JPH11304417A - Optical interference fringe measuring device - Google Patents

Optical interference fringe measuring device

Info

Publication number
JPH11304417A
JPH11304417A JP10123961A JP12396198A JPH11304417A JP H11304417 A JPH11304417 A JP H11304417A JP 10123961 A JP10123961 A JP 10123961A JP 12396198 A JP12396198 A JP 12396198A JP H11304417 A JPH11304417 A JP H11304417A
Authority
JP
Japan
Prior art keywords
light
spectral
optical
lights
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10123961A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawasaki
川崎  和彦
Naoki Mitsuya
直樹 光谷
Hiroshi Haino
宏 配野
Kiyokazu Okamoto
清和 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP10123961A priority Critical patent/JPH11304417A/en
Publication of JPH11304417A publication Critical patent/JPH11304417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical interference fringe measuring device capable of obtaining plural interference fringe images from the measured light and the reference light at the same time without providing a mechanically movable part. SOLUTION: The light from a light source 1 is divided by a beam splitter 3 into plural spectral measured light 9A-9C as the reflected light from a surface 4 to be measured and plural spectral reference light 11A-11C having a different phase at the same time, and each spectral reference light 11A-11C combined with each spectral measured light 9A-9C forms plural optical interference fringes, and photoelectric converting means 19A-19C for taking the interference fringe optical information of an optical interference system are provided in each optical interference system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学干渉縞計測装置
に関し、特に、高精度解析が可能な位相シフト法による
光学干渉縞計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical interference fringe measuring apparatus, and more particularly, to an optical interference fringe measuring apparatus using a phase shift method capable of performing high-accuracy analysis.

【0002】[0002]

【背景技術】周知のように、光の干渉により生じる干渉
縞を解析して被測定面の形状を解析する光学干渉縞計測
装置においては、参照面を光軸方向に移動させて参照光
の位相を変化させ、移動前後の複数枚の干渉縞画像を解
析して、被測定面の形状を知る(例えば、特開平8−1
59709号公報)。
2. Description of the Related Art As is well known, in an optical interference fringe measuring apparatus for analyzing an interference fringe generated by light interference to analyze a shape of a surface to be measured, a reference surface is moved in an optical axis direction to thereby adjust a phase of the reference light. Is changed, and a plurality of interference fringe images before and after the movement are analyzed to determine the shape of the surface to be measured (for example, see Japanese Patent Application Laid-Open No.
No. 59709).

【0003】即ち、図5はこのような位相シフト法よる
従来の光学干渉縞計測装置の光学系を示し、レンズAで
平行光とされた光源Bからのコヒーレント光はビームス
プリッタCを透過して被測定面Dで反射され、ビームス
プリッタCにて反射されて、結像レンズEでCCD素子
等のカメラFに入力される。また、前記ビームスプリッ
タCと前記被測定面Dとの間には、測定光の光軸方向に
移動される参照面部材Gが位置され、この参照面部材G
の介在により前記被測定面Dからの反射光が干渉され
る。
FIG. 5 shows an optical system of a conventional optical interference fringe measuring apparatus using such a phase shift method. Coherent light from a light source B, which is made parallel by a lens A, passes through a beam splitter C. The light is reflected by the surface D to be measured, reflected by the beam splitter C, and input to a camera F such as a CCD element by an imaging lens E. A reference surface member G that is moved in the optical axis direction of the measurement light is located between the beam splitter C and the surface D to be measured.
The reflected light from the surface D to be measured is interfered by the interposition of.

【0004】つまり、このような従来の光学干渉縞計測
装置では、参照面部材Gの光軸方向の位置変化により参
照光の位相がシフトされるから、参照面部材Gの移動前
後の干渉縞をカメラFから処理装置Hに取り込んで解析
することにより、被測定面Dの形状を知ることができ
る。
That is, in such a conventional optical interference fringe measuring apparatus, since the phase of the reference light is shifted by a change in the position of the reference surface member G in the optical axis direction, the interference fringes before and after the movement of the reference surface member G are detected. The shape of the surface D to be measured can be known by taking the camera F into the processing device H and analyzing it.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな構成の光学干渉縞計測装置によると、参照面部材G
の移動により参照光の位相をシフトするので、参照面部
材Gの精密な移動のために装置が高価になりがちで、実
際の解析のためには、参照面部材Gの移動の度に複数枚
の干渉縞画像を順次処理装置に取り込む必要があるか
ら、解析作業に時間がかかる難点がある。このため、各
干渉縞画像の取り込み時に、空気揺らぎ、機械的な振
動、温度変化といった環境の変化があると、これらの影
響により干渉縞画像が変化してしまう。勿論、この光学
干渉縞計測装置にあっては、参照面部材Gの移動による
時間的に異なった干渉縞画像の取り込みであるから、そ
の解析手法自体高速移動体の計測はできなかった。
However, according to the optical interference fringe measuring apparatus having such a configuration, the reference plane member G
Since the phase of the reference light is shifted by the movement of the reference surface member G, the apparatus tends to be expensive due to the precise movement of the reference surface member G, and for actual analysis, a plurality of sheets are required every time the reference surface member G moves. It is necessary to take in the interference fringe images sequentially into the processing device, so that there is a disadvantage that the analysis work takes time. For this reason, if there is an environmental change such as air fluctuation, mechanical vibration, or temperature change at the time of capturing each interference fringe image, the interference fringe image changes due to these effects. Of course, in this optical interference fringe measurement apparatus, since the interference fringe images differing in time due to the movement of the reference surface member G are taken in, the analysis method itself could not measure a high-speed moving body.

【0006】本発明の目的は、以上に述べたような従来
の光学干渉縞計測装置の問題に鑑み、機械的な可動部が
なく、計測光と参照光との間の複数の干渉縞画像が同時
に得られる光学干渉縞計測装置を得るにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the conventional optical interference fringe measuring apparatus, the object of the present invention is that there is no mechanical movable part, and a plurality of interference fringe images between the measuring light and the reference light can be obtained. An object is to obtain an optical interference fringe measuring device which can be obtained at the same time.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、本発明は、ビームスプリッタによって光源からの光
を、被測定面からの反射光である複数の分光計測光とそ
れぞれ位相の異なった複数の分光参照光とに同時的に分
割し、前記各分光計測光に組み合わされる前記各分光参
照光で複数の光学干渉系を構成し、これらの光学干渉系
の干渉縞光学情報を取り込む光電変換手段を各光学干渉
系に設けた光学干渉縞計測装置を提案するものである。
In order to achieve this object, the present invention provides a beam splitter which converts light from a light source into a plurality of light beams having different phases from a plurality of spectral measurement light beams reflected from a surface to be measured. Photoelectric conversion means which simultaneously divides the spectral reference light into a plurality of spectral reference lights, forms a plurality of optical interference systems with the respective spectral reference lights combined with the respective spectral measurement lights, and captures interference fringe optical information of these optical interference systems Is proposed in each optical interference system.

【0008】後述する本発明の好ましい実施例の説明に
おいては、 1)光源からの平行光を被測定面への投射光と参照光に分
割するビームスプリッタと、被測定面から反射された前
記計測光を複数の分光計測光に分解する複数の計測光ス
プリッタと、前記参照光を複数の分光参照光に分解する
参照光スプリッタと、前記分光参照光の少なくともひと
つに介在されて他の分光参照光の位相とは異なる位相の
参照光を生成する光学媒質あるいは前記分光計測光の少
なくともひとつに介在されて他の分光計測光の位相とは
異なる位相の計測光を生成する光学媒質と、前記各分光
計測光に前記分光参照光を組み合わせて複数の光学干渉
系を構成する複数の干渉部スプリッタと、これらの光学
干渉系の干渉縞光学情報を取り込んで記憶させる手段と
を備える構成、 2)光源からの平行光を被測定面への投射光と参照光に分
割するビームスプリッタと、被測定面から反射された前
記計測光を複数の分光計測光に分解する複数の計測光ス
プリッタと、前記参照光を複数の分光参照光に分解する
参照光スプリッタと、前記分光参照光の少なくともひと
つに介在されて他の分光参照光の位相とは異なる位相の
参照光を生成する液晶位相シフト板あるいは前記分光計
測光の少なくともひとつに介在されて他の分光計測光の
位相とは異なる位相の計測光を生成する液晶位相シフト
板と、前記各分光計測光に前記分光参照光を組み合わせ
て複数の光学干渉系を構成する複数の干渉部スプリッタ
と、これらの光学干渉系の干渉縞光学情報を取り込んで
記憶させる手段とを備える構成、 3)光源からの平行光を被測定面への投射光と参照光に分
割するビームスプリッタと、被測定面から反射された前
記計測光を複数の分光計測光に分解する複数の計測光ス
プリッタと、前記参照光を複数の分光参照光に分解する
参照光スプリッタと、前記分光参照光の少なくともひと
つに介在されて他の分光参照光の位相とは異なる位相の
参照光を生成する光学クサビあるいは前記分光計測光の
少なくともひとつに介在されて他の分光計測光の位相と
は異なる位相の計測光を生成する光学クサビと、前記各
分光計測光に前記分光参照光を組み合わせて複数の光学
干渉系を構成する複数の干渉部スプリッタと、これらの
光学干渉系の干渉縞光学情報を取り込んで記憶させる手
段とを備える構成、 4)光源からの平行光を被測定面への投射光と参照光に分
割するビームスプリッタと、被測定面から反射された前
記計測光を複数の分光計測光に分解する複数の計測光ス
プリッタと、前記参照光を複数の分光参照光に分解する
参照光スプリッタと、前記分光参照光の少なくともひと
つに介在されて他の分光参照光の光路長とは異なる光路
長とすることにより異なった位相の分光参照光とする少
なくとも1組の参照光スプリッタと光路長ミラーあるい
は前記分光計測光の少なくともひとつに介在されて他の
分光計測光の光路長とは異なる光路長とすることにより
異なった位相の分光計測光とする少なくとも1組の計測
光スプリッタと光路長ミラーと、前記各分光計測光に前
記分光参照光を組み合わせて複数の光学干渉系を構成す
る複数の干渉部スプリッタと、これらの光学干渉系の干
渉縞光学情報を取り込んで記憶させる手段とを備える構
成が説明される。
In the following description of a preferred embodiment of the present invention, 1) a beam splitter for splitting parallel light from a light source into light projected onto a surface to be measured and reference light, and the measurement reflected from the surface to be measured A plurality of measurement light splitters for decomposing light into a plurality of spectral measurement lights, a reference light splitter for decomposing the reference light into a plurality of spectral reference lights, and another spectral reference light interposed in at least one of the spectral reference lights An optical medium that generates reference light having a phase different from that of the optical medium or an optical medium that is interposed in at least one of the spectral measurement lights and generates measurement light having a phase different from the phase of the other spectral measurement light; A plurality of interference unit splitters constituting a plurality of optical interference systems by combining the spectral reference light with the measurement light; and a unit for capturing and storing interference fringe optical information of these optical interference systems. 2) a beam splitter that divides parallel light from a light source into projection light onto a surface to be measured and reference light, and a plurality of measurement lights that decompose the measurement light reflected from the surface to be measured into a plurality of spectral measurement lights A splitter, a reference light splitter that splits the reference light into a plurality of spectral reference lights, and a liquid crystal phase that is interposed in at least one of the spectral reference lights and generates a reference light having a phase different from the phase of another spectral reference light. A liquid crystal phase shift plate that generates measurement light having a phase different from the phase of the other spectral measurement light interposed in at least one of the shift plate or the spectral measurement light, and combining the spectral reference light with each of the spectral measurement lights. A configuration including a plurality of interference unit splitters constituting a plurality of optical interference systems, and a unit for capturing and storing interference fringe optical information of the optical interference systems; 3) parallel light from a light source to a surface to be measured; A beam splitter that divides the measurement light reflected from the surface to be measured into a plurality of spectral measurement lights, a beam splitter that divides the measurement light reflected from the surface to be measured into a plurality of spectral measurement lights, A reference light splitter, and an optical wedge that is interposed in at least one of the spectral reference lights and generates a reference light having a phase different from the phase of another spectral reference light, or another optical wedge that is interposed in at least one of the spectral measurement lights. An optical wedge that generates measurement light having a phase different from the phase of the spectral measurement light; a plurality of interference unit splitters that form a plurality of optical interference systems by combining the spectral reference light with each of the spectral measurement lights; Means for capturing and storing interference fringe optical information of an interference system; 4) a beam splitter for splitting parallel light from a light source into projection light onto a surface to be measured and reference light; A plurality of measurement light splitters for decomposing the measurement light reflected from the measurement surface into a plurality of spectral measurement lights, a reference light splitter for decomposing the reference light into a plurality of spectral reference lights, and at least one of the spectral reference lights At least one pair of a reference light splitter and an optical path length mirror interposed so as to have an optical path length different from the optical path length of another spectral reference light to obtain spectral reference light having a different phase, or at least one of the spectral measurement light And at least one set of measurement light splitters and optical path length mirrors that have different optical path lengths from the optical path lengths of the other spectroscopic measurement lights, so that the spectroscopic measurement lights have different phases. A plurality of interfering unit splitters that form a plurality of optical interference systems by combining light, and a unit that captures and stores interference fringe optical information of these optical interference systems. That configuration is described.

【0009】[0009]

【発明の実施の形態】以下、図1から図4について本発
明の実施例の詳細を説明する。図1は本発明の第1実施
例による光学干渉縞計測装置の光学系を示し、光源1か
ら出射されるコヒーレント光はレンズ2で平行光束とさ
れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 1 shows an optical system of an optical interference fringe measuring apparatus according to a first embodiment of the present invention. Coherent light emitted from a light source 1 is converted into a parallel light beam by a lens 2.

【0010】この平行光束はその光軸上に位置するビー
ムスプリッタ3により被測定面4への投射光と被測定面
4からの反射光に対する参照光とに分割される。被測定
面4への投射光は被測定面4により反射され、再び前記
ビームスプリッタ3により反射された後、計測光反射ミ
ラー5で全反射されて計測光となるけれども、この計測
光は2つの計測光スプリッタ6,7及び第1全反射ミラ
ー8により3系統の分光計測光9A,9B,9Cに分岐
される。
This parallel light beam is split by a beam splitter 3 located on the optical axis into a projection light to the measured surface 4 and a reference light for reflected light from the measured surface 4. The light projected onto the surface 4 to be measured is reflected by the surface 4 to be measured, reflected again by the beam splitter 3, and then totally reflected by the measuring light reflecting mirror 5 to become measuring light. The measurement light splitters 6 and 7 and the first total reflection mirror 8 split the light into three systems of spectral measurement light 9A, 9B and 9C.

【0011】即ち、計測光反射ミラー5からの計測光は
第1計測光スプリッタ6を通る間に反射光と透過光に分
けられ、同第1計測光スプリッタ6の反射光が第1分光
計測光9Aとなり、同第1計測光スプリッタ6の透過光
は第2計測光スプリッタ7で同様に反射光と透過光とに
分けられ、第2計測光スプリッタ7の反射光が第2分光
計測光9Bとなる。また、第2計測光スプリッタ7の透
過光は第1全反射ミラー8で反射されて、第1分光計測
光9A及び第2分光計測光9Bに平行な第3分光計測光
9Cとされる。
That is, the measuring light from the measuring light reflecting mirror 5 is divided into reflected light and transmitted light while passing through the first measuring light splitter 6, and the reflected light from the first measuring light splitter 6 is converted into the first spectral measuring light. 9A, the transmitted light of the first measurement light splitter 6 is similarly divided into reflected light and transmitted light by the second measurement light splitter 7, and the reflected light of the second measurement light splitter 7 is converted to the second spectral measurement light 9B. Become. Further, the transmitted light of the second measurement light splitter 7 is reflected by the first total reflection mirror 8, and becomes the third spectrum measurement light 9C parallel to the first spectrum measurement light 9A and the second spectrum measurement light 9B.

【0012】一方、ビームスプリッタ3からの反射光で
ある参照光は、波面を左右反転させる反転光学レンズ1
0に通過された後、前記各分光計測光9A,9B,9C
に対応された3系統の分光参照光11A,11B,11
Cとされる。つまり、参照光は第1参照光スプリッタ1
2を通る間に反射光と透過光に分けられ、同第1参照光
スプリッタ12の反射光が第1分光参照光11Aとさ
れ、同第1参照光スプリッタ12の透過光は第2参照光
スプリッタ13で同様に反射光と透過光とに分割され、
第2参照光スプリッタ13の反射光が第2分光参照光1
1Bとされ、この第2分光参照光11Bの光路には特定
の屈折率をもつ第1屈折媒質14が位置される。また、
第2参照光スプリッタ13の透過光は第2全反射ミラー
15で反射されて第1分光参照光11A及び第2分光参
照光11Bに平行な第3分光参照光11Cとされるが、
この第3分光参照光11Cの光路には前記第1屈折媒質
14とは異なった屈折率をもつ第2屈折媒質16が位置
される。
On the other hand, the reference light, which is the reflected light from the beam splitter 3, is inverted by an inverting optical lens 1 for inverting the wavefront from side to side.
0, and the above-mentioned respective spectroscopic measurement lights 9A, 9B, 9C
, Three systems of spectral reference beams 11A, 11B, 11
C. That is, the reference light is the first reference light splitter 1
2, the light is divided into reflected light and transmitted light, and the reflected light from the first reference light splitter 12 is used as the first spectral reference light 11A. The transmitted light from the first reference light splitter 12 is used as the second reference light splitter. At 13 the light is similarly divided into reflected light and transmitted light,
The reflected light of the second reference light splitter 13 is the second spectral reference light 1
1B, the first refraction medium 14 having a specific refractive index is located in the optical path of the second spectral reference light 11B. Also,
The transmitted light of the second reference light splitter 13 is reflected by the second total reflection mirror 15 and becomes the third spectral reference light 11C parallel to the first spectral reference light 11A and the second spectral reference light 11B.
A second refraction medium 16 having a refractive index different from that of the first refraction medium 14 is located in the optical path of the third spectral reference light 11C.

【0013】略直角に交差される第1分光計測光9Aと
第1分光参照光11Aはそれらの交差部に位置する第1
干渉部スプリッタ17Aを介して干渉され、得られた干
渉縞画像情報は第1結像レンズ18A及びCCD素子等
の第1光電変換カメラ19Aに取り込まれる。同様に、
第2分光計測光9Bと第2分光参照光11Bはそれらの
交差部に位置する第2干渉部スプリッタ17Bを介し
て、また、第3分光計測光9Cと第3分光参照光11C
はそれらの交差部に位置する第3干渉部スプリッタ17
Cを介してそれぞれ干渉され、第2結像レンズ18B及
び第3結像レンズ18Cに組み合わされる第2光電変換
カメラ19B及び第3光電変換カメラ19Cに取り込ま
れる。また、第1から第3光電変換カメラ19A〜19
Cに取り込まれた3つの干渉縞情報は記憶装置20に記
憶され、記憶された複数の干渉縞情報より形状を算出し
た結果がモニタ21に再現される。
The first spectral measurement light 9A and the first spectral reference light 11A that intersect at substantially right angles are the first spectral measurement light 9A and the first spectral reference light 11A located at the intersection.
The interference fringe image information obtained through interference through the interference unit splitter 17A is captured by a first photoelectric conversion camera 19A such as a first imaging lens 18A and a CCD element. Similarly,
The second spectral measurement light 9B and the second spectral reference light 11B pass through a second interference part splitter 17B located at the intersection of the second spectral measurement light 9B and the third spectral measurement light 9C and the third spectral reference light 11C.
Are the third interference unit splitters 17 located at their intersections.
The light is interfered with each other via C, and is captured by the second photoelectric conversion camera 19B and the third photoelectric conversion camera 19C combined with the second imaging lens 18B and the third imaging lens 18C. In addition, the first to third photoelectric conversion cameras 19A to 19A
The three pieces of interference fringe information captured in C are stored in the storage device 20, and the result of calculating the shape from the stored plurality of pieces of interference fringe information is reproduced on the monitor 21.

【0014】第1実施例による光学干渉縞計測装置は、
以上のような構成であるので、光源1からの投射光に対
して位相の異なった複数系統の分光参照光11A〜11
Cが同時に作られ、これらの分光参照光11A〜11C
が被測定面4からの反射光からなる分光計測光9A〜9
Cにそれぞれ干渉され、これらの干渉縞情報が同時的に
複数の光電変換カメラ19A〜19Cに取り込まれ、記
憶装置20に記憶されて、複数枚の干渉縞画像情報の比
較により、被測定面4の表面の形状が解析される。した
がって、第1実施例の光学干渉縞計測装置は精密加工が
要求される機械的可動部がないばかりでなく、複数の分
光計測光9A〜9Cに組み合わされる位相の異なった複
数の分光参照光11A〜11Cで複数の光学干渉系が同
時的に構成されるため、高速移動体の計測も可能とな
り、空気揺らぎ、機械的な振動、温度変化等の環境の変
化による影響の少ない光学干渉縞計測装置を得ることが
できる。
The optical interference fringe measuring apparatus according to the first embodiment is
With the above-described configuration, a plurality of systems of spectral reference beams 11A to 11A having different phases with respect to the projection light from the light source 1.
C are made simultaneously, and these spectral reference beams 11A to 11C
Are spectral measurement lights 9A to 9 composed of light reflected from the surface 4 to be measured.
C, the interference fringe information is simultaneously captured by the plurality of photoelectric conversion cameras 19A to 19C, stored in the storage device 20, and compared with the plurality of pieces of interference fringe image information to obtain the measured surface 4 Is analyzed. Therefore, the optical interference fringe measuring apparatus of the first embodiment has not only a mechanically movable part requiring precision processing but also a plurality of spectral reference beams 11A having different phases combined with the plurality of spectral measurement beams 9A to 9C. Since a plurality of optical interference systems are simultaneously configured at up to 11C, measurement of a high-speed moving object is also possible, and an optical interference fringe measuring apparatus which is less affected by environmental changes such as air fluctuations, mechanical vibrations, and temperature changes. Can be obtained.

【0015】なお、前述した第1実施例においては、第
2分光参照光11B及び第3分光参照光11Cに屈折率
が異なった屈折媒質14,16を用いるものを例示した
けれども、これらの屈折媒質14,16は、互いに屈折
率が同一で厚みのみが異なる複数の厚み媒質にそれぞれ
置換して、結果的に第2分光参照光11B及び第3分光
参照光11Cの光路長を異ならせて位相シフトを行って
も、同一の効果を得ることができる。ここで、屈折媒質
14,16の屈折率や厚みを調節あるいは選択すること
により、任意の位相シフトを得ることができる。
In the first embodiment described above, the second spectral reference beam 11B and the third spectral reference beam 11C are formed using the refractive media 14 and 16 having different refractive indexes. Reference numerals 14 and 16 denote phase shifts by substituting a plurality of thickness media having the same refractive index and different thicknesses, respectively, so that the optical path lengths of the second and third spectral reference beams 11B and 11C are different. , The same effect can be obtained. Here, an arbitrary phase shift can be obtained by adjusting or selecting the refractive index and thickness of the refraction media 14 and 16.

【0016】図2は本発明の第2実施例による光学干渉
縞計測装置を示し、前述した第1実施例の場合と同一構
成部分については、図1と同一符号を付して示してあ
る。即ち、光源1から出射されるコヒーレント光はレン
ズ2で平行光束とされ、ビームスプリッタ3により被測
定面4への投射光と被測定面4からの反射光に対する参
照光とに分割される。前記被測定面4からの反射光は再
び前記ビームスプリッタ3により反射された後、計測光
反射ミラー5で全反射され、2つの計測光スプリッタ
6,7及び第1全反射ミラー8により3系統の分光計測
光9A,9B,9Cとされる。
FIG. 2 shows an optical interference fringe measuring apparatus according to a second embodiment of the present invention, and the same components as those in the first embodiment are denoted by the same reference numerals as in FIG. That is, the coherent light emitted from the light source 1 is converted into a parallel light beam by the lens 2, and is split by the beam splitter 3 into the light projected on the surface 4 to be measured and the reference light for the light reflected from the surface 4 to be measured. The reflected light from the surface to be measured 4 is reflected again by the beam splitter 3 and then totally reflected by the measuring light reflecting mirror 5 to be divided into three systems by the two measuring light splitters 6 and 7 and the first total reflecting mirror 8. These are the spectral measurement lights 9A, 9B, and 9C.

【0017】また、ビームスプリッタ3から反射される
参照光は、波面を左右反転させる反転光学レンズ10に
通過された後、参照光スプリッタ12,13及び第2全
反射ミラー15により3系統の分光参照光11A,11
B,11Cとされる。また、各分光計測光9A,9B,
9Cと対応された分光参照光11A,11B,11Cは
それらの交差部に位置する干渉部スプリッタ17A,1
7B,17Cを介してそれぞれ干渉され、得られた干渉
縞画像情報は複数の結像レンズ18A,18B,18C
及び光電変換カメラ19A,19B,19Cに取り込ま
れる。そして、各光電変換カメラ19A,19B,19
Cに取り込まれた3つの干渉縞情報は記憶部と処理部を
有する記憶処理装置20に記憶され、記憶された複数の
干渉縞情報より形状を算出した結果がモニタ21に再現
される点では第1実施例の場合と同様である。
The reference light reflected from the beam splitter 3 is passed through an inverting optical lens 10 for inverting the wavefront to the left and right, and is then subjected to three systems of spectral reference by reference light splitters 12 and 13 and a second total reflection mirror 15. Light 11A, 11
B, 11C. Further, each of the spectroscopic measurement lights 9A, 9B,
The spectral reference beams 11A, 11B, and 11C corresponding to 9C correspond to the interfering unit splitters 17A and 17A located at their intersections.
7B and 17C, and the obtained interference fringe image information is stored in a plurality of imaging lenses 18A, 18B and 18C.
And are captured by the photoelectric conversion cameras 19A, 19B, and 19C. And each photoelectric conversion camera 19A, 19B, 19
The three pieces of interference fringe information captured in C are stored in a storage processing device 20 having a storage unit and a processing unit, and the result of calculating a shape from the stored plurality of pieces of interference fringe information is reproduced on a monitor 21. This is the same as in the first embodiment.

【0018】第2実施例による光学干渉縞計測装置の特
徴は、第2分光参照光11B及び第3分光参照光11C
にそれぞれ組み込まれた2つの液晶位相シフト板14
A,16Aにあり、前述の屈折媒質14,16に置換さ
れた液晶位相シフト板14A,16Aにより第2分光参
照光11B及び第3分光参照光11Cの参照光は位相を
それぞれ異ならせた状態とされる。
The optical interference fringe measuring apparatus according to the second embodiment is characterized by the second spectral reference beam 11B and the third spectral reference beam 11C.
Liquid crystal phase shift plates 14 respectively incorporated in
A and 16A, the reference light of the second spectral reference light 11B and the reference light of the third spectral reference light 11C are different in phase by the liquid crystal phase shift plates 14A and 16A replaced by the refraction media 14 and 16, respectively. Is done.

【0019】第2実施例による光学干渉縞計測装置は、
以上のような構成であるので、光源1からの投射光に対
して位相の異なった複数系統の分光参照光11A〜11
Cが同時に作られ、これらの分光参照光11A〜11C
が被測定面4からの反射光からなる分光計測光9A〜9
Cにそれぞれ干渉され、これらの干渉縞情報が同時的に
複数の光電変換カメラに取り込まれ、記憶装置20に記
憶されて、複数枚の干渉縞画像情報の比較により、被測
定面4の表面の形状が解析される。この場合、液晶位相
シフト板14A,16Aの組み込みにより分光参照光1
1A〜11Cの参照光の位相が異なった状態とされるの
で、第2実施例の構成でも、第1実施例と全く同様の作
用効果を期待できる。
The optical interference fringe measuring apparatus according to the second embodiment is
With the above-described configuration, a plurality of systems of spectral reference beams 11A to 11A having different phases with respect to the projection light from the light source 1.
C are made simultaneously, and these spectral reference beams 11A to 11C
Are spectral measurement lights 9A to 9 composed of light reflected from the surface 4 to be measured.
C, respectively, and these pieces of interference fringe information are simultaneously captured by a plurality of photoelectric conversion cameras, stored in the storage device 20, and compared with a plurality of pieces of interference fringe image information to determine the surface of the surface 4 to be measured. The shape is analyzed. In this case, by incorporating the liquid crystal phase shift plates 14A and 16A, the spectral reference light 1
Since the phases of the reference beams 1A to 11C are different, the same operation and effect as in the first embodiment can be expected in the configuration of the second embodiment.

【0020】図3は本発明の第3実施例による光学干渉
縞計測装置を示し、前述した第1実施例及び第2実施例
の場合と同一構成部分については、図1と同一符号を付
して示してある。即ち、光源1から出射されるコヒーレ
ント光はレンズ2で平行光束とされ、ビームスプリッタ
3により被測定面4への投射光と被測定面4からの反射
光に対する参照光とに分割される。前記被測定面4から
の反射光は再び前記ビームスプリッタ3により反射され
た後、計測光反射ミラー5で全反射され、2つの計測光
スプリッタ6,7及び第1全反射ミラー8により3系統
の分光計測光9A,9B,9Cとされる。
FIG. 3 shows an optical interference fringe measuring apparatus according to a third embodiment of the present invention. The same components as those in the first and second embodiments described above are denoted by the same reference numerals as in FIG. Shown. That is, the coherent light emitted from the light source 1 is converted into a parallel light beam by the lens 2, and is split by the beam splitter 3 into the light projected on the surface 4 to be measured and the reference light for the light reflected from the surface 4 to be measured. The reflected light from the surface to be measured 4 is reflected again by the beam splitter 3 and then totally reflected by the measuring light reflecting mirror 5 to be divided into three systems by the two measuring light splitters 6 and 7 and the first total reflecting mirror 8. These are the spectral measurement lights 9A, 9B, and 9C.

【0021】また、ビームスプリッタ3から反射される
参照光は、波面を左右反転させる反転光学レンズ10に
通過された後、参照光スプリッタ12,13及び第2全
反射ミラー15により3系統の分光参照光11A,11
B,11Cとされる。また、各分光計測光9A,9B,
9Cと対応された分光参照光11A,11B,11Cは
それらの交差部に位置する干渉部スプリッタ17A,1
7B,17Cを介してそれぞれ干渉され、得られた干渉
縞画像情報は複数の結像レンズ18A,18B,18C
及び光電変換カメラ19A,19B,19Cに取り込ま
れることになる。そして、各光電変換カメラ19A,1
9B,19Cに取り込まれた3つの干渉縞情報は記憶処
理装置20に記憶され、記憶された複数の干渉縞情報よ
り形状を算出した結果がモニタ21に再現される点では
第1実施例及び第2実施例の場合と同様である。
The reference light reflected from the beam splitter 3 is passed through an inverting optical lens 10 for inverting the wavefront to the left and right, and then is subjected to three systems of spectral reference by reference light splitters 12 and 13 and a second total reflection mirror 15. Light 11A, 11
B, 11C. Further, each of the spectroscopic measurement lights 9A, 9B,
The spectral reference beams 11A, 11B, and 11C corresponding to 9C correspond to the interfering unit splitters 17A and 17A located at their intersections.
7B and 17C, and the obtained interference fringe image information is stored in a plurality of imaging lenses 18A, 18B and 18C.
And the images are captured by the photoelectric conversion cameras 19A, 19B, and 19C. And each photoelectric conversion camera 19A, 1
The three interference fringe information taken in 9B and 19C are stored in the storage processing device 20, and the result of calculating the shape from the stored plurality of pieces of interference fringe information is reproduced on the monitor 21 in the first embodiment and the second embodiment. This is the same as in the case of the second embodiment.

【0022】第3実施例による光学干渉縞計測装置の特
徴は、第2分光参照光11B及び第3分光参照光11C
にそれぞれ組み込まれた2つの光学クサビ14B,16
Bにあり、前述の屈折媒質14,16及び液晶位相シフ
ト板14A,16Aに置換されたこれらの光学クサビ1
4B,16Bにより第2分光参照光11B及び第3分光
参照光11Cの参照光の光路長を異ならせ、結果として
第2分光参照光11B及び第3分光参照光11Cの位相
をそれぞれ異ならせてある。
The optical interference fringe measuring apparatus according to the third embodiment is characterized by the second spectral reference beam 11B and the third spectral reference beam 11C.
Optical wedges 14B and 16 respectively incorporated in
B, and these optical wedges 1 replaced by the refraction media 14 and 16 and the liquid crystal phase shift plates 14A and 16A.
The optical path lengths of the second spectral reference light 11B and the third spectral reference light 11C are made different by 4B and 16B, and as a result, the phases of the second spectral reference light 11B and the third spectral reference light 11C are made different. .

【0023】第3実施例による光学干渉縞計測装置は、
以上のような構成であるので、光源1からの投射光に対
して位相の異なった複数系統の分光参照光11A〜11
Cが同時に作られ、これらの分光参照光11A〜11C
が被測定面4からの反射光からなる分光計測光9A〜9
Cにそれぞれ干渉され、これらの干渉縞情報が同時的に
複数の光電変換カメラに取り込まれ、記憶装置20に記
憶されて、複数枚の干渉縞画像情報の比較により、被測
定面4の表面の形状が解析される。この場合、光学クサ
ビ14B,16Bの組み込みにより分光参照光11A〜
11Cの参照光の位相が異なった状態とされるので、第
3実施例の構成であっても、第1実施例及び第2実施例
と全く同様の作用効果を期待できる。
The optical interference fringe measuring apparatus according to the third embodiment is
With the above-described configuration, a plurality of systems of spectral reference beams 11A to 11A having different phases with respect to the projection light from the light source 1.
C are made simultaneously, and these spectral reference beams 11A to 11C
Are spectral measurement lights 9A to 9 composed of light reflected from the surface 4 to be measured.
C, respectively, and these pieces of interference fringe information are simultaneously captured by a plurality of photoelectric conversion cameras, stored in the storage device 20, and compared with a plurality of pieces of interference fringe image information to determine the surface of the surface 4 to be measured. The shape is analyzed. In this case, the spectral reference beams 11A to 11A to
Since the phase of the reference light of 11C is different, the same operation and effect as those of the first and second embodiments can be expected even with the configuration of the third embodiment.

【0024】図4は本発明の第4実施例による光学干渉
縞計測装置を示し、前述した各実施例の場合と同一構成
部分については、図1と同一符号を付して示してある。
即ち、光源1から出射されるコヒーレント光はレンズ2
で平行光束とされ、ビームスプリッタ3により被測定面
4への投射光と被測定面4からの反射光に対する参照光
とに分割され、前記被測定面4からの反射光は再び前記
ビームスプリッタ3により反射された後、計測光反射ミ
ラー5で全反射され、2つの計測光スプリッタ6,7及
び第1全反射ミラー8により3系統の分光計測光9A,
9B,9Cとされる。
FIG. 4 shows an optical interference fringe measuring apparatus according to a fourth embodiment of the present invention, and the same components as those in the above-described embodiments are denoted by the same reference numerals as in FIG.
That is, the coherent light emitted from the light source 1
The beam splitter 3 divides the beam into a parallel light beam, and the beam splitter 3 divides the beam into projection light onto the surface 4 to be measured and reference light with respect to the light reflected from the surface 4 to be measured. After being reflected by the measuring light reflecting mirror 5, the two measuring light splitters 6 and 7 and the first total reflecting mirror 8 separate the three sets of spectral measuring light 9 A,
9B and 9C.

【0025】また、ビームスプリッタ3から反射される
参照光は、光路長のそれぞれ異なる3系統の分光参照光
11A,11B,11Cとされる。即ち、第1分光参照
光11A、第2分光参照光11B、第3分光参照光11
Cには、位置の異なった参照光スプリッタ22A,22
B,第2全反射ミラー22C及び参照光スプリッタ22
A,22B,第2全反射ミラー22Cからの参照光を対
応する干渉部スプリッタ17A,17B,17Cに向か
って反射する光路長ミラー23A〜23Cが介装され、
これらの参照光スプリッタ22A,22B,第2全反射
ミラー22C及び光路長ミラー23A〜23Cにより第
1分光参照光11A、第2分光参照光11B、第3分光
参照光11Cに対して相互に異なった位相差を与えてい
る。
The reference light reflected from the beam splitter 3 is made into three systems of spectral reference lights 11A, 11B and 11C having different optical path lengths. That is, the first spectral reference light 11A, the second spectral reference light 11B, and the third spectral reference light 11
C has reference light splitters 22A, 22 at different positions.
B, second total reflection mirror 22C and reference beam splitter 22
A, 22B, and optical path length mirrors 23A to 23C that reflect the reference light from the second total reflection mirror 22C toward the corresponding interference unit splitters 17A, 17B, and 17C are provided.
These reference light splitters 22A and 22B, the second total reflection mirror 22C, and the optical path length mirrors 23A to 23C are different from each other with respect to the first spectral reference light 11A, the second spectral reference light 11B, and the third spectral reference light 11C. The phase difference is given.

【0026】第4実施例による光学干渉縞計測装置は、
以上のような構成であるので、参照光スプリッタ22
A,22B,第2全反射ミラー22C及び光路長ミラー
23A〜23Cの介装により位相の異なった複数系統の
分光参照光11A〜11Cが同時に作られ、これらの分
光参照光11A〜11Cが被測定面4からの反射光から
なる分光計測光9A〜9Cにそれぞれ干渉されることに
なる。そして、これらの干渉縞情報は同時的に複数の光
電変換カメラに取り込まれ、記憶装置20に記憶され
て、複数枚の干渉縞画像情報の比較により、被測定面4
の表面の形状が解析されるから、第4実施例の構成であ
っても、第1実施例及び第2実施例と全く同様の作用効
果を期待できる。
The optical interference fringe measuring device according to the fourth embodiment is
With the above configuration, the reference light splitter 22
A, 22B, the second total reflection mirror 22C, and the optical path length mirrors 23A to 23C are interposed to simultaneously generate a plurality of systems of spectral reference beams 11A to 11C having different phases, and these spectral reference beams 11A to 11C are measured. The light will be interfered by the spectroscopic measurement lights 9A to 9C formed of the light reflected from the surface 4. These pieces of interference fringe information are simultaneously captured by a plurality of photoelectric conversion cameras, stored in the storage device 20, and compared with the plurality of pieces of interference fringe image information to determine the measurement target surface 4.
Since the shape of the surface is analyzed, the same operation and effect as those of the first and second embodiments can be expected even with the configuration of the fourth embodiment.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
によれば、ビームスプリッタによって光源からの光を、
被測定面からの反射光である複数の分光計測光とそれぞ
れ位相の異なった複数の分光参照光とに同時的に分割
し、前記各分光計測光に組み合わされる前記各分光参照
光で複数の光学干渉系を構成し、これらの光学干渉系の
干渉縞光学情報を取り込む光電変換手段を各光学干渉系
に設けるので、精密加工を要求される機械的可動部が全
くなく、同時に任意位相を異ならせた複数の光学干渉縞
画像情報を同時的に得られるから、高速移動体の形状解
析を行うことができ、環境変化による影響の少ない光学
干渉縞計測装置を達成できる。また、請求項2〜請求項
5に記載のように、複数の分光参照光に屈折媒質、厚み
媒質、液晶位相シフト板、複数の光路長ミラーを組み込
むだけで位相の異なった複数の光学干渉縞情報を簡単に
得ることができる。
As is apparent from the above description, according to the present invention, the light from the light source is changed by the beam splitter.
A plurality of spectroscopic measurement lights, which are light reflected from the surface to be measured, and a plurality of spectroscopic reference lights having different phases are simultaneously divided, and a plurality of optics are used for the respective spectroscopic reference lights combined with the respective spectroscopic measurement lights. Since each optical interference system is provided with a photoelectric conversion unit that composes the interference system and captures the interference fringe optical information of these optical interference systems, there is no mechanical movable part that requires precision processing, and the arbitrary phases can be made different at the same time. Since a plurality of pieces of optical interference fringe image information can be obtained at the same time, the shape of a high-speed moving object can be analyzed, and an optical interference fringe measuring apparatus that is less affected by environmental changes can be achieved. Further, as described in claims 2 to 5, a plurality of optical interference fringes having different phases only by incorporating a refraction medium, a thickness medium, a liquid crystal phase shift plate, and a plurality of optical path length mirrors into a plurality of spectral reference lights. Information can be obtained easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による光学干渉縞計測装置
の光学系の概念図である。
FIG. 1 is a conceptual diagram of an optical system of an optical interference fringe measuring device according to a first embodiment of the present invention.

【図2】本発明の第2実施例による光学干渉縞計測装置
の光学系の概念図である。
FIG. 2 is a conceptual diagram of an optical system of an optical interference fringe measuring device according to a second embodiment of the present invention.

【図3】本発明の第3実施例による光学干渉縞計測装置
の光学系の概念図である。
FIG. 3 is a conceptual diagram of an optical system of an optical interference fringe measurement device according to a third embodiment of the present invention.

【図4】本発明の第4実施例による光学干渉縞計測装置
の光学系の概念図である。
FIG. 4 is a conceptual diagram of an optical system of an optical interference fringe measuring device according to a fourth embodiment of the present invention.

【図5】従来の光学系の概念図である。FIG. 5 is a conceptual diagram of a conventional optical system.

【符号の説明】[Explanation of symbols]

1 光源 2 レンズ 3 ビームスプリッタ 5 計測光反射ミラー 6,7 計測光スプリッタ 8 第1全反射ミラー 9A,9B,9C 分光計測光 10 反転光学レンズ 11A,11B,11C 分光参照光 12,13,22A,22B 参照光スプリッタ 14,16 屈折媒質 14A,16A 液晶位相シフト板 14B,16B 光学クサビ 15,22C 第2全反射ミラー 17A,17B,17C 干渉部スプリッタ 18A,18B,18C 結像レンズ 19A,19B,19C 光電変換カメラ 20 記憶処理装置 23A,23B,23C 光路長ミラー Reference Signs List 1 light source 2 lens 3 beam splitter 5 measuring light reflecting mirror 6, 7 measuring light splitter 8 first total reflection mirror 9A, 9B, 9C spectral measuring light 10 inverting optical lens 11A, 11B, 11C spectral reference light 12, 13, 22A, 22B Reference light splitter 14, 16 Refraction medium 14A, 16A Liquid crystal phase shift plate 14B, 16B Optical wedge 15, 22C Second total reflection mirror 17A, 17B, 17C Interference unit splitter 18A, 18B, 18C Imaging lens 19A, 19B, 19C Photoelectric conversion camera 20 Storage processing device 23A, 23B, 23C Optical path length mirror

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 清和 茨城県つくば市上横場430番地の1 株式 会社ミツトヨ内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Seiwa Okamoto Mitutoyo Co., Ltd. 430, Kamiyokoba, Tsukuba, Ibaraki Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ビームスプリッタによって光源からの光
を、被測定面からの反射光である複数の分光計測光とそ
れぞれ位相の異なった複数の分光参照光とに同時的に分
割し、前記各分光計測光に組み合わされる前記各分光参
照光で複数の光学干渉系を構成し、これらの光学干渉系
の干渉縞光学情報を取り込む光電変換手段を各光学干渉
系に設けたことを特徴とする光学干渉縞計測装置。
A beam splitter simultaneously splits light from a light source into a plurality of spectral measurement lights, which are reflected lights from a surface to be measured, and a plurality of spectral reference lights, each having a different phase. A plurality of optical interference systems are configured by the respective spectral reference lights combined with the measurement light, and each optical interference system is provided with a photoelectric conversion unit for capturing interference fringe optical information of these optical interference systems. Fringe measuring device.
【請求項2】 光源からの平行光を被測定面への投射光
と参照光に分割するビームスプリッタと、被測定面から
反射された前記投射光を複数の分光計測光に分解する複
数の計測光スプリッタと、前記参照光を複数の分光参照
光に分解する参照光スプリッタと、前記分光参照光の少
なくともひとつに介在されて他の分光参照光の位相とは
異なる位相の参照光を生成する光学媒質あるいは前記分
光計測光の少なくともひとつに介在されて他の分光計測
光の位相とは異なる位相の計測光を生成する光学媒質
と、前記各分光計測光に前記分光参照光を組み合わせて
複数の光学干渉系を構成する複数の干渉部スプリッタ
と、これらの光学干渉系の干渉縞光学情報を取り込んで
記憶させる手段とを備えることを特徴とする光学干渉縞
計測装置。
2. A beam splitter for splitting parallel light from a light source into a projection light onto a surface to be measured and reference light, and a plurality of measurements for decomposing the projection light reflected from the surface to be measured into a plurality of spectral measurement lights. An optical splitter, a reference light splitter that decomposes the reference light into a plurality of spectral reference lights, and an optic that is interposed in at least one of the spectral reference lights and generates reference light having a phase different from a phase of another spectral reference light An optical medium that is interposed in at least one of the medium or the spectroscopic measurement light and generates measurement light having a phase different from the phase of the other spectroscopic measurement light, and a plurality of optics combining the spectroscopic measurement light with the spectral reference light. An optical interference fringe measuring apparatus comprising: a plurality of interference unit splitters constituting an interference system; and means for capturing and storing interference fringe optical information of the optical interference system.
【請求項3】 光源からの平行光を被測定面への投射光
と参照光に分割するビームスプリッタと、被測定面から
反射された前記投射光を複数の分光計測光に分解する複
数の計測光スプリッタと、前記参照光を複数の分光参照
光に分解する参照光スプリッタと、前記分光参照光の少
なくともひとつに介在されて他の分光参照光の位相とは
異なる位相の参照光を生成する液晶位相シフト板あるい
は前記分光計測光の少なくともひとつに介在されて他の
分光計測光の位相とは異なる位相の計測光を生成する液
晶位相シフト板と、前記各分光計測光に前記分光参照光
を組み合わせて複数の光学干渉系を構成する複数の干渉
部スプリッタと、これらの光学干渉系の干渉縞光学情報
を取り込んで記憶させる手段とを備えることを特徴とす
る光学干渉縞計測装置。
3. A beam splitter for splitting parallel light from a light source into a projection light to a surface to be measured and reference light, and a plurality of measurements for decomposing the projection light reflected from the surface to be measured into a plurality of spectral measurement lights. An optical splitter, a reference light splitter that decomposes the reference light into a plurality of spectral reference lights, and a liquid crystal that is interposed in at least one of the spectral reference lights and generates reference light having a phase different from the phase of another spectral reference light A phase shift plate or a liquid crystal phase shift plate that is interposed in at least one of the spectral measurement lights and generates measurement light having a phase different from the phase of another spectral measurement light, and combines the spectral reference light with each of the spectral measurement lights. An optical interference fringe measuring apparatus, comprising: a plurality of interference unit splitters constituting a plurality of optical interference systems, and means for capturing and storing interference fringe optical information of these optical interference systems. Place.
【請求項4】 光源からの平行光を被測定面への投射光
と参照光に分割するビームスプリッタと、被測定面から
反射された前記投射光を複数の分光計測光に分解する複
数の計測光スプリッタと、前記参照光を複数の分光参照
光に分解する参照光スプリッタと、前記分光参照光の少
なくともひとつに介在されて他の分光参照光の位相とは
異なる位相の参照光を生成する光学クサビあるいは前記
分光計測光の少なくともひとつに介在されて他の分光計
測光の位相とは異なる位相の計測光を生成する光学クサ
ビと、前記各分光計測光に前記分光参照光を組み合わせ
て複数の光学干渉系を構成する複数の干渉部スプリッタ
と、これらの光学干渉系の干渉縞光学情報を取り込んで
記憶させる手段とを備えることを特徴とする光学干渉縞
計測装置。
4. A beam splitter for splitting parallel light from a light source into a projection light onto a measured surface and reference light, and a plurality of measurements for decomposing the projected light reflected from the measured surface into a plurality of spectral measurement lights. An optical splitter, a reference light splitter that decomposes the reference light into a plurality of spectral reference lights, and an optic that is interposed in at least one of the spectral reference lights and generates reference light having a phase different from a phase of another spectral reference light A wedge or an optical wedge that is interposed in at least one of the spectroscopic measurement lights to generate measurement light having a phase different from the phase of another spectroscopic measurement light; An optical interference fringe measuring apparatus comprising: a plurality of interference unit splitters constituting an interference system; and means for capturing and storing interference fringe optical information of the optical interference system.
【請求項5】 光源からの平行光を被測定面への投射光
と参照光に分割するビームスプリッタと、被測定面から
反射された前記投射光を複数の分光計測光に分解する複
数の計測光スプリッタと、前記参照光を複数の分光参照
光に分解する参照光スプリッタと、前記分光参照光の少
なくともひとつに介在されて他の分光参照光の光路長と
は異なる光路長とすることにより異なった位相の分光参
照光とする少なくとも1組の参照光スプリッタと光路長
ミラーあるいは前記分光計測光の少なくともひとつに介
在されて他の分光計測光の光路長とは異なる光路長とす
ることにより異なった位相の分光計測光とする少なくと
も1組の計測光スプリッタと光路長ミラーと、前記各分
光計測光に前記分光参照光を組み合わせて複数の光学干
渉系を構成する複数の干渉部スプリッタと、これらの光
学干渉系の干渉縞光学情報を取り込んで記憶させる手段
とを備えることを特徴とする光学干渉縞計測装置。
5. A beam splitter for splitting parallel light from a light source into a projection light onto a surface to be measured and reference light, and a plurality of measurements for decomposing the projection light reflected from the surface to be measured into a plurality of spectral measurement lights. An optical splitter, a reference light splitter that decomposes the reference light into a plurality of spectral reference lights, and a light path length that is interposed in at least one of the spectral reference lights and has a different optical path length from that of the other spectral reference lights. At least one set of a reference light splitter and a light path length mirror, which is a spectral reference light having a different phase, is interposed in at least one of the spectral measurement lights, and has a different optical path length from that of the other spectral measurement lights. At least one set of a measurement light splitter and an optical path length mirror, which are phase spectral measurement lights, and a plurality of optical interference systems configured by combining the spectral reference lights with the respective spectral measurement lights. An optical interference fringe measuring apparatus comprising: an interference unit splitter; and means for capturing and storing interference fringe optical information of these optical interference systems.
JP10123961A 1998-04-17 1998-04-17 Optical interference fringe measuring device Pending JPH11304417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10123961A JPH11304417A (en) 1998-04-17 1998-04-17 Optical interference fringe measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10123961A JPH11304417A (en) 1998-04-17 1998-04-17 Optical interference fringe measuring device

Publications (1)

Publication Number Publication Date
JPH11304417A true JPH11304417A (en) 1999-11-05

Family

ID=14873627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10123961A Pending JPH11304417A (en) 1998-04-17 1998-04-17 Optical interference fringe measuring device

Country Status (1)

Country Link
JP (1) JPH11304417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496269B2 (en) 2000-02-18 2002-12-17 Mitutoyo Corporation Shape measuring apparatus
WO2011135698A1 (en) 2010-04-28 2011-11-03 キヤノン株式会社 Method of measuring deformation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496269B2 (en) 2000-02-18 2002-12-17 Mitutoyo Corporation Shape measuring apparatus
WO2011135698A1 (en) 2010-04-28 2011-11-03 キヤノン株式会社 Method of measuring deformation
US8363977B2 (en) 2010-04-28 2013-01-29 Canon Kabushiki Kaisha Deformation measurement method and apparatus

Similar Documents

Publication Publication Date Title
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
US7483145B2 (en) Simultaneous phase shifting module for use in interferometry
EP1840502B1 (en) Optical interferometer for measuring changes in thickness
US20060039007A1 (en) Vibration-insensitive interferometer
US5493398A (en) Device for observing test-piece surfaces by the speckle-shearing-method for the measurement of deformations
JP2009162539A (en) Light wave interferometer apparatus
CN114502912B (en) Hybrid 3D inspection system
JP2017020962A (en) Instantaneous phase-shift interferometer
CN103760568A (en) Ultrahigh time resolution space phase shifting face imaging any-reflecting-surface velocity interferometer
US11430144B2 (en) Device and process for the contemporary capture of standard images and plenoptic images via correlation plenoptic imaging
JP2001227927A (en) Configuration measuring apparatus
JP2007093288A (en) Light measuring instrument and light measuring method
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
US20110299090A1 (en) Real-time interferometer
JP2001241914A (en) Optical system for oblique incidence interferometer and apparatus using it
JPH11304417A (en) Optical interference fringe measuring device
JP2009244227A (en) Light wave interference measuring method
JPH11194011A (en) Interference apparatus
KR100903264B1 (en) Apparatus and Method for measuring wavefront aberrations
JP2006349382A (en) Phase shift interferometer
JP2020153992A (en) Shape measurement device by white interferometer
JP2004286689A (en) Simultaneous measuring method for profile and film thickness distribution for multilayer film, and device therefor
JPH0726826B2 (en) Sharing interferometer device
JP2020095229A (en) Heterodyne digital holography device
KR101862977B1 (en) Large area measurement system using extensibility of off-axis digital holography