JP3620772B2 - Manufacturing method of semiconductor light receiving element - Google Patents

Manufacturing method of semiconductor light receiving element Download PDF

Info

Publication number
JP3620772B2
JP3620772B2 JP10737798A JP10737798A JP3620772B2 JP 3620772 B2 JP3620772 B2 JP 3620772B2 JP 10737798 A JP10737798 A JP 10737798A JP 10737798 A JP10737798 A JP 10737798A JP 3620772 B2 JP3620772 B2 JP 3620772B2
Authority
JP
Japan
Prior art keywords
face
light receiving
light
incident end
cleavage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10737798A
Other languages
Japanese (ja)
Other versions
JPH11307804A (en
Inventor
秀樹 深野
正宏 湯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10737798A priority Critical patent/JP3620772B2/en
Publication of JPH11307804A publication Critical patent/JPH11307804A/en
Application granted granted Critical
Publication of JP3620772B2 publication Critical patent/JP3620772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体受光素子の製造方法に関するものである。
【0002】
【従来の技術】
屈折型半導体受光素子の概略を図2に示す。図2中、符号11は光入射端面、12は1μm厚p−InP 層、13は1μm厚InGaAs光受光層、14は1μm厚n−InP 層、15は半絶縁性InP 基板、16はp電極、17はn電極を各々図示する。
図2に示すように、光入射傾斜端面の近傍より劈開などによりチップを形成している。この受光素子にファイバ等から光(L)を入射するとき、ファイバ等からの出射光は距離に対し広がりがあるため、出射光の広がり方に依存するが、通常、受光素子の光入射端面はファイバ等の光出射端面から数十μm程度以下の距離に設定する必要がある。このため、図2のように基板15部分の劈開端面18は光入射端面11の近傍に精度よく製造することが必要である。
【0003】
通常、劈開は基板厚を100μm程度に薄くし、図3のように屈折型半導体受光素子部分が逆メサの溝部分に並列に並んだ構造のウエハに、溝の劈開する部分の端部の一部分にニードル19等により劈開キズ20を付け、ここに機械的ショックを与えることによりこのキズ部分が劈開の起点となり、ウエハ全体にわたって劈開がなされるようにして行う。ここで、劈開キズ20を形成するニードル19は先端部を円錐ないし角錐状にして最先端が極細に加工されているが、屈折型半導体受光素子のように深いメサが存在する場合、メサ部分の溝幅は、ニードル19がメサ部に接触しないように十分広く形成され、劈開キズ20が形成されるが、逆メサ上端部分にニードルが接触しないようにするためには、逆メサ上端より数十μm以上離して劈開キズ20を形成する必要があった。
【0004】
また、ファイバ等からの出射光の広がり角が大きい場合、ファイバを入射端面の極近傍まで近づけることが重要であり、このため、入射端面の極近傍に劈開キズ20をつける必要があり、このような場合、強制的にニードル19を入射端面の極近傍に押し付け劈開キズを形成するが、劈開キズ20をつける位置近傍の入射端面11のメサ部分にニードルの円錐ないし角錐状部が接触するため、キズを付ける位置がずれてしまったり、位置ばらつきが大きくなってしまうという問題点があった。これらのために、ウエハより切り出されるチップの収率が低くなってしまうという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、屈折型光受光素子の製造において、ウエハより素子を切り出す際、歩留まりよく光入射端近傍で劈開することのできる製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の請求項1に係る半導体受光素子の製造方法は、基板上の表面に形成された光受光層を含む半導体多層構造よりなる受光部分と、端面に表面側から離れるに従い内側に傾斜した光入射端面を設けることにより、該光入射端面で入射光を屈折させて、入射光が前記光受光層を層厚方向に対し斜めに通過するようにした屈折型半導体受光素子の製造において、光入射端面形成のための逆メサエッチング溝形成工程後に、該光入射端面の上辺からエッチング溝の最底面までの深さをH、劈開キズの深さをHcとし、劈開キズを形成するための針の先端部開き角を2δとした時に、逆メサエッチング溝上端の溝幅2Wが、2W≦2(H+Hc)tan δであることを特徴とする。
【0008】
【発明の実施の形態】
本発明の半導体受光素子の製造方法は、屈折型半導体受光素子の製造において、光入射端面形成のための逆メサエッチング溝形成工程後における逆メサエッチング溝上端の溝幅を狭く設定することにより、端面形成エッチング後に図1に示すような形状の溝が形成される。
【0009】
図1には、同時に劈開キズを形成するためのニードルも模式的に図示されている。図1に示すように、光入射端面11の上辺から最底面までの深さをH、劈開キズの深さをHcとし、劈開キズを形成するための針の先端部開き角を2δとすると、光入射端面の製造後における逆メサ上端の溝幅を、図中、2W≦2(H+Hc)tan δになるようにし、劈開用ニードル19を上方より溝中央付近に降下させると、両逆メサ上辺がガイドとして働き、ほぼ中央に再現性よく劈開キズが形成できる。なお、溝幅が狭くなり、ニードル19の傾斜部分の接触により、両メサ上辺部が破損しても、その部分は常にガイドとして働き、従って、中央部分に再現性よく劈開キズが形成できる。このため、機械的ショックをあたえることにより劈開キズのついた部分を起点として再現性よく劈開が起きる。また、溝幅2Wを10μm以下に設定すれば光入射端面から5μm以下の極近傍で劈開ができることになる。
【0010】
図4は、エッチング溝幅が十分広い場合のブロム系エッチングにより(001)表面のInP 基板15をエッチングして(111)面を出して逆メサ形状(θ=55度)を形成した時のエッチング断面の模式図である。劈開キズの深さをHcとし、光入射端面の製造後における逆メサ上端の溝幅2Wを2W≦2(H+Hc)tan δになるようにすると、ニードルの両側に逆メサ部分が形成されることにより、劈開用ニードルを上方より溝中央付近に降下させると、両逆メサ上辺がガイドとして働き、ほぼ中央に再現性よく劈開キズが形成できる。
【0011】
ここで、典型的な例として、石英系シングルモードファイバ(SMF)からの光を屈折型半導体受光素子でレンズ系無しに高効率に受光する場合、石英系シングルモードファイバ(SMF:スポットサイズは10μm)からの出射光はビーム径15μmで99%以上の光強度を含んでいるため、光入射端面11部分の深さDとしては最低15μm必要である。Dを15μmとするためには、実験によるとHとしては26μm必要であった。また、通常、自動劈開キズ形成装置に用いられる針の先端部開き角は2δ=60度程度以上のものが多い。
【0012】
ここで、2δ=60度とし、劈開キズ深さHcを零とおくと、光入射端面の製造後における逆メサ上端の溝幅として、30μm以下(2×(26×tan (30度))=30)になるように端面形成メサエッチングを施し、劈開用ニードルを上方より溝中央付近に降下させると、両逆メサ上辺がガイドとして働き、ほぼ中央に再現性よく劈開キズが形成できる。現実には、有限の劈開キズ深さHcだけニードルをさらに下降させるため、確実に逆メサ部にニードルの傾斜部分が接触し、ガイドすることになる。このため、機械的ショックをあたえることにより劈開キズのついた部分を起点として再現性よく劈開が起きる。
【0013】
従来技術とは、劈開キズ形成において、キズを付ける位置ずれがほとんど発生せず、入射端面の近傍に、所望の精度で劈開ができる点が異なる。
【0014】
このように、本製造方法は、劈開キズ形成の位置ずれのばらつきがほとんどなく、入射端面の近傍で劈開ができる。このため、ファイバ等との光結合のために求められる光入射端面までの距離を十分満足しながら容易な素子の切り出しが可能となる。また、エッチングした溝の両側を共に光入射端面として素子を切り出し出来るため、ウエハからの素子の収率が大きく向上する。
【0015】
【実施例】
以下、本発明の好適な実施例について説明するが、本発明はこれに限定されるものではない。
【0016】
〔実施例1〕
図5は本発明の第1の実施例を説明する図である。11は光入射端面、12は1μm厚p−InP 層、13は1μm厚InGaAs光受光層、14は1μm厚n−InP 層、15は半絶縁性InP 基板、16はp電極、17はn電極である。素子の受光層面積は14μm×20μmである。光入射端面11は、窒化シリコン膜マスクを用い、ブロムメタノールを用いてウエットエッチングを行い形成した。この時、光入射端面11は、(001)表面のウエハをブロムメタノールを用いたウエットエッチングでは(111)A面が図のように逆メサ形状で形成されることを利用して形成した。この工程後における逆メサエッチング溝上端の溝幅は7μmである。逆メサエッチング溝上端の溝幅は7μmと極めて狭幅であっても、光入射端面11の深さDは20μmと深く、底部までの深さHは約35μmあり、良好な入射端面が形成できている。
【0017】
針の円錐形の先端部開き角が2δ=20度程度の細いニードル19を上方より溝中央付近に降下させ、劈開キズ深さHcを10μm程度にすると、円錐形部分が両逆メサ上辺と接触し、この部分がガイドとして働き、ほぼ中央に再現性よく劈開キズが形成できた。
これは、請求項1の条件2W=7<2×(35+10)× tan(10度)=15.9μmを満たしている。
劈開キズHcはウエハ端の一部分に200μm程度の長さに亙って形成した。もちろん、ニードルより半導体の方が強度が弱いため、ニードルが接触する部分の逆メサ部分は細かく破損するが、依然、メサ部分は、ガイドとして作用し、溝の中央部分に再現性よく劈開キズが形成できた。従って、ここに、機械的ショックをあたえることにより、劈開キズを起点に数センチ以上にわたって良好な劈開が実施でき、この劈開の両側が受光素子の光入射端面として用いることができた。
【0018】
本実施例では、光入射端面形成のための逆メサエッチング溝形成工程後における逆メサエッチング溝上端の溝幅は7μmとしているが、15μmにしても同様に良好な劈開が溝中央で可能であった。逆メサ部は他のウエットエッチング液やドライエッチング法を用いて形成してもよいし、他の結晶面を利用したり、エッチングマスクの密着性を利用し角度を制御して形成してもよい。
【0019】
入射端面に無反射膜を形成し、先球ファイバを用いて、波長1.55μmの光を導入すると、印加逆バイアス3Vで受光感度0.9A/W以上の大きな値が得られるし、3dB帯域40GHzの高速動作が可能であった。この時、光入射端面部分の直下にある基板部分の出っ張りは数ミクロンと小さく、ファイバの近接にほとんど障害とならない。
【0020】
この実施例では、エッチングマスクの溝は図7(a)のような直線状のストライプ形状のエッチングマスク21を用いたが、図7(b),(c)に示すような凹凸形状のエッチングマスク22やテーパ付の凹凸形状のエッチングマスク23等のように、色々な形状のものでもよく、劈開キズを形成する部分の溝幅が本発明の趣旨に合致していればよい。
【0021】
この実施例では、表面側のp−InP 層は結晶成長によって形成しているが、結晶成長ではアンドープInP 層とし、表面側の主たる部分の半導体の導電形を、Znの拡散や、イオン注入法とその後のアニールによって決定してもよい。
【0022】
また、半導体受光素子部分は、第1導電形を有する半導体層上にあって、真性又は第一の導電型の半導体層、超格子半導体層または多重量子井戸半導体層より成る光受光層とショットキー電極との間に、前記光受光層と前記ショットキー電極との間のショットキー障壁よりも高いショットキー障壁を前記ショットキー電極に対して有するショットキーバリアハイトの高い半導体層を介在した多層構造を基板上に構成してなる半導体受光素子や、前記ショットキーバリアハイトの高い半導体層は、In1−x−y GaAlAs(0≦x≦1,0≦y≦1)またはIn1−x−y GaAlAs(0≦x≦1,0≦y≦1)とその上の薄いIn1−u GaAs1−v (0≦u≦1,0≦v≦1)よりなることを特徴とする半導体受光素子で構成してもよい。
【0023】
また、この実施例では、基板として半絶縁性InP を用い、基板側にn−InP 層を用いた例であるが、p−InP 層を用いても上記のpとnを逆にして同様に製作可能であり、また、n−InP やp−InP 基板を用いても同様に製作可能である。
【0024】
また、ここでは、受光層として均一組成のバルクを用いているが、アバランシェフォトダイオードに用いられるSeparate−absorption−graded−multiplication (SAGM)構造やSeparate absorption and multiplication superlattice (SAM−SL)構造や他の超格子構造の半導体層等を用いてもよいことは言うまでもない。また、InGaAsP/InP 系以外のInGaAlAs/InGaAsPやAlGaAs/GaAs 系などの材料系や歪を内在するような材料系でもよいことは言うまでもない。
【0025】
〔実施例2〕
図6は本発明の第2の実施例を説明する図である。11は光入射端面、12は1μm厚p−InP 層、13は1μm厚InGaAs光受光層、14は1μm厚n−InP 層、15は半絶縁性InP 基板、16はp電極、17はn電極である。素子の受光層面積は30μm×50μmである。光入射端面は、窒化シリコン膜マスクを用い、ブロムメタノールを用いてウエットエッチングを行い形成した。この時、光入射端面は、(001)表面のウエハをブロムメタノールを用いたウエットエッチングでは(111)A面が図のように逆メサ形状で形成されることを利用して形成した。この工程後における逆メサエッチング溝上端の溝幅は30μmである。逆メサエッチング溝上端の溝幅は30μmであっても、光入射端面の深さDは20μmと深くして、良好な入射端面が形成できており、底部までの深さHは約35μmある。角錐形の針を有する自動劈開キズ形成装置を用い、劈開キズを形成する方向と直角な面における針の先端部開き角が2δ=60度程度のニードル19を上方より溝中央付近に降下させると、角錐形部分が両逆メサ上辺と接触し、この部分がガイドとして働き、ほぼ中央に再現性よく劈開キズが形成できた。
【0026】
ここでは、ニードル19は、左右対称なものを用いているが、左右が非対称なものを用いても両メサ上端がガイドとなる様に溝幅を設定してやれば劈開キズ位置は溝の中心より意図的にずらして再現性よく形成できる。劈開キズはウエハ端の一部分に200μm程度形成した。もちろん、ニードルより半導体の方が強度が弱いため、ニードルが接触する部分の逆メサ部分は細かく破損するが、依然、メサ部分は、ガイドとして作用し、溝の中央部分に再現性よく劈開キズが形成できた。
【0027】
従って、ここに、機械的ショックをあたえることにより、劈開キズを起点に数センチ以上にわたって良好な劈開が実施でき、この劈開の両側が受光素子の光入射端面として用いることができた。逆メサ部は他のウエットエッチング液やドライエッチング法を用いて形成してもよいし、他の結晶面を利用したり、エッチングマスクの密着性を利用し角度を制御して形成してもよい。入射端面に無反射膜を形成し、シングルモードファイバ(SMF)を用いて、波長1.55μmの光を導入すると、印加逆バイアス3Vで受光感度0.9A/W以上の大きな値が得られた。この時、光入射端面部分の直下にある基板部分の出っ張りは10μm以上あるが、本光受光素子のSMFに対する受光感度が1dB低下する光軸方向のミスアライメントトレランスは80μmあり、実用上ほとんど問題にならない。
【0028】
この実施例では、エッチングマスクの溝は図7(a)のような直線状のストライプ形状のものを用いたが、図7(b),(c)に示すような凹凸形状やテーパ付の凹凸形状等の他、色々な形状のものでもよく、劈開キズを形成する部分の溝幅が本発明の趣旨に合致していればよい。この実施例では、表面側のp−InP 層は結晶成長によって形成しているが、結晶成長ではアンドープInP 層とし、表面側の主たる部分の半導体の導電形を、Znの拡散や、イオン注入法とその後のアニールによって決定してもよい。
また、半導体受光素子部分は、第1導電形を有する半導体層上にあって、真性又は第一の導電型の半導体層、超格子半導体層または多重量子井戸半導体層より成る光受光層とショットキー電極との間に、前記光受光層と前記ショットキー電極との間のショットキー障壁よりも高いショットキー障壁を前記ショットキー電極に対して有するショットキーバリアハイトの高い半導体層を介在した多層構造を基板上に構成してなる半導体受光素子や、前記ショットキーバリアハイトの高い半導体層は、In1−x−y GaAlAs(0≦x≦1,0≦y≦1)またはIn1−x−y GaAlAs(0≦x≦1,0≦y≦1)とその上の薄いIn1−u GaAs1−v (0≦u≦1,0≦v≦1)よりなることを特徴とする半導体受光素子で構成してもよい。
また、この実施例では、基板として半絶縁性InP を用い、基板側にn−InP 層を用いた例であるが、p−InP 層を用いても上記のpとnを逆にして同様に製作可能であり、また、n−InP やp−InP 基板を用いても同様に製作可能である。また、ここでは、受光層として均一組成のバルクを用いているが、アバランシェフォトダイオードに用いられるSeparate−absorption−graded− multiplication(SAGM)構造やSeparate absorption and multiplication superlattice (SAM−SL)構造や他の超格子構造の半導体層等を用いてもよいことは言うまでもない。また、InGaAsP/InP 系以外のInGaAlAs/InGaAsPやAlGaAs/GaAs 系などの材料系や歪を内在するような材料系でもよいことは言うまでもない。
【0029】
【発明の効果】
以上説明したように、本発明の半導体受光素子の製造方法は、屈折型半導体受光素子の製造において、光入射端面形成のための逆メサエッチング溝形成工程後における逆メサエッチング溝上端の溝幅を狭く設定することにより、端面形成エッチング後に、溝部分に劈開キズをつけるためのニードルを上方より下降させて行った時、入射端面のメサ部分にニードルの円錐ないし角錐状部が接触し、この部分がガイドとして働き、ほぼ中央に精度よく劈開キズが形成できる。従って、ここに機械的ショックを加えることにより、この劈開キズ部分を起点として再現性よく劈開ができる。このように、本製造方法は、溝の中央部分に精度よく劈開キズが形成でき、この劈開キズ部分を起点として再現性よく劈開ができ、かつ、光入射端面部からの基板の出っ張り部が短くできる。このため、ファイバ等との光結合のために求められる光入射端面までの距離を十分満足しながら容易に再現性よく素子の切り出しが可能となる。さらに、エッチングした溝の両側を共に光入射端面として素子を切り出しできると共に、ウエハ上で無駄となる溝部分の面積を低減できるため、ウエハからの素子の収率が大きく向上する。
【図面の簡単な説明】
【図1】本発明による端面形成エッチング後の形状を模式的に示したものである。
【図2】屈折型半導体光受光素子を説明する図である。
【図3】屈折型半導体受光素子部分が逆メサの溝部分に並列に並んだウエハ構造の模式図である。
【図4】ブロムエッチングによる(001)表面のInPをエッチングして(111)面が出た逆メサ形状を模式的に示したものである。
【図5】本発明の第1の実施例を説明する図である。
【図6】本発明の第2の実施例を説明する図である。
【図7】エッチングマスクの溝形状の例である。
【符号の説明】
11 光入射端面
12 1μm厚p−InP 層
13 1μm厚InGaAs光受光層
14 1μm厚n−InP 層
15 半絶縁性InP 基板
16 p電極
17 n電極
18 劈開端面
21 エッチングマスク
22 エッチングマスク
23 エッチングマスク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor light receiving element.
[0002]
[Prior art]
An outline of the refractive semiconductor light receiving element is shown in FIG. In FIG. 2, reference numeral 11 denotes a light incident end face, 12 denotes a 1 μm thick p-InP layer, 13 denotes a 1 μm thick InGaAs light receiving layer, 14 denotes a 1 μm thick n-InP layer, 15 denotes a semi-insulating InP substrate, and 16 denotes a p electrode. , 17 respectively indicate n electrodes.
As shown in FIG. 2, a chip is formed by cleavage or the like from the vicinity of the light incident inclined end face. When light (L) is incident on the light receiving element from a fiber or the like, the light emitted from the fiber or the like has a spread with respect to the distance, and therefore depends on how the emitted light spreads. It is necessary to set a distance of about several tens of μm or less from the light emitting end face of a fiber or the like. For this reason, as shown in FIG. 2, it is necessary to manufacture the cleaved end face 18 of the substrate 15 in the vicinity of the light incident end face 11 with high accuracy.
[0003]
Usually, in the cleavage, the substrate thickness is reduced to about 100 μm, and a wafer having a structure in which the refractive semiconductor light receiving element portion is arranged in parallel with the groove portion of the reverse mesa as shown in FIG. A cleaving flaw 20 is made by a needle 19 or the like, and a mechanical shock is applied thereto so that the flaw portion becomes a starting point of cleaving, so that the entire wafer is cleaved. Here, the needle 19 that forms the cleavage flaw 20 has a tip or a cone-shaped pyramid, and the tip is processed extremely finely. However, when a deep mesa exists like a refractive semiconductor light-receiving element, the mesa portion The groove width is sufficiently wide so that the needle 19 does not contact the mesa portion, and the cleavage flaw 20 is formed, but in order to prevent the needle from coming into contact with the upper end portion of the reverse mesa, it is several tens from the upper end of the reverse mesa. It was necessary to form cleaved scratches 20 separated by μm or more.
[0004]
In addition, when the spread angle of light emitted from a fiber or the like is large, it is important to bring the fiber close to the pole vicinity of the incident end face. For this reason, it is necessary to cleave the flaw 20 near the pole of the incident end face. In this case, the needle 19 is forcibly pressed near the entrance end face to form a cleavage flaw, but the cone or pyramid of the needle contacts the mesa portion of the entrance end face 11 near the position where the cleavage flaw 20 is applied. There was a problem that the position to be scratched was shifted or the position variation became large. For these reasons, there is a problem that the yield of chips cut out from the wafer is lowered.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a manufacturing method capable of cleaving in the vicinity of a light incident end with a high yield when cutting out an element from a wafer in manufacturing a refractive light receiving element.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor light-receiving element comprising: a light-receiving portion having a semiconductor multilayer structure including a light-receiving layer formed on a surface of a substrate; In the production of a refractive semiconductor light-receiving element in which an incident end face is provided so that incident light is refracted at the light incident end face so that the incident light passes through the light receiving layer obliquely with respect to the layer thickness direction. After the reverse mesa etching groove forming step for forming the end surface, the depth from the upper side of the light incident end surface to the bottom surface of the etching groove is H, and the depth of the cleavage flaw is Hc, and the needle for forming the cleavage flaw is formed. When the tip opening angle is 2δ, the groove width 2W at the upper end of the reverse mesa etching groove is 2W ≦ 2 (H + Hc) tan δ.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The manufacturing method of the semiconductor light receiving element of the present invention is such that, in the manufacture of the refractive semiconductor light receiving element, by setting the groove width at the upper end of the reverse mesa etching groove after the step of forming the reverse mesa etching groove for forming the light incident end face, After the end face formation etching, a groove having a shape as shown in FIG. 1 is formed.
[0009]
FIG. 1 also schematically shows a needle for simultaneously forming a cleavage flaw. As shown in FIG. 1, when the depth from the upper side to the bottom surface of the light incident end face 11 is H, the depth of the cleavage flaw is Hc, and the tip opening angle of the needle for forming the cleavage flaw is 2δ, When the groove width at the upper end of the reverse mesa after manufacturing the light incident end face is set to 2W ≦ 2 (H + Hc) tan δ in the figure, and the cleavage needle 19 is lowered from above to the vicinity of the groove center, Works as a guide and can form a cleavage flaw in the center with good reproducibility. Even if the groove width is narrowed and the upper sides of both mesas are damaged by the contact of the inclined portion of the needle 19, the portion always acts as a guide, and therefore a cleavage flaw can be formed in the central portion with good reproducibility. For this reason, by applying a mechanical shock, cleavage occurs with good reproducibility starting from the cleaved portion. Further, if the groove width 2W is set to 10 μm or less, the cleavage can be performed in the very vicinity of 5 μm or less from the light incident end face.
[0010]
FIG. 4 shows the etching when the (001) surface InP substrate 15 is etched by bromine-based etching when the etching groove width is sufficiently wide to expose the (111) plane to form a reverse mesa shape (θ = 55 degrees). It is a schematic diagram of a cross section. If the depth of the cleavage flaw is Hc and the groove width 2W at the upper end of the reverse mesa after manufacturing the light incident end face is 2W ≦ 2 (H + Hc) tan δ, the reverse mesa portion is formed on both sides of the needle. Thus, when the cleavage needle is lowered from above to the vicinity of the center of the groove, the upper side of the opposite mesa serves as a guide, and a cleavage flaw can be formed in the center with good reproducibility.
[0011]
Here, as a typical example, when light from a silica-based single mode fiber (SMF) is received with high efficiency without a lens system by a refractive semiconductor light receiving element, a silica-based single mode fiber (SMF: spot size is 10 μm). ) Has a beam diameter of 15 μm and a light intensity of 99% or more, the depth D of the light incident end face 11 must be at least 15 μm. In order to set D to 15 μm, H was required to be 26 μm according to experiments. Usually, the opening angle of the tip of the needle used in the automatic cleaving flaw forming apparatus is often about 2δ = 60 degrees or more.
[0012]
Here, when 2δ = 60 degrees and the cleavage crack depth Hc is set to zero, the groove width of the upper end of the reverse mesa after manufacturing the light incident end face is 30 μm or less (2 × (26 × tan (30 degrees)) = When the end face forming mesa etching is performed so as to be 30) and the cleaving needle is lowered from above to the vicinity of the groove center, the upper side of the opposite mesa acts as a guide, and a cleavage flaw can be formed at a substantially central position with good reproducibility. Actually, since the needle is further lowered by a finite cleavage flaw depth Hc, the inclined portion of the needle is surely brought into contact with and guided by the reverse mesa portion. For this reason, by applying a mechanical shock, cleavage occurs with good reproducibility starting from the cleaved portion.
[0013]
This is different from the prior art in that in the formation of cleavage flaws, there is almost no positional displacement for scratching, and cleaving can be performed with desired accuracy in the vicinity of the incident end face.
[0014]
As described above, this manufacturing method has almost no variation in misalignment in the formation of cleavage flaws and can be cleaved in the vicinity of the incident end face. Therefore, it is possible to easily cut out the element while sufficiently satisfying the distance to the light incident end face required for optical coupling with a fiber or the like. In addition, since the device can be cut out using both sides of the etched groove as the light incident end face, the yield of the device from the wafer is greatly improved.
[0015]
【Example】
Hereinafter, although the suitable Example of this invention is described, this invention is not limited to this.
[0016]
[Example 1]
FIG. 5 is a diagram for explaining the first embodiment of the present invention. 11 is a light incident end face, 12 is a 1 μm thick p-InP layer, 13 is a 1 μm thick InGaAs light receiving layer, 14 is a 1 μm thick n-InP layer, 15 is a semi-insulating InP substrate, 16 is a p electrode, and 17 is an n electrode. It is. The light receiving layer area of the element is 14 μm × 20 μm. The light incident end face 11 was formed by wet etching using bromomethanol using a silicon nitride film mask. At this time, the light incident end face 11 was formed by utilizing the fact that the (111) A face was formed in a reverse mesa shape as shown in the figure by wet etching using bromomethanol on a (001) surface wafer. The groove width at the upper end of the reverse mesa etching groove after this step is 7 μm. Even if the groove width at the upper end of the reverse mesa etching groove is as narrow as 7 μm, the depth D of the light incident end face 11 is as deep as 20 μm and the depth H to the bottom is about 35 μm, so that a good incident end face can be formed. ing.
[0017]
When the narrow needle 19 having a needle tip opening angle of 2δ = 20 degrees is lowered from above to near the center of the groove and the cleaving flaw depth Hc is about 10 μm, the conical portion contacts the upper side of the opposite mesa. This part served as a guide, and a cleavage flaw was formed in the center with good reproducibility.
This satisfies the condition 2W = 7 <2 × (35 + 10) × tan (10 degrees) = 15.9 μm of claim 1.
The cleavage flaw Hc was formed over a length of about 200 μm in a part of the wafer edge. Of course, since the strength of the semiconductor is weaker than that of the needle, the reverse mesa part where the needle comes into contact is finely damaged. I was able to form. Therefore, by providing a mechanical shock here, it was possible to perform good cleavage over several centimeters starting from the cleavage flaw, and both sides of this cleavage could be used as the light incident end face of the light receiving element.
[0018]
In this embodiment, the groove width at the upper end of the reverse mesa etching groove after the process of forming the reverse mesa etching groove for forming the light incident end face is 7 μm. However, even if the groove width is 15 μm, good cleavage is possible at the groove center. It was. The reverse mesa portion may be formed using another wet etching solution or a dry etching method, or may be formed using another crystal plane or controlling the angle using the adhesion of the etching mask. .
[0019]
When a non-reflective film is formed on the incident end face, and light with a wavelength of 1.55 μm is introduced using a tip-end fiber, a large value of light receiving sensitivity of 0.9 A / W or more can be obtained with an applied reverse bias of 3 V, and a 3 dB band A high-speed operation of 40 GHz was possible. At this time, the protrusion of the substrate portion immediately below the light incident end face portion is as small as several microns, and hardly interferes with the proximity of the fiber.
[0020]
In this embodiment, the groove of the etching mask uses the linear stripe-shaped etching mask 21 as shown in FIG. 7A, but the uneven etching mask as shown in FIGS. 7B and 7C. Various shapes such as 22 and tapered concavo-convex etching mask 23 may be used as long as the width of the groove where the cleavage flaw is formed matches the purpose of the present invention.
[0021]
In this embodiment, the p-InP layer on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used, and the main conductivity type of the semiconductor on the surface side is changed to Zn diffusion or ion implantation. And subsequent annealing.
[0022]
The semiconductor light-receiving element portion is on a semiconductor layer having the first conductivity type, and includes a light-receiving layer and a Schottky formed of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer, or a multiple quantum well semiconductor layer. A multilayer structure in which a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode is interposed between the electrode and an electrode. the or a semiconductor light receiving element formed by configured on a substrate, the Schottky barrier height with high semiconductor layer, in 1-x-y Ga x Al y As (0 ≦ x ≦ 1,0 ≦ y ≦ 1) or in 1-x-y Ga x Al y as (0 ≦ x ≦ 1,0 ≦ y ≦ 1) thin on the Part In 1-u Ga u as 1 -v P v (0 ≦ u ≦ 1,0 ≦ v ≦ 1) It may be constituted by a semiconductor light receiving device that.
[0023]
Further, in this embodiment, a semi-insulating InP is used as a substrate and an n-InP layer is used on the substrate side. However, even if a p-InP layer is used, the above-described p and n are reversed in the same manner. It can be manufactured, and can also be manufactured using an n-InP or p-InP substrate.
[0024]
Here, a bulk of uniform composition is used as the light receiving layer. However, a separate-absorption-graded-multiplication (SAGM) structure, a separate abstraction and multiplexing superstructure (SAM-SL) structure, and the like used for an avalanche photodiode are used. Needless to say, a semiconductor layer having a superlattice structure may be used. Further, it goes without saying that a material system such as InGaAlAs / InGaAsP or AlGaAs / GaAs system other than the InGaAsP / InP system or a material system with inherent strain may be used.
[0025]
[Example 2]
FIG. 6 is a diagram for explaining a second embodiment of the present invention. 11 is a light incident end face, 12 is a 1 μm thick p-InP layer, 13 is a 1 μm thick InGaAs light receiving layer, 14 is a 1 μm thick n-InP layer, 15 is a semi-insulating InP substrate, 16 is a p electrode, and 17 is an n electrode. It is. The light receiving layer area of the element is 30 μm × 50 μm. The light incident end face was formed by wet etching using bromomethanol using a silicon nitride film mask. At this time, the light incident end face was formed by utilizing the fact that the (111) A face was formed in a reverse mesa shape as shown in the figure when wet etching using bromomethanol was performed on a (001) surface wafer. The groove width at the upper end of the reverse mesa etching groove after this step is 30 μm. Even if the groove width at the upper end of the reverse mesa etching groove is 30 μm, the depth D of the light incident end face is increased to 20 μm to form a good incident end face, and the depth H to the bottom is about 35 μm. When an automatic cleaving flaw forming apparatus having a pyramidal needle is used and the needle 19 having a needle tip opening angle of about 2δ = 60 degrees in a plane perpendicular to the direction in which the cleaving flaw is formed is lowered from above to the vicinity of the groove center The pyramid part was in contact with the upper side of the reversed mesa, and this part served as a guide, and a cleavage flaw was formed in the center with good reproducibility.
[0026]
Here, the needle 19 is symmetrical, but if the groove width is set so that the upper ends of both mesas serve as guides even if the left and right are asymmetrical, the cleavage flaw position is intended from the center of the groove. Can be formed with good reproducibility. Cleaved scratches were formed on a part of the wafer edge to about 200 μm. Of course, the strength of the semiconductor is weaker than that of the needle, so the reverse mesa part where the needle comes into contact is finely damaged, but the mesa part still acts as a guide, and the crevice scratches are reproducible in the central part of the groove. I was able to form.
[0027]
Therefore, by providing a mechanical shock here, it was possible to perform good cleavage over several centimeters starting from the cleavage flaw, and both sides of this cleavage could be used as the light incident end face of the light receiving element. The reverse mesa portion may be formed using another wet etching solution or a dry etching method, or may be formed using another crystal plane or controlling the angle using the adhesion of the etching mask. . When a non-reflective film was formed on the incident end face, and light having a wavelength of 1.55 μm was introduced using a single mode fiber (SMF), a large value of light receiving sensitivity of 0.9 A / W or more was obtained with an applied reverse bias of 3 V. . At this time, the protrusion of the substrate portion immediately below the light incident end face portion is 10 μm or more, but the misalignment tolerance in the optical axis direction at which the light receiving sensitivity to the SMF of the present light receiving element is reduced by 1 dB is 80 μm, which is practically a problem. Don't be.
[0028]
In this embodiment, the groove of the etching mask has a linear stripe shape as shown in FIG. 7A, but the uneven shape or tapered uneven shape as shown in FIGS. 7B and 7C. In addition to the shape and the like, various shapes may be used as long as the width of the groove where the cleavage flaw is formed matches the purpose of the present invention. In this embodiment, the p-InP layer on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used, and the main conductivity type of the semiconductor on the surface side is changed to Zn diffusion or ion implantation. And subsequent annealing.
The semiconductor light-receiving element portion is on a semiconductor layer having the first conductivity type, and includes a light-receiving layer and a Schottky formed of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer, or a multiple quantum well semiconductor layer. A multilayer structure in which a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode is interposed between the electrode and an electrode. the or a semiconductor light receiving element formed by configured on a substrate, the Schottky barrier height with high semiconductor layer, in 1-x-y Ga x Al y As (0 ≦ x ≦ 1,0 ≦ y ≦ 1) or in 1-x-y Ga x Al y as (0 ≦ x ≦ 1,0 ≦ y ≦ 1) thin on the Part In 1-u Ga u as 1 -v P v (0 ≦ u ≦ 1,0 ≦ v ≦ 1) It may be constituted by a semiconductor light receiving device that.
Further, in this embodiment, a semi-insulating InP is used as a substrate and an n-InP layer is used on the substrate side. However, even if a p-InP layer is used, the above-described p and n are reversed in the same manner. It can be manufactured, and can also be manufactured using an n-InP or p-InP substrate. Here, a bulk of a uniform composition is used as the light receiving layer. However, a separate-absorption-graded-multiplication (SAGM) structure, a separate abstraction and multiplexing superstructure (SAM-SL) structure, and the like used in an avalanche photodiode are used. Needless to say, a semiconductor layer having a superlattice structure may be used. Further, it goes without saying that a material system such as InGaAlAs / InGaAsP or AlGaAs / GaAs system other than the InGaAsP / InP system or a material system with inherent strain may be used.
[0029]
【The invention's effect】
As described above, in the method of manufacturing a semiconductor light receiving element according to the present invention, the groove width of the upper end of the reverse mesa etching groove after the step of forming the reverse mesa etching groove for forming the light incident end face is determined. By setting it narrow, when the needle for cleaving the groove portion is lowered from above after the end surface formation etching, the cone or pyramid of the needle contacts the mesa portion of the incident end surface, and this portion Works as a guide, and can cleave flaws with high accuracy in the center. Therefore, by applying a mechanical shock here, it is possible to cleave with good reproducibility starting from this cleavage flaw portion. As described above, this manufacturing method can accurately form a cleavage flaw at the center portion of the groove, can be cleaved with good reproducibility starting from this cleavage flaw portion, and the protruding portion of the substrate from the light incident end face portion is short. it can. For this reason, it becomes possible to cut out the element easily and with good reproducibility while sufficiently satisfying the distance to the light incident end face required for optical coupling with a fiber or the like. In addition, the device can be cut out using both sides of the etched groove as the light incident end faces, and the area of the groove portion that is wasted on the wafer can be reduced, so that the yield of the device from the wafer is greatly improved.
[Brief description of the drawings]
FIG. 1 schematically shows a shape after end face formation etching according to the present invention.
FIG. 2 is a diagram illustrating a refractive semiconductor light receiving element.
FIG. 3 is a schematic view of a wafer structure in which a refractive semiconductor light receiving element portion is arranged in parallel with a groove portion of an inverted mesa.
FIG. 4 schematically shows an inverted mesa shape in which InP on a (001) surface is etched by bromo etching and a (111) surface is exposed.
FIG. 5 is a diagram for explaining a first embodiment of the present invention.
FIG. 6 is a diagram for explaining a second embodiment of the present invention.
FIG. 7 is an example of a groove shape of an etching mask.
[Explanation of symbols]
11 light incident end face 12 1 μm thick p-InP layer 13 1 μm thick InGaAs light receiving layer 14 1 μm thick n-InP layer 15 semi-insulating InP substrate 16 p electrode 17 n electrode 18 cleavage end face 21 etching mask 22 etching mask 23 etching mask

Claims (1)

基板上の表面に形成された光受光層を含む半導体多層構造よりなる受光部分と、端面に表面側から離れるに従い内側に傾斜した光入射端面を設けることにより、該光入射端面で入射光を屈折させて、入射光が前記光受光層を層厚方向に対し斜めに通過するようにした屈折型半導体受光素子の製造において、
光入射端面形成のための逆メサエッチング溝形成工程後に、該光入射端面の上辺からエッチング溝の最底面までの深さをH、劈開キズの深さをHcとし、劈開キズを形成するための針の先端部開き角を2δとした時に、逆メサエッチング溝上端の溝幅2Wが、2W≦2(H+Hc)tan δであることを特徴とする半導体受光素子の製造方法。
Receiving light at the light incident end surface by providing a light receiving portion having a semiconductor multilayer structure including a light receiving layer formed on the surface of the substrate and a light incident end surface inclined inward as the distance from the surface side increases. In the manufacture of a refractive semiconductor light receiving element in which incident light passes through the light receiving layer obliquely with respect to the layer thickness direction,
After the reverse mesa etching groove forming step for forming the light incident end face, the depth from the upper side of the light incident end face to the bottom face of the etching groove is H, and the depth of the cleavage flaw is Hc. 2. A method of manufacturing a semiconductor light receiving element, wherein a groove width 2W at an upper end of a reverse mesa etching groove is 2W ≦ 2 (H + Hc) tan δ, when an opening angle of a tip of a needle is 2δ.
JP10737798A 1998-04-17 1998-04-17 Manufacturing method of semiconductor light receiving element Expired - Fee Related JP3620772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10737798A JP3620772B2 (en) 1998-04-17 1998-04-17 Manufacturing method of semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10737798A JP3620772B2 (en) 1998-04-17 1998-04-17 Manufacturing method of semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JPH11307804A JPH11307804A (en) 1999-11-05
JP3620772B2 true JP3620772B2 (en) 2005-02-16

Family

ID=14457576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10737798A Expired - Fee Related JP3620772B2 (en) 1998-04-17 1998-04-17 Manufacturing method of semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JP3620772B2 (en)

Also Published As

Publication number Publication date
JPH11307804A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
CN113330581B (en) Etched surface in multiple quantum well structure
KR100681987B1 (en) Semiconductor device, its manufacturing method and substrate for manufacturing a semiconductor device
US6335559B1 (en) Semiconductor device cleave initiation
US6360048B1 (en) Waveguide optical semiconductor device, method of fabricating the same and optical device module
US6108481A (en) Optical semiconductor device and its manufacturing method
JP3732551B2 (en) Manufacturing method of semiconductor device
US5976904A (en) Method of manufacturing semiconductor device
US6509580B2 (en) Semiconductor device with current confinement structure
JP3620772B2 (en) Manufacturing method of semiconductor light receiving element
US6944386B2 (en) Optical devices
EP1372228B1 (en) Integrated semiconductor laser and waveguide device
US6668000B2 (en) System and method of optically testing multiple edge-emitting semiconductor lasers residing on a common wafer
EP0772268B1 (en) Laser diode having narrowed radiation angle characteristic
US6445723B1 (en) Laser source with submicron aperture
JP7297875B2 (en) Gain-guided semiconductor laser and manufacturing method thereof
JP3027934B2 (en) Method for manufacturing semiconductor device
CN220732002U (en) Laser wafer structure and laser
US11984704B2 (en) Gain-guided semiconductor laser and method of manufacturing the same
JP3928901B2 (en) Semiconductor photo detector
EP0871049A1 (en) Semiconductor device
JP3608763B2 (en) Semiconductor light receiving element and method for manufacturing semiconductor light receiving device
JP2005520328A (en) Method for manufacturing optical communication device and optical communication device
JPS6057990A (en) Semiconductor laser
JPH11251682A (en) Semiconductor optical element
JPH03120889A (en) Semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20041112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees