ファイバの近接に
ほとんど障害とならない。
When a non-reflective film is formed on the incident end face and light having a wavelength of 1.55 μm is introduced using a spherical fiber, a large value of light receiving sensitivity of 0.9 A / W or more can be obtained with an applied reverse bias of 3 V. And a high-speed operation in a 3 dB band of 40 GHz was possible. At this time, the protrusion of the substrate portion immediately below the light incident end face portion is as small as several microns, and hardly hinders the proximity of the fiber.

【0020】この実施例では、エッチングマスクの溝は
図7(a)のような直線状のストライプ形状のエッチン
グマスク21を用いたが、図7(b),(c)に示すよ
うな凹凸形状のエッチングマスク22やテーパ付の凹凸
形状のエッチングマスク23等のように、色々な形状の
ものでもよく、劈開キズを形成する部分の溝幅が本発明
の趣旨に合致していればよい。
In this embodiment, the grooves of the etching mask are formed by the linear stripe-shaped etching mask 21 as shown in FIG. 7 (a), but the grooves are formed as shown in FIGS. 7 (b) and 7 (c). Various shapes, such as the etching mask 22 and the etching mask 23 having an uneven shape with a taper, may be used, as long as the groove width of a portion where a cleavage flaw is formed conforms to the gist of the present invention.

【0021】この実施例では、表面側のp−InP 層は結
晶成長によって形成しているが、結晶成長ではアンドー
プInP 層とし、表面側の主たる部分の半導体の導電形
を、Znの拡散や、イオン注入法とその後のアニールに
よって決定してもよい。
In this embodiment, the p-InP layer on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used. It may be determined by an ion implantation method and subsequent annealing.

【0022】また、半導体受光素子部分は、第1導電形
を有する半導体層上にあって、真性又は第一の導電型の
半導体層、超格子半導体層または多重量子井戸半導体層
より成る光受光層とショットキー電極との間に、前記光
受光層と前記ショットキー電極との間のショットキー障
壁よりも高いショットキー障壁を前記ショットキー電極
に対して有するショットキーバリアハイトの高い半導体
層を介在した多層構造を基板上に構成してなる半導体受
光素子や、前記ショットキーバリアハイトの高い半導体
層は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)
またはIn1-x-yGax Aly As(0≦x≦1,0≦y≦1)
とその上の薄いIn1-u Gau As1-v Pv (0≦u≦1,0
≦v≦1)よりなることを特徴とする半導体受光素子で
構成してもよい。
The semiconductor light receiving element portion is on the semiconductor layer having the first conductivity type, and is formed of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer or a multiple quantum well semiconductor layer. And a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode between the light receiving layer and the Schottky electrode. or a semiconductor light receiving element formed by constructed on a substrate a multilayer structure in which the Schottky barrier height with high semiconductor layer, in 1-xy Ga x Al y As (0 ≦ x ≦ 1,0 ≦ y ≦ 1)
Or In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1)
And a thin In 1-u Ga u As 1-v P v (0 ≦ u ≦ 1,0
.Ltoreq.v.ltoreq.1).

【0023】また、この実施例では、基板として半絶縁
性InP を用い、基板側にn−InP 層を用いた例である
が、p−InP 層を用いても上記のpとnを逆にして同様
に製作可能であり、また、n−InP やp−InP 基板を用
いても同様に製作可能である。
In this embodiment, the semi-insulating InP is used as the substrate and the n-InP layer is used on the substrate side. However, even if a p-InP layer is used, the above p and n are reversed. It can be manufactured similarly using an n-InP or p-InP substrate.

【0024】また、ここでは、受光層として均一組成の
バルクを用いているが、アバランシェフォトダイオード
に用いられるSeparate-absorption−graded-multiplic
ation (SAGM)構造やSeparate absorption and mu
ltiplication superlattice(SAM−SL)構造や他
の超格子構造の半導体層等を用いてもよいことは言うま
でもない。また、InGaAsP/InP 系以外のInGaAlAs/InGaA
sPやAlGaAs/GaAs 系などの材料系や歪を内在するような
材料系でもよいことは言うまでもない。
Although the light-receiving layer is made of a bulk having a uniform composition, a separate-absorption-graded-multiplic used in an avalanche photodiode is used here.
ation (SAGM) structure and Separate absorption and mu
It goes without saying that a semiconductor layer having an ltiplication superlattice (SAM-SL) structure or another superlattice structure may be used. InGaAlAs / InGaA other than InGaAsP / InP
It goes without saying that a material system such as sP or AlGaAs / GaAs system or a material system having intrinsic strain may be used.

【0025】〔実施例2〕図6は本発明の第2の実施例
を説明する図である。11は光入射端面、12は1μm
厚p−InP 層、13は1μm厚InGaAs光受光層、14は
1μm厚n−InP層、15は半絶縁性InP 基板、16は
p電極、17はn電極である。素子の受光層面積は30
μm×50μmである。光入射端面は、窒化シリコン膜
マスクを用い、ブロムメタノールを用いてウエットエッ
チングを行い形成した。この時、光入射端面は、(00
1)表面のウエハをブロムメタノールを用いたウエット
エッチングでは(111)A面が図のように逆メサ形状
で形成されることを利用して形成した。この工程後にお
ける逆メサエッチング溝上端の溝幅は30μmである。
逆メサエッチング溝上端の溝幅は30μmであっても、
光入射端面の深さDは20μmと深くして、良好な入射
端面が形成できており、底部までの深さHは約35μm
ある。角錐形の針を有する自動劈開キズ形成装置を用
い、劈開キズを形成する方向と直角な面における針の先
端部開き角が2δ=60度程度のニードル19を上方よ
り溝中央付近に降下させると、角錐形部分が両逆メサ上
辺と接触し、この部分がガイドとして働き、ほぼ中央に
再現性よく劈開キズが形成できた。
[Embodiment 2] FIG. 6 is a view for explaining a second embodiment of the present invention. 11 is a light incident end face, 12 is 1 μm
A thick p-InP layer, 13 is a 1 μm thick InGaAs light receiving layer, 14 is a 1 μm thick n-InP layer, 15 is a semi-insulating InP substrate, 16 is a p electrode, and 17 is an n electrode. The light-receiving layer area of the device is 30
μm × 50 μm. The light incident end face was formed by wet etching using bromomethanol using a silicon nitride film mask. At this time, the light incident end face is (00
1) The wafer on the surface is formed by utilizing the fact that the (111) A plane is formed in an inverted mesa shape as shown in the figure by wet etching using bromomethanol. The groove width at the upper end of the reverse mesa etching groove after this step is 30 μm.
Even if the groove width at the upper end of the reverse mesa etching groove is 30 μm,
The depth D of the light incident end face is as deep as 20 μm, and a good incident end face can be formed. The depth H to the bottom is about 35 μm.
is there. When an automatic cleavage flaw forming apparatus having a pyramidal needle is used, the needle 19 whose tip opening angle is about 2δ = 60 degrees in a plane perpendicular to the direction in which the cleavage flaw is formed is lowered from above to near the center of the groove. The pyramid-shaped portion was in contact with the upper sides of the opposite mesas, and this portion served as a guide, and a cleavage flaw could be formed almost at the center with good reproducibility.

【0026】ここでは、ニードル19は、左右対称なも
のを用いているが、左右が非対称なものを用いても両メ
サ上端がガイドとなる様に溝幅を設定してやれば劈開キ
ズ位置は溝の中心より意図的にずらして再現性よく形成
できる。劈開キズはウエハ端の一部分に200μm程度
形成した。もちろん、ニードルより半導体の方が強度が
弱いため、ニードルが接触する部分の逆メサ部分は細か
く破損するが、依然、メサ部分は、ガイドとして作用
し、溝の中央部分に再現性よく劈開キズが形成できた。
In this case, the needle 19 is symmetrical in the left and right directions. However, even if the needle 19 is asymmetrical in the left and right directions, if the groove width is set so that the upper ends of both mesas serve as guides, the cleavage flaw position will be the same as that of the groove. It can be formed with good reproducibility by being intentionally shifted from the center. Cleavage flaws were formed on a part of the wafer edge at about 200 μm. Of course, since the strength of the semiconductor is lower than that of the needle, the reverse mesa portion where the needle contacts is finely broken, but the mesa portion still functions as a guide, and the cleavage flaws are reproduced with good reproducibility in the center of the groove. Could be formed.

【0027】従って、ここに、機械的ショックをあたえ
ることにより、劈開キズを起点に数センチ以上にわたっ
て良好な劈開が実施でき、この劈開の両側が受光素子の
光入射端面として用いることができた。逆メサ部は他の
ウエットエッチング液やドライエッチング法を用いて形
成してもよいし、他の結晶面を利用したり、エッチング
マスクの密着性を利用し角度を制御して形成してもよ
い。入射端面に無反射膜を形成し、シングルモードファ
イバ(SMF)を用いて、波長1.55μmの光を導入
すると、印加逆バイアス3Vで受光感度0.9A/W以
上の大きな値が得られた。この時、光入射端面部分の直
下にある基板部分の出っ張りは10μm以上あるが、本
光受光素子のSMFに対する受光感度が1dB低下する
光軸方向のミスアライメントトレランスは80μmあ
り、実用上ほとんど問題にならない。
Therefore, by applying a mechanical shock, good cleavage could be performed over several centimeters starting from the cleavage flaw, and both sides of this cleavage could be used as the light incident end face of the light receiving element. The reverse mesa portion may be formed by using another wet etching solution or a dry etching method, may be formed by using another crystal plane, or may be formed by controlling an angle by using adhesion of an etching mask. . When a non-reflective film was formed on the incident end face and light having a wavelength of 1.55 μm was introduced using a single mode fiber (SMF), a large value of light receiving sensitivity of 0.9 A / W or more was obtained with an applied reverse bias of 3 V. . At this time, the protrusion of the substrate portion immediately below the light incident end face portion is 10 μm or more, but the misalignment tolerance in the optical axis direction at which the light receiving sensitivity of the light receiving element with respect to SMF is reduced by 1 dB is 80 μm, which is practically a problem. No.

【0028】この実施例では、エッチングマスクの溝は
図7(a)のような直線状のストライプ形状のものを用
いたが、図7(b),(c)に示すような凹凸形状やテ
ーパ付の凹凸形状等の他、色々な形状のものでもよく、
劈開キズを形成する部分の溝幅が本発明の趣旨に合致し
ていればよい。この実施例では、表面側のp−InP 層は
結晶成長によって形成しているが、結晶成長ではアンド
ープInP 層とし、表面側の主たる部分の半導体の導電形
を、Znの拡散や、イオン注入法とその後のアニールに
よって決定してもよい。また、半導体受光素子部分は、
第1導電形を有する半導体層上にあって、真性又は第一
の導電型の半導体層、超格子半導体層または多重量子井
戸半導体層より成る光受光層とショットキー電極との間
に、前記光受光層と前記ショットキー電極との間のショ
ットキー障壁よりも高いショットキー障壁を前記ショッ
トキー電極に対して有するショットキーバリアハイトの
高い半導体層を介在した多層構造を基板上に構成してな
る半導体受光素子や、前記ショットキーバリアハイトの
高い半導体層は、In1-x-y Gax Aly As(0≦x≦1,0
≦y≦1)またはIn1-x-yGax Aly As(0≦x≦1,0
≦y≦1)とその上の薄いIn1-u Gau As1-v Pv (0≦
u≦1,0≦v≦1)よりなることを特徴とする半導体
受光素子で構成してもよい。また、この実施例では、基
板として半絶縁性InP を用い、基板側にn−InP 層を用
いた例であるが、p−InP 層を用いても上記のpとnを
逆にして同様に製作可能であり、また、n−InP やp−
InP 基板を用いても同様に製作可能である。また、ここ
では、受光層として均一組成のバルクを用いているが、
アバランシェフォトダイオードに用いられるSeparate-a
bsorption−graded- multiplication(SAGM)構造
やSeparate absorption and multiplication superlatt
ice (SAM−SL)構造や他の超格子構造の半導体層
等を用いてもよいことは言うまでもない。また、InGaAs
P/InP 系以外のInGaAlAs/InGaAsPやAlGaAs/GaAs 系など
の材料系や歪を内在するような材料系でもよいことは言
うまでもない。
In this embodiment, the grooves of the etching mask have a linear stripe shape as shown in FIG. 7 (a). However, the grooves and the taper as shown in FIGS. 7 (b) and 7 (c) are used. In addition to the concavo-convex shape with, various shapes may be used,
It is only necessary that the groove width of the portion where the cleavage flaw is formed conforms to the gist of the present invention. In this embodiment, the p-InP layer on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used. And subsequent annealing. Also, the semiconductor light receiving element part
A light-emitting layer on the semiconductor layer having the first conductivity type, the light-receiving layer comprising an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer or a multiple quantum well semiconductor layer, and the Schottky electrode; A multi-layer structure including a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode is formed on the substrate. and a semiconductor light receiving device, the Schottky barrier height with high semiconductor layer, in 1-xy Ga x Al y As (0 ≦ x ≦ 1,0
≦ y ≦ 1) or In 1-xy Ga x Al y As (0 ≦ x ≦ 1,0
≦ y ≦ 1) and a thin In 1-u Ga u As 1-v Pv (0 ≦
u ≦ 1, 0 ≦ v ≦ 1). Further, in this embodiment, the semi-insulating InP is used as the substrate, and the n-InP layer is used on the substrate side. Manufacturable, n-InP and p-
It can be manufactured similarly using InP substrate. Also, here, the bulk of the uniform composition is used as the light receiving layer,
Separate-a used for avalanche photodiode
bsorption-graded-multiplication (SAGM) structure and Separate absorption and multiplication superlatt
It goes without saying that a semiconductor layer having an ice (SAM-SL) structure or another superlattice structure may be used. Also, InGaAs
It goes without saying that a material system other than the P / InP system, such as InGaAlAs / InGaAsP or AlGaAs / GaAs system, or a material system having intrinsic strain may be used.

【0029】[0029]

【発明の効果】以上説明したように、本発明の半導体受
光素子の製造方法は、屈折型半導体受光素子の製造にお
いて、光入射端面形成のための逆メサエッチング溝形成
工程後における逆メサエッチング溝上端の溝幅を狭く設
定することにより、端面形成エッチング後に、溝部分に
劈開キズをつけるためのニードルを上方より下降させて
行った時、入射端面のメサ部分にニードルの円錐ないし
角錐状部が接触し、この部分がガイドとして働き、ほぼ
中央に精度よく劈開キズが形成できる。従って、ここに
機械的ショックを加えることにより、この劈開キズ部分
を起点として再現性よく劈開ができる。このように、本
製造方法は、溝の中央部分に精度よく劈開キズが形成で
き、この劈開キズ部分を起点として再現性よく劈開がで
き、かつ、光入射端面部からの基板の出っ張り部が短く
できる。このため、ファイバ等との光結合のために求め
られる光入射端面までの距離を十分満足しながら容易に
再現性よく素子の切り出しが可能となる。さらに、エッ
チングした溝の両側を共に光入射端面として素子を切り
出しできると共に、ウエハ上で無駄となる溝部分の面積
を低減できるため、ウエハからの素子の収率が大きく向
上する。
As described above, the method of manufacturing a semiconductor photodetector according to the present invention is directed to a method of manufacturing a refraction type semiconductor photodetector, in which a reverse mesa etching groove is formed after a step of forming a reverse mesa etching groove for forming a light incident end face. By setting the groove width of the end to be narrow, when the needle for making a cleavage flaw is lowered from above after the end face formation etching, the cone or pyramid of the needle is formed in the mesa part of the incident end face. This portion contacts and functions as a guide, and a cleavage flaw can be formed with high accuracy at almost the center. Therefore, by applying a mechanical shock thereto, cleavage can be performed with good reproducibility starting from the cleavage flaw portion. As described above, according to the present manufacturing method, a cleavage flaw can be formed accurately at the center of the groove, cleavage can be performed with good reproducibility starting from the cleavage flaw, and the protrusion of the substrate from the light incident end face is short. it can. Therefore, the element can be easily and reproducibly cut out while sufficiently satisfying the distance to the light incident end face required for optical coupling with a fiber or the like. Further, the device can be cut out with both sides of the etched groove both as light incident end faces, and the area of the groove portion wasted on the wafer can be reduced, so that the yield of the device from the wafer is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による端面形成エッチング後の形状を模
式的に示したものである。
FIG. 1 schematically shows a shape after etching for forming an end face according to the present invention.

【図2】屈折型半導体光受光素子を説明する図である。FIG. 2 is a diagram illustrating a refraction type semiconductor light receiving element.

【図3】屈折型半導体受光素子部分が逆メサの溝部分に
並列に並んだウエハ構造の模式図である。
FIG. 3 is a schematic diagram of a wafer structure in which a refraction type semiconductor light receiving element portion is arranged in parallel with a groove portion of an inverted mesa.

【図4】ブロムエッチングによる(001)表面のIn
Pをエッチングして(111)面が出た逆メサ形状を模
式的に示したものである。
FIG. 4 shows In of (001) surface by brom etching.
FIG. 3 schematically shows an inverted mesa shape in which P is etched to expose a (111) plane.

【図5】本発明の第1の実施例を説明する図である。FIG. 5 is a diagram illustrating a first embodiment of the present invention.

【図6】本発明の第2の実施例を説明する図である。FIG. 6 is a diagram illustrating a second embodiment of the present invention.

【図7】エッチングマスクの溝形状の例である。FIG. 7 is an example of a groove shape of an etching mask.

【符号の説明】[Explanation of symbols]

11 光入射端面 12 1μm厚p−InP 層 13 1μm厚InGaAs光受光層 14 1μm厚n−InP 層 15 半絶縁性InP 基板 16 p電極 17 n電極 18 劈開端面 21 エッチングマスク 22 エッチングマスク 23 エッチングマスク Reference Signs List 11 light incident end face 12 1 μm thick p-InP layer 13 1 μm thick InGaAs light receiving layer 14 1 μm thick n-InP layer 15 semi-insulating InP substrate 16 p electrode 17 n electrode 18 cleavage end face 21 etching mask 22 etching mask 23 etching mask

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上の表面に形成された光受光層を含
む半導体多層構造よりなる受光部分と、端面に表面側か
ら離れるに従い内側に傾斜した光入射端面を設けること
により、該光入射端面で入射光を屈折させて、入射光が
前記光受光層を層厚方向に対し斜めに通過するようにし
た屈折型半導体受光素子の製造において、 光入射端面形成のための逆メサエッチング溝形成工程後
に、該光入射端面の上辺からエッチング溝の最底面まで
の深さをH、劈開キズの深さをHcとし、劈開キズを形
成するための針の先端部開き角を2δとした時に、逆メ
サエッチング溝上端の溝幅2Wが、2W≦2(H+H
c)tan δであることを特徴とする半導体受光素子の製
造方法。
1. A light-receiving part comprising a semiconductor multilayer structure including a light-receiving layer formed on a surface of a substrate, and a light-incident end face which is inclined inward as the distance from the front side increases, the light-incident end face being provided. In the manufacture of a refraction type semiconductor light receiving element in which the incident light is refracted so that the incident light passes through the light receiving layer obliquely with respect to the layer thickness direction, a reverse mesa etching groove forming step for forming a light incident end face is performed. Later, when the depth from the upper side of the light incident end face to the bottom of the etching groove is H, the depth of the cleavage flaw is Hc, and the opening angle of the tip of the needle for forming the cleavage flaw is 2δ, The groove width 2W at the upper end of the mesa etching groove is 2W ≦ 2 (H + H
c) A method for manufacturing a semiconductor light receiving element, characterized by tan δ.
【請求項2】 基板上の表面に形成された光受光層を含
む半導体多層構造よりなる受光部分と、端面に表面側か
ら離れるに従い内側に傾斜した光入射端面を設けること
により、該光入射端面で入射光を屈折させて、入射光が
前記光受光層を層厚方向に対し斜めに通過するようにし
た屈折型半導体受光素子の製造において、 光入射端面形成のための逆メサエッチング溝形成工程後
に、該メサエッチング溝上端の溝幅が30μm以下であ
ることを特徴とする半導体受光素子の製造方法。
2. A light receiving portion comprising a semiconductor multilayer structure including a light receiving layer formed on a surface of a substrate, and a light incident end surface which is inclined inward as the distance from the front surface increases, so that the light incident end surface is provided. In the manufacture of a refraction type semiconductor light receiving element in which the incident light is refracted so that the incident light passes through the light receiving layer obliquely with respect to the layer thickness direction, a reverse mesa etching groove forming step for forming a light incident end face is performed. A method of manufacturing a semiconductor light receiving device, wherein the width of the upper end of the mesa etching groove is 30 μm or less.
JP10737798A 1998-04-17 1998-04-17 Manufacturing method of semiconductor light receiving element Expired - Fee Related JP3620772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10737798A JP3620772B2 (en) 1998-04-17 1998-04-17 Manufacturing method of semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10737798A JP3620772B2 (en) 1998-04-17 1998-04-17 Manufacturing method of semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JPH11307804A true JPH11307804A (en) 1999-11-05
JP3620772B2 JP3620772B2 (en) 2005-02-16

Family

ID=14457576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10737798A Expired - Fee Related JP3620772B2 (en) 1998-04-17 1998-04-17 Manufacturing method of semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JP3620772B2 (en)

Also Published As

Publication number Publication date
JP3620772B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
CN113330581B (en) Etched surface in multiple quantum well structure
EP0410067B1 (en) Integrated semiconductor diode laser and photodiode structure
EP0498169B1 (en) Opto-electronic device for coupling and uncoupling of radiation
US8149891B2 (en) Semiconductor device and optical module
US5684902A (en) Semiconductor laser module
US5032219A (en) Method for improving the planarity of etched mirror facets
US20070047609A1 (en) Wafer testing of edge emitting lasers
US6360048B1 (en) Waveguide optical semiconductor device, method of fabricating the same and optical device module
JP2000068240A (en) Method for cleaving semiconductor device from wafer
US5438208A (en) Mirror coupled monolithic laser diode and photodetector
KR100582114B1 (en) A method of fabricating a semiconductor device and a semiconductor optical device
US5763287A (en) Method of fabricating semiconductor optical device
US6509580B2 (en) Semiconductor device with current confinement structure
JP2001028456A (en) Semiconductor light emitting device
EP0772268B1 (en) Laser diode having narrowed radiation angle characteristic
JPH0766502A (en) Optical semiconductor device and forming method thereof
US6668000B2 (en) System and method of optically testing multiple edge-emitting semiconductor lasers residing on a common wafer
US6944386B2 (en) Optical devices
JPH11307804A (en) Manufacture of semiconductor photodetector
US6445723B1 (en) Laser source with submicron aperture
CN112821197A (en) Light emitting chip manufacturing method and light emitting chip
US6498337B2 (en) High-speed photodetector
JPH08146248A (en) Optical coupling device and its production
US6865207B1 (en) Semiconductor laser device withspot-size converter and method for fabricating the same
JP3928901B2 (en) Semiconductor photo detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20041112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees