JPH11307699A - Heat dissipating spacer - Google Patents

Heat dissipating spacer

Info

Publication number
JPH11307699A
JPH11307699A JP10728498A JP10728498A JPH11307699A JP H11307699 A JPH11307699 A JP H11307699A JP 10728498 A JP10728498 A JP 10728498A JP 10728498 A JP10728498 A JP 10728498A JP H11307699 A JPH11307699 A JP H11307699A
Authority
JP
Japan
Prior art keywords
heat
thermal conductivity
heat radiation
powder
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10728498A
Other languages
Japanese (ja)
Other versions
JP3640525B2 (en
Inventor
Kazuyoshi Ikeda
和義 池田
Hiroaki Sawa
博昭 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP10728498A priority Critical patent/JP3640525B2/en
Publication of JPH11307699A publication Critical patent/JPH11307699A/en
Application granted granted Critical
Publication of JP3640525B2 publication Critical patent/JP3640525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat dissipating spacer having high flexibility and high thermal conductivity. SOLUTION: A heat dissipating spacer contains 40 to 60 vol.% thermally conductive filler in which a volume ratio of zinc oxide powder of 0.3 to 1 μm in average grain diameter to silicon nitride powder of 10 to 50 μm in average grain diameter is (0.5:9.5) to (3:7), and 60 to 40 vol.% addition polymerization- type liquid silicone solid, having 2 W/m.K or above in thermal conductivity, and Asker C hardness of 50 or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高柔軟性を有し、
電子機器に組み込んでも発熱性電子部品に対する負荷の
小さい放熱スペーサーに関する。
TECHNICAL FIELD The present invention has high flexibility,
The present invention relates to a heat-dissipating spacer having a small load on a heat-generating electronic component even when incorporated in an electronic device.

【0002】[0002]

【従来の技術】トランジスタ、サイリスタ等の発熱性電
子部品においては、使用時に発生する熱の除熱が重要な
課題となっている。従来、その除熱は、発熱性電子部品
を電気絶縁性の熱伝導性シートを介して放熱フィンや金
属板に取り付けることによって行われており、その熱伝
導性シートとしてはシリコーンゴムに窒化硼素、アルミ
ナ等の熱伝導性フィラーの充填された放熱シートが主に
使用されている。
2. Description of the Related Art In heat-generating electronic components such as transistors and thyristors, removal of heat generated during use is an important issue. Conventionally, the heat removal is performed by attaching a heat-generating electronic component to a radiating fin or a metal plate via an electrically insulating heat conductive sheet, and the heat conductive sheet includes silicone rubber, boron nitride, A heat dissipation sheet filled with a heat conductive filler such as alumina is mainly used.

【0003】一方、最近の電子機器の高密度化、小型軽
量化に伴い、放熱フィン等を取り付けるスペースがない
場合や、電子機器が密閉されていて放熱フィンから外部
への放熱が困難な場合においては、発熱性電子部品から
発生した熱を電子機器のケース等から直接伝熱する方式
がとられている。この方式においては、発熱性電子部品
とケースの間のスペースを埋めるだけの厚みを有する高
柔軟性放熱スペーサーが用いられている。また、IC化
やLSI化された発熱性電子部品がプリント基板に実装
されている場合の放熱においても、プリント基板と放熱
フィンとの間に高柔軟性放熱スペーサーが用いられてい
る。
[0003] On the other hand, with the recent increase in density and miniaturization of electronic devices, there is no space for mounting radiating fins or the like, or when electronic devices are sealed and it is difficult to radiate heat from the radiating fins to the outside. Is a method in which heat generated from a heat-generating electronic component is directly transferred from a case or the like of an electronic device. In this method, a highly flexible heat radiation spacer having a thickness sufficient to fill a space between the heat-generating electronic component and the case is used. Also, in the case of heat dissipation when a heat-generating electronic component made into an IC or an LSI is mounted on a printed board, a highly flexible heat dissipation spacer is used between the printed board and the heat dissipation fins.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来、
一般に使用されている放熱シートは、ショアー硬度が9
0以上と硬いために形状追従性が悪く、発熱性電子部品
に密着させるために押圧すると応力に弱い発熱性電子部
品は破損する問題があった。このような問題は、熱伝導
性フィラーとして、窒化珪素粉末と酸化亜鉛粉末を併用
してなる放熱シート(特開平2−20558号公報)に
おいても、同様にあった。
However, conventionally,
A generally used heat radiation sheet has a Shore hardness of 9
Since the hardness is 0 or more, the shape following ability is poor, and there is a problem that the heat-generating electronic component, which is weak to the stress, is damaged when pressed to adhere to the heat-generating electronic component. Such a problem also occurred in a heat-radiating sheet (Japanese Patent Laid-Open No. 2-20558) in which silicon nitride powder and zinc oxide powder were used in combination as thermal conductive fillers.

【0005】そこで、放熱シートよりも高柔軟な放熱ス
ペーサーが開発されている。この放熱スペーサーにおい
ては、その高柔軟性を発現させるためには熱伝導性フィ
ラーの充填量を少なくしなければならなかったので、熱
伝導性は小さいものであった。従って、最近の高密度化
された更なる高熱伝導性の要求される放熱スペーサーと
しては適用できない場合もでてきた。
[0005] Therefore, heat radiation spacers that are more flexible than heat radiation sheets have been developed. In this heat radiation spacer, the amount of the thermally conductive filler had to be reduced in order to exhibit its high flexibility, so that the thermal conductivity was small. Therefore, in some cases, it cannot be applied as a heat-dissipating spacer that has been required to have higher thermal conductivity and that has recently been densified.

【0006】本発明は上記に鑑みてなされたものであ
り、高柔軟性でかつ高熱伝導性を有する放熱スペーサー
の提供を目的とするものである。
[0006] The present invention has been made in view of the above, and an object of the present invention is to provide a heat radiation spacer having high flexibility and high thermal conductivity.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、平
均粒子径0.3〜1μmの酸化亜鉛粉末:平均粒子径1
0〜50μmの窒化珪素粉末の体積比が0.5:9.5
〜3:7である熱伝導性フィラー40〜60体積%と、
付加重合型液状シリコーン固化物60〜40体積%とを
含み、熱伝導率2W/m・K以上、アスカーC硬度50
以下であることを特徴とする放熱スペーサーである。
That is, the present invention relates to a zinc oxide powder having an average particle diameter of 0.3 to 1 μm: an average particle diameter of 1 μm.
The volume ratio of the silicon nitride powder of 0 to 50 μm is 0.5: 9.5.
33: 7, a thermally conductive filler of 40 to 60% by volume,
60 to 40% by volume of a solidified addition-polymerized liquid silicone, a thermal conductivity of 2 W / m · K or more and an Asker C hardness of 50
A heat radiation spacer characterized by the following.

【0008】[0008]

【発明の実施の形態】以下、さらに詳しく本発明につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0009】本発明で使用されるシリコーン固化物は、
高柔軟性を有するものであり、付加重合型液状シリコー
ンの固化物である。この付加重合型液状シリコーンとし
ては、一分子中にビニル基とH−Si基の両方を有する
一液性のシリコーン、または末端あるいは側鎖にビニル
基を有するオルガノポリシロキサンと末端あるいは側鎖
に2個以上のH−Si基を有するオルガノポリシロキサ
ンとの二液性のシリコーンなどをあげることができる。
このような付加重合型液状シリコーンの市販品として
は、例えば東レダウコーニング社製、商品名「CY52
−283A/B」等を例示することができる。放熱スペ
ーサーの柔軟性は、付加反応によって形成される架橋密
度、熱伝導性フィラー量等によって調整することができ
る。
The solidified silicone used in the present invention is:
It has high flexibility and is a solidified addition polymerization type liquid silicone. Examples of the addition polymerization type liquid silicone include a one-part silicone having both a vinyl group and an H-Si group in one molecule, or an organopolysiloxane having a vinyl group in a terminal or a side chain and two or more in the molecule. A two-part silicone with an organopolysiloxane having at least two H-Si groups can be used.
As a commercially available product of such an addition polymerization type liquid silicone, for example, "CY52" manufactured by Toray Dow Corning Co., Ltd.
-283A / B "and the like. The flexibility of the heat radiation spacer can be adjusted by the crosslink density formed by the addition reaction, the amount of the thermally conductive filler, and the like.

【0010】本発明の放熱スペーサー中のシリコーン固
化物の含有量は40〜60体積%、好ましくは45〜5
5体積%である。40体積%未満では放熱スペーサーの
柔軟性が十分でなくなり、また60体積%を越えると熱
伝導性が低下する。
The content of the solidified silicone in the heat radiation spacer of the present invention is 40 to 60% by volume, preferably 45 to 5% by volume.
5% by volume. If it is less than 40% by volume, the flexibility of the heat radiation spacer is not sufficient, and if it exceeds 60% by volume, the thermal conductivity decreases.

【0011】本発明で使用される熱伝導性フィラーは酸
化亜鉛と窒化珪素との混合粉末である。酸化亜鉛の平均
粒子径は0.3〜1μm、好ましくは0.5〜0.9μ
mである。0.3μm未満ではスラリー粘度が高くなっ
たり、硬化が阻害されたりするので好ましくない。ま
た、1μmをこえると、目的とする熱伝導性が得られな
い。酸化亜鉛の製造法には、金属亜鉛から製造する方
法、亜鉛鉱石から直接製造する方法、更には湿式による
製造方法があるが、本発明においては、純度や表面活性
の点から金属亜鉛から製造したものが望ましい。
The heat conductive filler used in the present invention is a mixed powder of zinc oxide and silicon nitride. The average particle size of zinc oxide is 0.3-1 μm, preferably 0.5-0.9 μm
m. When the thickness is less than 0.3 μm, the slurry viscosity is increased and the curing is inhibited, which is not preferable. If the thickness exceeds 1 μm, the desired thermal conductivity cannot be obtained. The method of producing zinc oxide includes a method of producing from metallic zinc, a method of producing directly from zinc ore, and a producing method by wet method.In the present invention, the method of producing from metallic zinc is used in terms of purity and surface activity. Things are desirable.

【0012】窒化珪素粉末は、金属シリコンの直接窒化
法、シリカ還元窒化法、ハロゲン化ケイ素法等によって
製造されたものが使用され、その平均粒子径は10〜5
0μm、好ましくは15〜30μmである。10μm未
満では、シリコーンの硬化が阻害され、また50μmを
こえると十分な熱伝導性が得られなくなる。
As the silicon nitride powder, one produced by a direct nitridation method of metal silicon, a silica reduction nitridation method, a silicon halide method or the like is used.
0 μm, preferably 15 to 30 μm. If it is less than 10 μm, curing of the silicone is inhibited, and if it exceeds 50 μm, sufficient thermal conductivity cannot be obtained.

【0013】酸化亜鉛粉末と窒化珪素粉末の割合は、体
積比で、前者:後者が0.5:9.5〜3:7、好まし
くは1:9〜2:8である。酸化亜鉛の割合がこれより
も少ないと熱伝導性が不十分となり、また多いとシリコ
ーン固化物の硬化が阻害される。
The volume ratio of the zinc oxide powder to the silicon nitride powder is 0.5: 9.5 to 3: 7, preferably 1: 9 to 2: 8, for the former: the latter. If the proportion of zinc oxide is lower than this, thermal conductivity becomes insufficient, and if it is higher, curing of the solidified silicone is inhibited.

【0014】本発明の放熱スペーサーの熱伝導率は2W
/m・K以上であることが好ましい。熱伝導率が2W/
m・K未満では、十分な放熱特性が得られない。また、
硬度は、アスカーC硬度で50以下であることが好まし
い。アスカーC硬度が50をこえると、放熱スペーサー
を発熱性電子部品に押しつけた際に、形状追従性が悪か
ったり、圧力がかかりすぎて発熱性電子部品を破損させ
たりする。
The thermal conductivity of the heat radiation spacer of the present invention is 2 W
/ M · K or more. Thermal conductivity 2W /
If it is less than m · K, sufficient heat radiation characteristics cannot be obtained. Also,
The hardness is preferably 50 or less in Asker C hardness. If the Asker C hardness exceeds 50, when the heat radiation spacer is pressed against the heat-generating electronic component, the shape following property is poor, or the heat-generating electronic component is damaged due to excessive pressure.

【0015】本発明の放熱スペーサーを製造する方法の
一例を示すと、一液性のシリコーン、または末端あるい
は側鎖にビニル基を有するオルガノポリシロキサンと末
端あるいは側鎖に2個以上のH−Si基を有するオルガ
ノポリシロキサンとの二液性のシリコーンに、酸化亜鉛
と窒化珪素の混合粉末を混合してスラリーを調製した
後、それをフッ素樹脂やステンレスなどからなる型に流
し込み、真空脱泡装置等にて脱泡した後、加熱してシリ
コーンを固化させ、冷却後型より外し、更に必要に応じ
て加熱処理を行う方法である。
An example of the method for producing the heat radiation spacer of the present invention is as follows. One-part silicone or organopolysiloxane having a vinyl group at the terminal or side chain and two or more H-Si compounds at the terminal or side chain are shown. After preparing a slurry by mixing a mixed powder of zinc oxide and silicon nitride with a two-part silicone with an organopolysiloxane having a group, the slurry is poured into a mold made of a fluororesin or stainless steel, etc. After defoaming, the silicone is heated to solidify the silicone, cooled, removed from the mold, and further subjected to a heat treatment if necessary.

【0016】上記方法において、その成形方法は特に制
限されないが、スラリーの流し込みによって製造する場
合は、スラリー粘度は2万cps以下の低粘度であるこ
とが望ましく、また押出し法で製造する場合にはスラリ
ー粘度は50万cps以上の粘度であることが望まし
い。増粘に際しては、シリカ超微粉(例えばアエロジ
ル)や十〜数百μmのシリコーンパウダー等が使用され
る。
In the above method, the molding method is not particularly limited, but when the slurry is produced by casting, the slurry viscosity is preferably as low as 20,000 cps or less. It is desirable that the slurry has a viscosity of 500,000 cps or more. For thickening, ultrafine silica powder (for example, Aerosil) or tens to hundreds of μm silicone powder is used.

【0017】本発明の放熱スペーサーをシート状にした
場合の厚みは、一般的には0.3〜20mm、好ましく
は0.5〜6mmである。また、その平面ないし断面の
形状は、特に制限はなく、例えば三角形、四角形、五角
形等の多角形、円形、楕円形等である。また、その表面
は球面状であってもよい。
The thickness of the heat radiation spacer of the present invention in the form of a sheet is generally 0.3 to 20 mm, preferably 0.5 to 6 mm. The shape of the plane or cross section is not particularly limited, and may be, for example, a polygon such as a triangle, a quadrangle, or a pentagon, a circle, an ellipse, or the like. Further, the surface may be spherical.

【0018】このような放熱スペーサーは、熱伝導性が
大きく、また応力に対して非常に弱い発熱性電子部品に
押しつけても発熱性電子部品が損傷する危険性が極めて
小さい。また、発熱性電子部品が密集している場合にお
いても形状追従が十分に行われる。従って、放熱フィン
を取り付けるスペースがない場合や、電子機器が密閉さ
れていて放熱フィンから外部への放熱が困難な場合にお
いても、発熱性電子部品とケースの間に本発明の放熱ス
ペーサーを埋め込むことによって、高度な放熱を行うこ
とができる。
Such a heat radiating spacer has high thermal conductivity, and the risk of damaging the heat-generating electronic component even when pressed against the heat-generating electronic component, which is very weak against stress, is extremely small. Further, even when the heat-generating electronic components are densely formed, the shape following is sufficiently performed. Therefore, even when there is no space for mounting the heat radiation fins, or when the electronic device is sealed and it is difficult to radiate heat from the heat radiation fins to the outside, the heat radiation spacer of the present invention should be embedded between the heat generating electronic component and the case. Thereby, high heat radiation can be performed.

【0019】更に、本発明の放熱スペーサーには、平均
粒子径25μm以下のアルミナ粉末及び/又はマグネシ
ア粉末を15体積%以下を含ませることによって、十分
熱伝導性を保持した状態で、柔軟性を向上させることが
できる。
Further, the heat radiation spacer of the present invention contains 15% by volume or less of alumina powder and / or magnesia powder having an average particle size of 25 μm or less, so that flexibility is maintained while maintaining sufficient thermal conductivity. Can be improved.

【0020】[0020]

【実施例】以下、実施例、比較例を挙げてさらに具体的
に本発明を説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0021】実施例1〜5 比較例1〜7 シリコーンA液(ビニル基を有するオルガノポリシロキ
サン)と、シリコーンB液(H−Si基を有するオルガ
ノポリシロキサン)の二液性の付加重合型液状シリコー
ン(東レダウコーニング社製、商品名「CY52−28
3」)と、表1に示される酸化亜鉛粉末等の無機質粉末
を種々混合して得られた熱伝導性フイラーとを表2に示
す割合で配合し、粘度約10万〜15万cpsのスラリ
ーを調合した。これを、室温で真空脱泡した後、ステン
レス製型(1mm×110mm×110mm)に充填
し、プレス圧力100Kg/cm2 でプレス成形した。
Examples 1 to 5 Comparative Examples 1 to 7 Two-part addition polymerization type liquids of silicone A liquid (organopolysiloxane having a vinyl group) and silicone B liquid (organopolysiloxane having an H-Si group) Silicone (trade name “CY52-28, manufactured by Toray Dow Corning Co., Ltd.)
3 ") and a thermally conductive filler obtained by variously mixing inorganic powders such as zinc oxide powder shown in Table 1 in a ratio shown in Table 2, and a slurry having a viscosity of about 100,000 to 150,000 cps. Was prepared. After vacuum degassing at room temperature, this was filled in a stainless steel mold (1 mm × 110 mm × 110 mm) and press-molded at a press pressure of 100 kg / cm 2 .

【0022】これを150℃で1時間加熱し、シリコー
ンを固化させてから型より取り外し、更に150℃で2
2時間加熱してシリコーン固化物(1mm×110mm
×110mm)からなる放熱スペーサーを製造した。
This was heated at 150 ° C. for 1 hour to solidify the silicone and then removed from the mold.
Heat for 2 hours to solidify silicone (1mm x 110mm
× 110 mm).

【0023】得られた放熱スペーサーについて、以下に
従うアスカーC硬度と熱伝導率を測定した。それらの結
果を表2に示す。
With respect to the obtained heat radiation spacer, Asker C hardness and thermal conductivity were measured according to the following. Table 2 shows the results.

【0024】(1)アスカーC硬度 放熱スペーサーを数枚重ねて厚みを10mmとし、アス
カーC硬度計にて測定した。
(1) Asker C Hardness Several heat dissipation spacers were stacked to a thickness of 10 mm, and measured with an Asker C hardness meter.

【0025】(2)熱伝導率 放熱スペーサーをTO−3型銅製ヒーターケースと銅板
との間にはさみ、トルクレンチにより締め付けトルク2
00g−cmをかけてセットした後、銅製ヒーターケー
スに電力5Wをかけて4分間保持し、銅製ヒーターケー
スと銅板との温度差(℃)を測定し、式〔温度差(℃)
/電力 (W)〕により熱抵抗(℃/W)を求め、次い
で、式〔厚み(m)/{熱抵抗(℃/W)×測定面積
(m2 )}〕により、熱伝導率(Wm・K)を算出し
た。
(2) Thermal conductivity A heat radiation spacer is sandwiched between a TO-3 type copper heater case and a copper plate, and tightened with a torque wrench.
After setting by applying 00 g-cm, a power of 5 W was applied to the copper heater case and held for 4 minutes, the temperature difference (° C.) between the copper heater case and the copper plate was measured, and the equation [temperature difference (° C.)
/ Power (W)] to determine the thermal resistance (° C./W). Then, according to the formula [thickness (m) / {thermal resistance (° C./W)×measured area (m 2 )}], the thermal conductivity (Wm K) was calculated.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表1〜2より、本発明の放熱スペーサー
は、アスカーC硬度で50以下と柔軟性に優れており、
しかも熱伝導率が2W/m・K以上と熱伝導性が良好な
ものである。
From Tables 1 and 2, the heat radiation spacer of the present invention is excellent in flexibility with an Asker C hardness of 50 or less.
In addition, the thermal conductivity is 2 W / m · K or more and the thermal conductivity is good.

【0029】[0029]

【発明の効果】本発明の放熱スペーサーは熱伝導性と柔
軟性に優れているため、発熱性電子部品の搭載された回
路基板に押しつけても応力が少なく、また高密度化され
発熱性電子部品の搭載された回路基板にも良好な密着性
を保った状態で放熱を行うことができる。
The heat-dissipating spacer of the present invention has excellent thermal conductivity and flexibility, so that even if it is pressed against a circuit board on which heat-generating electronic components are mounted, the stress is small, and the heat-dissipating electronic components are increased in density. Can be dissipated while maintaining good adhesion to the circuit board on which is mounted.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径0.3〜1μmの酸化亜鉛粉
末:平均粒子径10〜50μmの窒化珪素粉末の体積比
が0.5:9.5〜3:7である熱伝導性フィラー40
〜60体積%と、付加重合型液状シリコーン固化物60
〜40体積%とを含み、熱伝導率2W/m・K以上、ア
スカーC硬度50以下であることを特徴とする放熱スペ
ーサー。
1. A thermally conductive filler 40 wherein the volume ratio of zinc oxide powder having an average particle diameter of 0.3 to 1 μm: silicon nitride powder having an average particle diameter of 10 to 50 μm is 0.5: 9.5 to 3: 7.
~ 60% by volume, and addition polymerization type liquid silicone solidified product 60
A heat radiation spacer characterized by having a thermal conductivity of 2 W / m · K or more and an Asker C hardness of 50 or less.
【請求項2】 更に、平均粒子径25μm以下のアルミ
ナ粉末及び/又はマグネシア粉末を合計で15体積%以
下を含有してなることを特徴とする請求項1記載の放熱
スペーサー。
2. The heat radiation spacer according to claim 1, further comprising a total of 15% by volume or less of alumina powder and / or magnesia powder having an average particle size of 25 μm or less.
JP10728498A 1998-04-17 1998-04-17 Heat dissipation spacer Expired - Fee Related JP3640525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10728498A JP3640525B2 (en) 1998-04-17 1998-04-17 Heat dissipation spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10728498A JP3640525B2 (en) 1998-04-17 1998-04-17 Heat dissipation spacer

Publications (2)

Publication Number Publication Date
JPH11307699A true JPH11307699A (en) 1999-11-05
JP3640525B2 JP3640525B2 (en) 2005-04-20

Family

ID=14455193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10728498A Expired - Fee Related JP3640525B2 (en) 1998-04-17 1998-04-17 Heat dissipation spacer

Country Status (1)

Country Link
JP (1) JP3640525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307700A (en) * 1998-04-17 1999-11-05 Denki Kagaku Kogyo Kk Heat dissipating spacer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328230B1 (en) * 2011-12-06 2013-11-14 전충규 Heat radiation composition and heat sink product using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307700A (en) * 1998-04-17 1999-11-05 Denki Kagaku Kogyo Kk Heat dissipating spacer

Also Published As

Publication number Publication date
JP3640525B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
TW549011B (en) Dissipation of heat from a circuit board having bare silicon chips mounted thereon
JP6022061B2 (en) Thermosetting resin composition, method for producing thermal conductive sheet, and power module
JP3654743B2 (en) Heat dissipation spacer
JP3957596B2 (en) Thermally conductive grease
JP2007277406A (en) Highly heat-conductive resin compound, highly heat-conductive resin molded article, compounding particle for heat-releasing sheet, highly heat-conductive resin compound, highly heat-conductive resin molded article, heat-releasing sheet, and method for producing the same
JP3182257B2 (en) Heat dissipation sheet
EP0805618B1 (en) Heat dissipating spacer for electronic equipments
JP3891969B2 (en) Thermally conductive grease
JP2002138205A (en) Thermal conductive molded article
JP3178805B2 (en) Heat radiation spacer
JP3283454B2 (en) Heat radiation spacer
JP3640524B2 (en) Heat dissipation spacer
JP3563590B2 (en) Heat radiation spacer
JP4481019B2 (en) Mixed powder and its use
JP3183502B2 (en) Heat radiation spacer
JP4749631B2 (en) Heat dissipation member
JP4514344B2 (en) Thermally conductive resin molding and its use
JP3640525B2 (en) Heat dissipation spacer
JP3354087B2 (en) Method of manufacturing heat-radiating spacer having high flexibility and high thermal conductivity
JP2000095896A (en) Powder for addition to resin, and resin composition and heat-releasing spacer using the powder
JP2002299534A (en) Heat radiation material and manufacturing method therefor
JP2000286370A (en) Heat radiation member of electronic component
JP3092699B2 (en) Heat radiation spacer, its use and silicone composition
JP2000034107A (en) Boron nitride to be added to resin, and resin composition and heat-radiation member by using the same
JP4357064B2 (en) Heat dissipation member

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees