JPH11305005A - Anti reflection film and its manufacture - Google Patents

Anti reflection film and its manufacture

Info

Publication number
JPH11305005A
JPH11305005A JP10108235A JP10823598A JPH11305005A JP H11305005 A JPH11305005 A JP H11305005A JP 10108235 A JP10108235 A JP 10108235A JP 10823598 A JP10823598 A JP 10823598A JP H11305005 A JPH11305005 A JP H11305005A
Authority
JP
Japan
Prior art keywords
light
film
dielectric film
refractive index
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10108235A
Other languages
Japanese (ja)
Other versions
JP4178583B2 (en
Inventor
Yoshiharu Oi
好晴 大井
Minoru Sekine
実 関根
Koichi Murata
浩一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10823598A priority Critical patent/JP4178583B2/en
Publication of JPH11305005A publication Critical patent/JPH11305005A/en
Application granted granted Critical
Publication of JP4178583B2 publication Critical patent/JP4178583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain with good productivity a normal antireflection film of high performance which. SOLUTION: A light-transmitting dielectric film 3 is provided between a circumferential medium 1 and a light-transmitting optical medium 2 which has a reflective index ng . Here, an interface which contacts the circumferential medium 1 is provided and the interface has unevenness in a periodic structure of 2,400 nm in pitch P and 130 nm in mean height and satisfies the phase difference ϕ=4π.n.d.conθ/λ=π of a reflected optical path of the unevenness and λ<P<=30λ, where the center wavelength λ of incident luminous flux made incident on the interface is set to 250 nm and the center incidence angle θis set to 5 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レンズ等の光学素
子に入射する入射光束の正規反射光を効率よく低減する
反射防止膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection film for efficiently reducing regular reflection light of an incident light beam incident on an optical element such as a lens.

【0002】[0002]

【従来の技術】透光性光学素子の透過光を利用する場合
に、屈折率の異なる透光性光学媒体の界面で発生するフ
レネル反射光を低減するとともに、その透過率を向上す
る目的で、従来から相対的に高屈折率の透光性誘電体膜
Hと、相対的に低屈折率の透光性誘電体膜Lとを積層し
て形成した反射防止膜が用いられていた。
2. Description of the Related Art When light transmitted through a light-transmitting optical element is used, Fresnel reflected light generated at an interface between light-transmitting optical media having different refractive indices is reduced, and the transmittance is improved. Conventionally, an anti-reflection film formed by laminating a light-transmitting dielectric film H having a relatively high refractive index and a light-transmitting dielectric film L having a relatively low refractive index has been used.

【0003】具体的には、屈折率ng の透光性光学媒体
が屈折率n(n≠ng )の周囲媒質に接する界面におい
て入射角θで中心波長λの入射光束が入射する場合は、
nとng の中間の屈折率n2 を有する透光性誘電体膜を
膜厚d=λ/(4・n2 ・cosθ)程度となるように
形成して、反射防止効果を得ていた。
[0003] Specifically, if the light-transmitting optical medium having a refractive index n g is the incident light beam having the central wavelength λ at an incident angle θ at the interface in contact with the surrounding medium of refractive index n (n ≠ n g) is incident ,
A light-transmitting dielectric film having a refractive index n 2 intermediate between n and ng was formed so as to have a film thickness d = λ / (4 · n 2 · cos θ) to obtain an antireflection effect. .

【0004】例えば、空気中に置かれたng =1.5の
光学ガラスに、n2 =1.38のMgF2 をd=100
nm程度成膜して得た反射防止膜は、垂直入射の緑色波
長光に対してフレネル反射率が4.2%から1.3%程
度に低減できた。
For example, on an optical glass of ng = 1.5 placed in air, MgF 2 of n 2 = 1.38 is added with d = 100.
The antireflection film obtained by forming a film having a thickness of about nm was able to reduce the Fresnel reflectance from 4.2% to about 1.3% with respect to the vertically incident green wavelength light.

【0005】さらに、相対的に高屈折率の透光性誘電体
膜Hと相対的に低屈折率の透光性誘電体膜Lとが積層さ
れた誘電体多層膜構造とすることにより、数100nm
の広い波長帯域においてフレネル反射光を0.5%程度
に低減することが可能であった。
Further, by forming a dielectric multilayer structure in which a light-transmitting dielectric film H having a relatively high refractive index and a light-transmitting dielectric film L having a relatively low refractive index are laminated, 100nm
It was possible to reduce Fresnel reflected light to about 0.5% in a wide wavelength band.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来技術では
数100nmの広い波長帯域においてフレネル反射光を
0.1%程度以下に安定して低減する反射防止膜の作製
は困難であった。特に、反射防止膜の形成された面と略
平行な面からの正規反射光を利用する反射型光学素子に
おいて、反射防止膜の表面における残留正規反射が光学
素子の性能を著しく劣化させる場合があった。
However, in the prior art, it has been difficult to produce an antireflection film that stably reduces Fresnel reflected light to about 0.1% or less in a wide wavelength band of several hundreds of nm. In particular, in a reflective optical element utilizing regular reflection light from a surface substantially parallel to the surface on which the antireflection film is formed, the residual regular reflection on the surface of the antireflection film may significantly degrade the performance of the optical element. Was.

【0007】[0007]

【課題を解決するための手段】本発明は、前述の課題を
解決すべくなされたものであり、屈折率の異なる透光性
光学媒体界面において生じる正規反射光を広い波長帯域
においてに安定して大きく低減する反射防止膜を提供す
るものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and stably reflects regular reflection light generated at the interface of a translucent optical medium having a different refractive index in a wide wavelength band. An object of the present invention is to provide an anti-reflection film that is greatly reduced.

【0008】すなわち、請求項1は、屈折率nを有する
周囲媒質1と屈折率ng を有する透光性光学媒体2(n
≠ng )との間に少なくとも1層の透光性誘電体膜が設
けられた反射防止膜において、周囲媒質1に接する界面
Sが設けられ、界面SはピッチPおよび平均高さdを有
する周期構造を備えた凹凸を有し、界面Sに入射する入
射光束の中心波長をλ、凸部からの反射光と凹部からの
反射光との光路の位相差をφとすると、λ<P≦30
λ、かつ、φ≒(2M+1)・π(Mは0または正の整
数)を満足することを特徴とする反射防止膜を提供す
る。なお、ピッチP平均高さd、中心波長λは同じ次元
で表記した数値を用いる。
Namely, according to claim 1, light-transmitting optical medium 2 having a refractive index n g and the surrounding medium 1 having a refractive index n (n
ng ), an anti-reflection film having at least one light-transmitting dielectric film provided therebetween, an interface S in contact with the surrounding medium 1 is provided, and the interface S has a pitch P and an average height d. Assuming that the center wavelength of the incident light beam incident on the interface S is λ and the phase difference of the optical path between the reflected light from the convex portion and the reflected light from the concave portion is φ, λ <P ≦ 30
Provided is an antireflection film characterized by satisfying λ and φ ≒ (2M + 1) · π (M is 0 or a positive integer). The pitch P average height d and the center wavelength λ use numerical values expressed in the same dimension.

【0009】また、請求項2は、透光性誘電体膜は相対
的に高屈折率の透光性誘電体膜Hと相対的に低屈折率の
透光性誘電体膜Lとが積層された請求項1記載の反射防
止膜を提供する。
According to a second aspect of the present invention, the light-transmitting dielectric film is formed by laminating a light-transmitting dielectric film H having a relatively high refractive index and a light-transmitting dielectric film L having a relatively low refractive index. An anti-reflection film according to claim 1 is provided.

【0010】また、請求項3は、凹凸の形状がほぼ矩形
であり、中心入射光束の入射角θに対して、cosθ=
λ・(2M+1)/(4n・d)を満足する請求項1ま
たは2記載の反射防止膜を提供する。
According to a third aspect of the present invention, the shape of the unevenness is substantially rectangular, and cos θ =
The antireflection film according to claim 1 or 2, which satisfies λ · (2M + 1) / (4n · d).

【0011】また、請求項4は、位相差φ≒πである請
求項1、2または3記載の反射防止膜を提供する。
According to a fourth aspect of the present invention, there is provided the antireflection film according to the first, second or third aspect, wherein the phase difference is φ ≒ π.

【0012】また、請求項5は、屈折率nを有する周囲
媒質1から界面Sに中心入射角θで入射し、中心波長λ
を有する入射光束の反射防止膜の製造方法であって、屈
折率ng を有する透光性光学媒体2の上に透光性誘電体
膜を膜厚d=λ/(4n・cosθ)となるように形成
し、透光性誘電体膜の上にピッチPの周期構造を備えた
凹凸形状である線状のレジストパターンを形成し、この
表面側からフォトレジストでマスキングされていない透
光性誘電体膜をエッチングし、フォトレジストを除去
し、透光性誘電体膜をピッチPかつ平均高さdのパター
ンに形成し、さらに、透光性誘電体膜の上に周囲媒質1
と透光性光学媒体2に対する反射防止層を形成すること
を特徴とする反射防止膜の製造方法を提供する。
Further, in the fifth aspect, the light enters the interface S from the surrounding medium 1 having the refractive index n at the center incident angle θ, and has the center wavelength λ.
In the method for manufacturing an antireflection film for an incident light beam having a refractive index of ng , a light-transmitting dielectric film is formed on a light-transmitting optical medium 2 having a refractive index of ng in a thickness d = λ / (4n · cos θ). A linear resist pattern having an irregular shape having a periodic structure of a pitch P is formed on the light-transmitting dielectric film, and the light-transmitting dielectric material which is not masked with a photoresist from the surface side is formed. The body film is etched, the photoresist is removed, a light-transmitting dielectric film is formed in a pattern having a pitch P and an average height d, and the surrounding medium 1 is formed on the light-transmitting dielectric film.
And a method for producing an anti-reflection film, characterized by forming an anti-reflection layer for the light-transmitting optical medium 2.

【0013】なお、本発明における入射光束とは、指向
性の揃った平行光や単一波長の場合を含むものであり、
入射角が分散した収束光束や発散光束の場合や、波長帯
域の広い入射光束をも含むものである。本発明はいずれ
の光束に対しても有効である。
Incidentally, the incident light beam in the present invention includes a case of a parallel light having a uniform directivity and a case of a single wavelength.
This includes a case of a convergent light beam or a divergent light beam with dispersed incident angles, and an incident light beam with a wide wavelength band. The present invention is effective for any light flux.

【0014】入射角が分散した入射光束の場合、入射角
θはその分散角の平均値に相当する中心入射角θとして
定義される。また、波長帯域の広い入射光束に対して
も、その入射光束の波長は、波長帯域の平均値に相当す
る中心波長λで定義される。
In the case of an incident light beam having a dispersed incident angle, the incident angle θ is defined as a central incident angle θ corresponding to an average value of the dispersed angles. Further, for an incident light beam having a wide wavelength band, the wavelength of the incident light beam is defined by a center wavelength λ corresponding to an average value of the wavelength band.

【0015】さらに、本発明で用いる凹凸の形状の幾何
学的寸法を示すパラメータであるP、Pa 、Pb 、d、
および入射光束の中心波長λについての関係式中の表記
は、長さの単位として同じ次元を適用する。また、角度
および位相はラディアンを単位とする。
Further, P, P a , P b , d, which are parameters indicating the geometrical dimensions of the uneven shape used in the present invention.
The notation in the relational expression for the center wavelength λ of the incident light flux applies the same dimension as the unit of length. The angle and phase are in radians.

【0016】本発明の反射防止膜は、屈折率の異なる透
光性光学媒体界面に垂直方向における誘電体膜の光干渉
を利用した反射防止効果と、透光性光学媒体界面の面内
方向における周期構造体の光回折とを利用しすることに
より、両者の相乗効果として効率の高い正規反射防止効
果を得るものである。
The antireflection film of the present invention has an antireflection effect utilizing light interference of a dielectric film in a direction perpendicular to an interface of a translucent optical medium having a different refractive index, and an in-plane direction at the interface of a translucent optical medium. By utilizing the light diffraction of the periodic structure, a highly efficient regular anti-reflection effect can be obtained as a synergistic effect between the two.

【0017】[0017]

【発明の実施の形態】本発明の反射防止膜の作用につい
て図1を参照しつつ以下に説明する。図1は本発明の反
射防止膜の模式的な断面図である。微細な凹凸として屈
折率ng の透光性基板2の上に、幅Pa 高さdで屈折率
1 の透光性誘電体膜3が間隔Pb で紙面垂直軸y方向
に沿って平行線状にパターニングされている。さらに、
このような周期的構造である凹凸の表面に透光性薄膜4
が一様に形成され、周囲媒質1に接している。周囲媒質
1は通常の使用環境下では空気である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the antireflection film of the present invention will be described below with reference to FIG. FIG. 1 is a schematic sectional view of the antireflection film of the present invention. On the transparent substrate 2 having a refractive index n g as fine irregularities, it is translucent dielectric film 3 having a refractive index n 1 in the width P a height d along the plane perpendicular axis y-direction at an interval P b It is patterned in parallel lines. further,
The light-transmitting thin film 4 is formed on the uneven surface having such a periodic structure.
Are uniformly formed and are in contact with the surrounding medium 1. The surrounding medium 1 is air under a normal use environment.

【0018】このような周期的構造に対して、凹凸の構
造が現れた面内に互いに直交するx軸とy軸があり、周
期的構造を示す方向の軸をx軸とし、x軸およびy軸に
直交する軸をz軸とする。
With respect to such a periodic structure, there are an x-axis and a y-axis which are orthogonal to each other in a plane on which the uneven structure appears, and an axis in a direction indicating the periodic structure is an x-axis. An axis perpendicular to the axis is defined as a z-axis.

【0019】このような周期的構造の界面Sにおいて、
入射角θで入射する入射光束の反射率は、幅Pb と幅P
a のz軸方向の各光学薄膜の光干渉とx軸方向の周期構
造に起因して発生する光回折とを考慮して算出される。
At the interface S having such a periodic structure,
The reflectivity of an incident light beam incident at an incident angle θ is width Pb and width Pb.
It is calculated in consideration of the optical diffraction caused by the z-axis direction of the periodic structure of the optical interference with the x-axis direction of the optical thin film of a.

【0020】図面に示した凹凸は光学的に作用しうる周
期構造であり、入射光束の波長に対して回折を生じる領
域においては、回折角および回折波長が規定された回折
光強度として算出されることが知られている。また、回
折光学素子の周期が波長に比べて充分に大きく、薄い周
期構造と見なせる場合はホイヘンス・フレネルのスカラ
ー回折理論により反射率が計算される。
The irregularities shown in the drawings have a periodic structure that can act optically, and in a region where diffraction occurs with respect to the wavelength of the incident light beam, the diffraction angle and the diffraction wavelength are calculated as defined diffraction light intensity. It is known. When the period of the diffractive optical element is sufficiently large compared to the wavelength and can be regarded as a thin periodic structure, the reflectance is calculated by the scalar diffraction theory of Huygens-Fresnel.

【0021】回折光学素子の周期が波長程度に小さくな
った場合は境界面にマクスウェル電磁理論と矛盾しない
境界条件を与えて電磁界解析を行うベクトル回折理論を
適用して計算されることが以前より知られている。例え
ば、ゾンマーフェルト理論物理学講座IV「光学」の第5
−6章(著者アーノルド・ゾンマーフェルト 講談社昭
和44年発行)に記載されている。
When the period of the diffractive optical element is reduced to about the wavelength, it is conventionally calculated that the boundary condition is applied to the boundary surface by applying a vector diffraction theory for performing an electromagnetic field analysis by applying a boundary condition consistent with Maxwell electromagnetic theory. Are known. For example, Sommerfeld Theory Physics Course IV “Optics”
Chapter-6 (author Arnold Sommerfeld Kodansha, published in 1969).

【0022】本発明では、周期的構造の界面に入射角θ
で入射した入射光束が反射され、反射光束となり、その
うち角度θで反射される正規反射光束成分を低減するこ
とを目的とする。以下に、正規反射成分である0次回折
光について説明する。
In the present invention, the incident angle θ is applied to the interface of the periodic structure.
An object of the present invention is to reduce a regular reflected light beam component reflected at an angle θ of the incident light beam incident at the point (a) and reflected as a reflected light beam. Hereinafter, the 0th-order diffracted light that is a regular reflection component will be described.

【0023】図1の周期的構造において、幅Pa の凸部
は透光性誘電体膜3と透光性薄膜4の屈折率および膜厚
により波長λの入射光束に対して光干渉理論により振幅
反射率ra (λ、θ)が規定される。同様に幅Pb の凹
部は透光性薄膜4の屈折率および膜厚により波長λの入
射光束に対して光干渉理論により振幅反射率rb (λ、
θ)が規定される。
In the periodic structure shown in FIG. 1, the convex portion having a width Pa is based on the refractive index and the film thickness of the light transmitting dielectric film 3 and the light transmitting thin film 4 with respect to the incident light beam having the wavelength λ according to the light interference theory. The amplitude reflectance r a (λ, θ) is defined. Amplitude reflectance by light interference theory with respect to the incident light beam of wavelength lambda by the recess is the refractive index and film thickness of the translucent film 4 in the same manner that the width P b r b (λ,
θ) is defined.

【0024】幅Pa の凸部と幅Pb の凹部が周期的に配
置された周期的構造、つまり凹凸のピッチP=Pa +P
b のグレーティング構造において、その0次反射回折光
強度I0 はra およびrb の強度|ra |、|rb |が
1に比べて充分小さな場合、近似的に(1)式で記述さ
れる。また、ra とrb との位相がほぼ等しい場合、
(1A)式のときに最小となる。
The width P a recess periodically arranged periodic structure of mesas and width P b of, i.e. unevenness of the pitch P = P a + P
In the grating structure of b, the zero-order reflected diffracted light intensity I 0 is r a and r b of the intensity | r a |, | r b | if is sufficiently small compared to 1, described by approximately (1) Is done. Further, when the phase between r a and r b are substantially equal,
It becomes minimum in the case of the expression (1A).

【0025】[0025]

【数1】 I0 =2|(Pa ・ra + Pb ・rb ・exp(i・4π・n・d・cosθ/λ))/P| ・・・(1) 4π・n・d・cosθ/λ=π・(2L+1) :Lは0または正の整数 ・・・(1A)[Number 1] I 0 = 2 | (P a · r a + P b · r b · exp (i · 4π · n · d · cosθ / λ)) / P | ··· (1) 4π · n · d · cos θ / λ = π · (2L + 1): L is 0 or a positive integer (1A)

【0026】すなわち、凹凸振幅であるdX が(2)式
のときに正規反射は最小となる。なお、nは図1の凹部
に相当する周囲媒質1の屈折率を示す。
That is, the regular reflection is minimized when d X, which is the amplitude of the concavo-convex, is given by equation (2). Here, n indicates the refractive index of the surrounding medium 1 corresponding to the concave portion in FIG.

【0027】[0027]

【数2】 dX =(2L+1)・λ/(4・n・cosθ) :Lは0または正の整数 ・・・(2)D x = (2L + 1) · λ / (4 · n · cos θ): L is 0 or a positive integer (2)

【0028】これは、凸部と凹部との光路長の位相差φ
=4π・n・d・cosθ/λがπのほぼ奇数倍となる
条件である。このときの、正規反射率(0次反射回折光
強度I0 )は(3)式となる。
This is due to the phase difference φ of the optical path length between the convex portion and the concave portion.
= 4π · nd · cos θ / λ is a condition that is almost an odd multiple of π. At this time, the regular reflectance (0th-order reflected diffracted light intensity I 0 ) is represented by Expression (3).

【0029】[0029]

【数3】 IO =2・|(Pa ・ra −Pb ・rb )/(Pa +Pb )|・・・(3)(3) I O = 2 · | (P a · r a −P b · r b ) / (P a + P b ) |

【0030】したがって、ra およびrb のλおよびθ
依存性にもよるが、Pa ・ra =Pb ・rb の条件で正
規反射率=0となる。すなわち、入射光束の主波長λが
(2)式を満たすように幅Pa で屈折率nの透光性誘電
体膜3の膜厚dを規定すれば、中心波長λ周辺の波長域
での正規反射率を低い値に維持できる。
Therefore, λ and θ of r a and r b
Although it depends on the dependence, the regular reflectance = 0 under the condition of P a · r a = P b · r b . That is, the main wavelength λ of the incident light beam (2) having a refractive index n in the width P a to meet if defining the thickness d of the translucent dielectric film 3, at the wavelength range around the central wavelength λ Regular reflectance can be maintained at a low value.

【0031】0次回折光の波長依存性および入射角度依
存性を低減し、広い波長域で正規反射防止効果を得るた
めには、凸部と凹部との光路長の位相差φ=4π・n・
d・cosθ/λがπ、すなわちd=λ/(4・n・c
osθ)であることが好ましい。
In order to reduce the wavelength dependency and the incident angle dependency of the zero-order diffracted light and obtain the regular reflection preventing effect in a wide wavelength range, the phase difference φ = 4π · n ·
d · cos θ / λ is π, that is, d = λ / (4 · n · c
osθ).

【0032】透光性誘電体膜3と透光性薄膜4の組み合
わせあるいは透光性薄膜4を相対的に高屈折率の誘電体
膜と相対的に低屈折率の誘電体膜を交互に積層した誘電
体多層反射防止膜とすることにより、広い波長帯域で振
幅反射率ra 、rb を低い値に保つことが可能となるた
め、(3)式で記述された回折による反射防止効果と相
乗して広波長帯域で高い正規反射防止効果が得られる。
A combination of the light-transmitting dielectric film 3 and the light-transmitting thin film 4 or the light-transmitting thin film 4 is alternately laminated with a dielectric film having a relatively high refractive index and a dielectric film having a relatively low refractive index. with the dielectric multilayer antireflection film, amplitude reflectance r a in a wide wavelength band, it becomes possible to maintain the r b to a low value, the antireflection effect by the diffraction described in (3) Synergistically, a high regular antireflection effect can be obtained in a wide wavelength band.

【0033】このような反射防止膜を光学素子に適用す
る場合、0次回折光のみを利用する角度領域では有効で
あるが、0次光以外の高次回折光も取り込まれる構成に
おいてはその回折作用による反射防止効果が低減する。
そこで次に、高次回折光の回折角度について以下に説明
する。k次回折光の回折角度θk は(4)式で記述さ
れ、1次回折角θ1 が最も小角回折光となる。
When such an antireflection film is applied to an optical element, it is effective in an angle region using only the 0th-order diffracted light. The antireflection effect is reduced.
Then, the diffraction angle of the high-order diffracted light will be described below. The diffraction angle θ k of the k-th order diffracted light is described by Expression (4), and the first-order diffraction angle θ 1 is the smallest angle diffracted light.

【0034】[0034]

【数4】 sinθk =sinθ+k・λ/P(kは0または正の整数)・・・(4)Sin θ k = sin θ + k · λ / P (k is 0 or a positive integer) (4)

【0035】したがって、正規反射光束に高次回折光の
混入を防止するためには凹凸のピッチPを小さく設け
て、中心波長λの入射光束に対して1次回折光回折角度
θ1 を大きくするように設定すればよい。
Therefore, in order to prevent higher-order diffracted light from being mixed into the regular reflected light beam, the pitch P of the unevenness is set small, and the first-order diffracted light diffraction angle θ 1 is increased with respect to the incident light beam having the center wavelength λ. Just set it.

【0036】ピッチPが波長λより小さい場合、回折効
率は(1)式の計算式では近似されず、その値が低下す
るとともに、凹凸の作製そのものが困難であるため、P
>λであることが好ましい。また、1次回折角度は2°
以上にすることが入射光束の指向性確保の点で実用的で
あり、P≦30λであることが好ましい。したがって、
ピッチPは入射光束の波長λに対して(5)式を満たす
ことが好ましい。
When the pitch P is smaller than the wavelength λ, the diffraction efficiency is not approximated by the equation (1), and its value is reduced.
> Λ is preferred. The first-order diffraction angle is 2 °
The above is practical for securing the directivity of the incident light beam, and it is preferable that P ≦ 30λ. Therefore,
The pitch P preferably satisfies Expression (5) with respect to the wavelength λ of the incident light beam.

【0037】[0037]

【数5】λ<P≦30λ ・・・(5)Λ <P ≦ 30λ (5)

【0038】本発明の作用の一例として、図1に示した
矩形のラミナリー断面をもつ溝型のものをあげて説明し
たが、他の断面形状でも構わない。例えば、鋸歯断面状
のブレーズ型回折格子形状や正弦波断面形状の場合にお
いても0次光回折強度の式(1)や回折角度の式(4)
は異なるが同様の作用効果が得られる。
As an example of the operation of the present invention, a groove type having a rectangular laminar cross section shown in FIG. 1 has been described, but other cross sectional shapes may be used. For example, even in the case of a blazed diffraction grating shape having a sawtooth cross section or a sine wave cross section, the expression (1) for the 0th-order light diffraction intensity and the expression (4) for the diffraction angle are used.
However, similar effects can be obtained.

【0039】また、本発明は、凹凸のない界面における
反射防止膜のみの場合に比べて、正規反射光束が低減す
るが、その減少分に相当する光は界面を直進透過する成
分と回折光となって反射あるいは透過する成分となる。
したがって、本発明の反射防止膜を用いる場合、大半の
入射光束は直進透過し正規反射光束は極めて低い値とな
るため、正規反射光束の混入を防止し0次回折透過光の
みを信号光とし1次以上の回折光は利用しない光学素子
としての用途に適している。以下、実施例により、本発
明を具体的に説明する。
In the present invention, the regular reflected light flux is reduced as compared with the case where only the anti-reflection film is provided at the interface having no unevenness. However, the light corresponding to the reduced amount is the component that transmits straight through the interface and the diffracted light. And becomes a component that is reflected or transmitted.
Therefore, when the antireflection film of the present invention is used, most of the incident light flux passes straight and the regular reflection light flux has an extremely low value. Therefore, mixing of the regular reflection light flux is prevented, and only the 0th-order diffraction transmitted light is used as the signal light. It is suitable for use as an optical element that does not use diffracted light of the next order or higher. Hereinafter, the present invention will be specifically described with reference to examples.

【0040】[0040]

【実施例】(実施例1)図1に本例の反射防止膜の断面
図を示す。また、その製法について図2に示す(構成例
1)。屈折率約ng =1.5の透光性ガラス基板の表面
に、屈折率約n2 =1.45のSiO2 膜を、用いられ
る入射光束の中心波長λ=520nmの垂直入射光束に
対して膜厚dがλ/4に対応した膜厚d=130nmと
なるように成膜する(図2(a))。
(Embodiment 1) FIG. 1 is a sectional view of an antireflection film of this embodiment. The manufacturing method is shown in FIG. 2 (Configuration Example 1). An SiO 2 film having a refractive index of about n 2 = 1.45 is coated on a surface of a translucent glass substrate having a refractive index of about ng = 1.5 with respect to a normal incident light having a center wavelength λ = 520 nm of the incident light used. Then, a film is formed so that the film thickness d is 130 nm corresponding to λ / 4 (FIG. 2A).

【0041】次に、このSiO2 膜の上にフォトレジス
トを塗布しベーキングして固めた後、ライン幅Pa
1.2μm、スペース幅Pb =1.2μmで凹凸のピッ
チP=2.4μmの微細線が形成されたフォトマスクを
用いて露光・現像することにより、線状レジストパター
ン5を形成する(図2(b))。
Next, a photoresist is applied on the SiO 2 film, baked and hardened, and then the line width P a =
A linear resist pattern 5 is formed by exposing and developing using a photomask in which fine lines of 1.2 μm, space width P b = 1.2 μm, and pitch P of irregularities P = 2.4 μm are formed (FIG. 2 (b)).

【0042】次に、この基板面にイオンを均一照射する
ことによりフォトレジストでマスキングされていないS
iO2 膜が反応性イオンエッチング(RIE)によりパ
ターニングされる。ここで、イオンエッチング時間によ
りSiO2 膜のエッチング量を制御できる。通常、基板
として用いたガラスに比べてSiO2 膜の方がエッチン
グレートが高いためSiO2 膜がなくなった時点でエッ
チングは完了する。したがって、予め必要とする凸部の
高さdに相当する膜厚のSiO2 膜をあらかじめ成膜す
ることにより、凸部の高さdを精度よく制御できる(図
2(c))。
Next, by uniformly irradiating the substrate surface with ions, the non-masked S
The iO 2 film is patterned by reactive ion etching (RIE). Here, the etching amount of the SiO 2 film can be controlled by the ion etching time. Usually, the etching at the time when the direction of the SiO 2 film is no longer SiO 2 film has high etch rate compared to glass used as a substrate is complete. Therefore, the height d of the projections can be accurately controlled by previously forming a SiO 2 film having a thickness corresponding to the height d of the projections required in advance (FIG. 2C).

【0043】次に、マスキングとして用いたフォトレジ
ストを溶剤により排除する。そして、図2(d)に示す
ライン幅Pa =1.2μm、スペ−ス幅Pb =1.2μ
mで凹凸のピッチP=2.4μm、平均高さ=130n
mのSiO2 からなる微細線の周期性パターン3が形成
される。この周期性パターン3の凹凸の振幅dは、周囲
媒質が空気(n=1.0)であるため、n・d=dとな
る。
Next, the photoresist used as the masking is removed by a solvent. Then, the line width P a = 1.2 [mu] m shown in FIG. 2 (d), space - scan width P b = 1.2 microns
m, pitch P of unevenness = 2.4 μm, average height = 130 n
A periodic pattern 3 of fine lines made of m 2 SiO 2 is formed. Since the surrounding medium is air (n = 1.0), the amplitude d of the unevenness of the periodic pattern 3 is n · d = d.

【0044】最後に、屈折率1.45〜1.5のガラス
基板と、周囲媒質である空気(n=1)との界面反射を
低減する反射防止膜4を成膜する。具体的には、基板側
からAl23 (n=1.63)/ZrO2 (n=2.
0)/MgF2 (n=1.38)をそれぞれ光学膜厚
(n・d)が(λ/4)/(λ/2)/(λ/4)とな
るように積層成膜する。なお、入射光束の中心波長λ=
520nmである。
Finally, an anti-reflection film 4 for reducing the interfacial reflection between a glass substrate having a refractive index of 1.45 to 1.5 and air (n = 1) as a surrounding medium is formed. Specifically, Al 2 O 3 (n = 1.63) / ZrO 2 (n = 2.
0) / MgF 2 (n = 1.38) so that the optical film thickness ( nd ) is (λ / 4) / (λ / 2) / (λ / 4). Note that the center wavelength λ of the incident light beam is
520 nm.

【0045】このようにして作製された反射防止膜の垂
直入射における可視波長域の分光反射率を図3(a)に
示す。420〜700nmの広い可視波長域で正規反射
率0.1%以下の反射防止効果が得られる。
FIG. 3 (a) shows the spectral reflectance of the antireflection film thus manufactured in the visible wavelength range at normal incidence. An antireflection effect with a regular reflectance of 0.1% or less can be obtained in a wide visible wavelength range of 420 to 700 nm.

【0046】比較例1として、平坦なガラス基板に同じ
反射防止膜Al23 (n=1.63、n・d=λ/
4)/ZrO2 (n=2.0、n・d=λ/4)/Mg
2 (n=1.38、n・d=λ/4)が積層成膜され
た基板界面の分光反射率を図3(b)に示す。430〜
670nmの可視波長域で0.4%以下の反射率となっ
ているが、本発明に比べ残留反射率がどの波長において
も高い。
As Comparative Example 1, the same antireflection film Al 2 O 3 (n = 1.63, nd = λ /
4) / ZrO 2 (n = 2.0, nd = λ / 4) / Mg
FIG. 3B shows the spectral reflectance at the interface of the substrate on which F 2 (n = 1.38, nd = λ / 4) is deposited. 430-
Although the reflectance is 0.4% or less in the visible wavelength region of 670 nm, the residual reflectance is higher at any wavelength as compared with the present invention.

【0047】また、比較例2として、反射防止膜4のな
い図2(d)のガラス基板界面の分光反射率を図3
(c)に示す。520nm狭い波長域で0.1%以下の
残留反射となっているが、短波長域および長波長域で残
留反射が増加し可視域の反射防止効果は比較例1に対し
ても劣る。
As Comparative Example 2, the spectral reflectance at the glass substrate interface shown in FIG.
It is shown in (c). Although the residual reflection is 0.1% or less in a wavelength range narrower than 520 nm, the residual reflection increases in a short wavelength range and a long wavelength range, and the antireflection effect in a visible range is inferior to that of Comparative Example 1.

【0048】本発明により、従来技術の反射防止膜ある
いは回折格子では実現できなかったすぐれた効果が達成
される。
According to the present invention, an excellent effect which cannot be realized by the conventional antireflection film or diffraction grating is achieved.

【0049】また、本発明の構成による1次回折光の回
折角度θ1 の波長依存性を0次回折光角度を0°基準に
して図4に示す。これより、420nm以上の可視波長
光の1次回折反射光束は垂直入射光束に対して10°以
上の角度に散らされるため、10°以内の分散角光のみ
を利用する光学素子用途において可視波長域反射防止膜
として利用できる。
FIG. 4 shows the wavelength dependence of the diffraction angle θ 1 of the first-order diffracted light according to the structure of the present invention with reference to the 0-order diffracted light angle of 0 °. Accordingly, since the first-order diffracted reflected light of the visible wavelength light of 420 nm or more is scattered at an angle of 10 ° or more with respect to the normal incident light, the visible wavelength region is used in an optical element using only the dispersion angle light of 10 ° or less. It can be used as an anti-reflection film.

【0050】本実施例では幅Pa の凸部の透光性誘電体
膜3がSiO2 膜の場合について説明したが、他の媒体
でも構わない。好ましくは、透光性基板2の屈折率ng
と同程度の屈折率を有する透光性誘電体膜3が適してい
る。屈折率1.4〜1.8の光学材料を用いることが好
ましい。この屈折率に相当する膜媒体としてはSiO2
とSi34 との混合物であるSiOxy (x+y=
1)をターゲットとしてスパッタリング法で成膜するこ
とにより屈折率1.45〜1.8の中間域の値を持つ薄
膜作成が可能である。
[0050] Although the light-transmitting dielectric layer 3 of the convex portion of the width P a in the present embodiment has described the case of the SiO 2 film, it may be in other media. Preferably, the refractive index ng of the translucent substrate 2
A translucent dielectric film 3 having the same refractive index as that described above is suitable. It is preferable to use an optical material having a refractive index of 1.4 to 1.8. As the film medium corresponding to this refractive index, SiO 2
And a mixture of Si 3 N 4 SiO x N y (x + y =
By forming a film by a sputtering method using 1) as a target, it is possible to prepare a thin film having a refractive index in the middle range of 1.45 to 1.8.

【0051】(実施例2)図5に反射防止膜の形成され
た凸レンズ6の断面図を示す。また、図6に界面におけ
る断面の一部拡大図を示す(構成例2)。この凸レンズ
は屈折率約ng =1.5の透光性プラスティックを材料
とし、金型を用いて非球面凸型プラスティックレンズ6
として成形加工されている。図6に示すようにレンズの
表面には、ライン幅Pa =1.2μm、スペース幅Pb
=1.2μmで凹凸のピッチP=2.4μmで高さ13
0nmの微細線形状3が転写されるように予め成形金型
に溝が作製されている。この場合、図1における凸部の
材質は基板2と同じであるため、屈折率n2 =ng
1.5である。周囲媒質1は空気である。
Embodiment 2 FIG. 5 is a sectional view of a convex lens 6 having an anti-reflection film formed thereon. FIG. 6 shows a partially enlarged view of a cross section at the interface (configuration example 2). The convex lens is made of a translucent plastic material having a refractive index of about ng = 1.5, and is formed by using a metal mold.
It is molded as As shown in FIG. 6, on the surface of the lens, a line width P a = 1.2 μm and a space width P b
= 1.2 μm and the pitch P of the irregularities = 2.4 μm and height 13
A groove is formed in a molding die in advance so that a fine line shape 3 of 0 nm is transferred. In this case, since the material of the convex portion in FIG. 1 is the same as that of the substrate 2, the refractive index n 2 = ng =
1.5. The surrounding medium 1 is air.

【0052】このように成形加工された非球面凸型プラ
スティックレンズ6の表面に実施例1と同様に3層の反
射防止膜4が形成されている。
A three-layer antireflection film 4 is formed on the surface of the aspherical convex plastic lens 6 thus formed in the same manner as in the first embodiment.

【0053】このような製法および構成によりレンズ表
面の正規反射光束を低減した非球面凸型プラスティック
レンズが作製され、特に反射型光学素子の集光素子とし
て用いる場合等に、レンズ界面の正規反射防止が問題と
なるときに有用な効果が得られる。
By such a manufacturing method and configuration, an aspherical convex plastic lens in which the regular reflection light flux on the lens surface is reduced is manufactured. Particularly, when the plastic lens is used as a condensing element of a reflection type optical element, the regular reflection prevention at the lens interface is prevented. A useful effect is obtained when is a problem.

【0054】本発明は、上記の実施例以外に、例えば、
液晶レンズ、液晶シャッター、液晶光学素子、または液
晶表示素子に適用できる。特に、反射型の光学構成を用
いる装置において、すぐれた光学特性を発揮する。S/
N比やコントラスト比について、従来例では達成し得な
い良好な数値を得る。本発明は、このほか、本発明の効
果を損しない範囲内で種々の応用が可能である。
The present invention provides, in addition to the above embodiments,
The present invention can be applied to a liquid crystal lens, a liquid crystal shutter, a liquid crystal optical element, or a liquid crystal display element. Particularly, in an apparatus using a reflection type optical configuration, excellent optical characteristics are exhibited. S /
As for the N ratio and the contrast ratio, good numerical values that cannot be achieved by the conventional example are obtained. The present invention is also applicable to various applications within a range that does not impair the effects of the present invention.

【0055】[0055]

【発明の効果】本発明は、正規反射光の生成を抑制し、
すぐれた、光学特性を得ることができる。また、製造方
法が容易であり、かつ、高精度で構造制御でき、高性能
の製品を安定して製造できるようになった。
According to the present invention, the generation of regular reflected light is suppressed,
Excellent optical characteristics can be obtained. Further, the manufacturing method is easy, the structure can be controlled with high accuracy, and a high-performance product can be manufactured stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明(構成例1)を示す断面図。FIG. 1 is a cross-sectional view illustrating the present invention (Configuration Example 1).

【図2】本発明(構成例1)の製造法を示す断面図。FIG. 2 is a sectional view showing a manufacturing method of the present invention (Configuration Example 1).

【図3】(a)本発明の反射防止膜の第1の構成例にお
ける分光反射率データを示すグラフ、(b)従来の反射
防止膜のみの場合の比較例1における分光反射率データ
を示すグラフ、(c)従来の回折格子のみの場合の比較
例2における分光反射率データを示すグラフ。
3A is a graph showing spectral reflectance data in a first configuration example of an antireflection film of the present invention, and FIG. 3B is a graph showing spectral reflectance data in Comparative Example 1 when only a conventional antireflection film is used. Graph, (c) Graph showing spectral reflectance data in Comparative Example 2 when only a conventional diffraction grating is used.

【図4】本発明(構成例1)における1次回折光の回折
角度の波長依存性を示すデータを示すグラフ。
FIG. 4 is a graph showing data showing the wavelength dependence of the diffraction angle of the first-order diffracted light in the present invention (Structural Example 1).

【図5】本発明(構成例2)である凸レンズの断面図。FIG. 5 is a sectional view of a convex lens according to the present invention (Configuration Example 2).

【図6】本発明(構成例2)である凸レンズの界面付近
の拡大断面図。
FIG. 6 is an enlarged cross-sectional view near the interface of a convex lens according to the present invention (Structural Example 2).

【符号の説明】[Explanation of symbols]

1:周囲媒質 2:透光性光学媒体 3:微細凹凸形状 4:透光性誘電体(反射防止膜) 5:微細凹凸形成用フォトレジストマスクパターン 6:凸レンズ 1: Surrounding medium 2: Translucent optical medium 3: Fine irregularities 4: Transparent dielectric (antireflection film) 5: Photoresist mask pattern for forming minute irregularities 6: Convex lens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】屈折率nを有する周囲媒質1と屈折率ng
を有する透光性光学媒体2(n≠ng )との間に少なく
とも1層の透光性誘電体膜が設けられた反射防止膜にお
いて、周囲媒質1に接する界面Sが設けられ、界面Sは
ピッチPおよび平均高さdを有する周期構造を備えた凹
凸を有し、界面Sに入射する入射光束の中心波長をλ、
凸部からの反射光と凹部からの反射光との光路の位相差
をφとすると、λ<P≦30λ、かつ、φ≒(2M+
1)・π(Mは0または正の整数)を満足することを特
徴とする反射防止膜。
1. A surrounding medium 1 having a refractive index n and a refractive index n g
In the anti-reflection film in which at least one layer of the light-transmitting dielectric film is provided between the light-transmitting optical medium 2 (n ≠ ng ) and the light-transmitting optical medium 2 (n ≠ ng ), the interface S in contact with the surrounding medium 1 is provided. Has irregularities with a periodic structure having a pitch P and an average height d, and the central wavelength of the incident light beam incident on the interface S is λ,
Assuming that the phase difference of the optical path between the reflected light from the convex portion and the reflected light from the concave portion is φ, λ <P ≦ 30λ, and φ ≒ (2M +
1) An anti-reflection film characterized by satisfying π (M is 0 or a positive integer).
【請求項2】透光性誘電体膜は相対的に高屈折率の透光
性誘電体膜Hと相対的に低屈折率の透光性誘電体膜Lと
が積層された請求項1記載の反射防止膜。
2. The light-transmitting dielectric film according to claim 1, wherein a light-transmitting dielectric film having a relatively high refractive index and a light-transmitting dielectric film having a relatively low refractive index are laminated. Anti-reflective coating.
【請求項3】凹凸の形状がほぼ矩形であり、中心入射光
束の入射角θに対して、cosθ=λ・(2M+1)/
(4n・d)を満足する請求項1または2記載の反射防
止膜。
3. The shape of the unevenness is substantially rectangular, and cos θ = λ · (2M + 1) / with respect to the incident angle θ of the central incident light beam.
The antireflection film according to claim 1 or 2, wherein (4nd) is satisfied.
【請求項4】位相差φ≒πである請求項1、2または3
記載の反射防止膜。
4. The method according to claim 1, wherein the phase difference is φ ≒ π.
The antireflection film as described in the above.
【請求項5】屈折率nを有する周囲媒質1から界面Sに
中心入射角θで入射し、中心波長λを有する入射光束の
反射防止膜の製造方法であって、屈折率ng を有する透
光性光学媒体2の上に透光性誘電体膜を膜厚d=λ/
(4n・cosθ)となるように形成し、透光性誘電体
膜の上にピッチPの周期構造を備えた凹凸形状である線
状のレジストパターンを形成し、この表面側からフォト
レジストでマスキングされていない透光性誘電体膜をエ
ッチングし、フォトレジストを除去し、透光性誘電体膜
をピッチPかつ平均高さdのパターンに形成し、さら
に、透光性誘電体膜の上に周囲媒質1と透光性光学媒体
2に対する反射防止層を形成することを特徴とする反射
防止膜の製造方法。
5. incident at the central incident angle θ from the surrounding medium 1 having a refractive index n at the interface S, a manufacturing method of the antireflection film of the incident light beam having a center wavelength lambda, Toru having a refractive index n g A transparent dielectric film is formed on the optical optical medium 2 with a thickness d = λ /
(4n · cos θ), a linear resist pattern having a concave-convex shape having a periodic structure with a pitch P is formed on the transparent dielectric film, and masking is performed with a photoresist from the surface side. The light-transmitting dielectric film that has not been etched is etched, the photoresist is removed, the light-transmitting dielectric film is formed in a pattern having a pitch P and an average height d, and the light-transmitting dielectric film is formed on the light-transmitting dielectric film. A method for manufacturing an anti-reflection film, comprising forming an anti-reflection layer for the surrounding medium 1 and the translucent optical medium 2.
JP10823598A 1998-04-17 1998-04-17 Anti-reflection coating Expired - Fee Related JP4178583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10823598A JP4178583B2 (en) 1998-04-17 1998-04-17 Anti-reflection coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10823598A JP4178583B2 (en) 1998-04-17 1998-04-17 Anti-reflection coating

Publications (2)

Publication Number Publication Date
JPH11305005A true JPH11305005A (en) 1999-11-05
JP4178583B2 JP4178583B2 (en) 2008-11-12

Family

ID=14479502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10823598A Expired - Fee Related JP4178583B2 (en) 1998-04-17 1998-04-17 Anti-reflection coating

Country Status (1)

Country Link
JP (1) JP4178583B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120311A (en) * 2000-10-13 2002-04-23 Jsr Corp Structure
JP2002120346A (en) * 2000-10-13 2002-04-23 Jsr Corp Method for manufacturing structure
JPWO2003003074A1 (en) * 2001-06-29 2004-10-21 Jsr株式会社 Antireflection film laminate and method of manufacturing the same
WO2008102882A1 (en) * 2007-02-23 2008-08-28 Nippon Sheet Glass Company, Limited Reflection-preventing structure
WO2011080890A1 (en) * 2009-12-28 2011-07-07 ソニー株式会社 Conductive optical element
JP2012058424A (en) * 2010-09-08 2012-03-22 Canon Inc Optical system with antireflective structure, and optical equipment
JP2012063393A (en) * 2010-09-14 2012-03-29 Canon Inc Optical element and optical device with the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120311A (en) * 2000-10-13 2002-04-23 Jsr Corp Structure
JP2002120346A (en) * 2000-10-13 2002-04-23 Jsr Corp Method for manufacturing structure
JPWO2003003074A1 (en) * 2001-06-29 2004-10-21 Jsr株式会社 Antireflection film laminate and method of manufacturing the same
WO2008102882A1 (en) * 2007-02-23 2008-08-28 Nippon Sheet Glass Company, Limited Reflection-preventing structure
WO2011080890A1 (en) * 2009-12-28 2011-07-07 ソニー株式会社 Conductive optical element
JP2011138059A (en) * 2009-12-28 2011-07-14 Sony Corp Conductive optical element, touch panel, and liquid crystal display device
JP2012058424A (en) * 2010-09-08 2012-03-22 Canon Inc Optical system with antireflective structure, and optical equipment
JP2012063393A (en) * 2010-09-14 2012-03-29 Canon Inc Optical element and optical device with the same
US9864107B2 (en) 2010-09-14 2018-01-09 Canon Kabushiki Kaisha Optical element with antireflection function and optical apparatus including the same

Also Published As

Publication number Publication date
JP4178583B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US6958207B1 (en) Method for producing large area antireflective microtextured surfaces
EP1645903A1 (en) Wire grid polarizer and fabrication method thereof
Kanamori et al. Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching
JP2003279705A (en) Antireflection member
CN108351437B (en) Diffusion plate, method for designing diffusion plate, method for manufacturing diffusion plate, display device, projection device, and illumination device
JP2002182003A (en) Antireflection functional element, optical element, optical system and optical appliance
Lee et al. Imaging with blazed-binary diffractive elements
US20130242391A1 (en) Optical device and method for manufacturing same
JP2004317922A (en) Surface processing method, optical element, and metal mold therefor
JP7250846B2 (en) Wire grid polarizing plate manufacturing method
WO2019024572A1 (en) Anti-reflection structure, display device and fabrication method for anti-reflection structure
JPH11305005A (en) Anti reflection film and its manufacture
JP2004219626A (en) Optical element
JP2007178793A (en) Polarization retardation plate
JPH0799402B2 (en) Wave plate
JP2003279706A (en) Antireflection member
JP2005099099A (en) Wavelength plate
JP2018146624A (en) Transmission type diffraction element and anti-reflection structure
JP3564215B2 (en) Interference exposure apparatus and interference exposure method using the same
Röhlig et al. Simultaneous occurrence and compensating effects of multi‐type disorder in two‐dimensional photonic structures
TWI826644B (en) Large area high resolution feature reduction lithography technique
Toyota et al. Design and fabrication of guided-mode resonant grating filter with antireflection structured surface
JP4279598B2 (en) Manufacturing method of gradient index lens
US11036145B2 (en) Large area self imaging lithography based on broadband light source
CN115480331A (en) Grating structure and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees