JPH11300278A - Apparatus for controlling twin vibrating tables - Google Patents

Apparatus for controlling twin vibrating tables

Info

Publication number
JPH11300278A
JPH11300278A JP10108999A JP10899998A JPH11300278A JP H11300278 A JPH11300278 A JP H11300278A JP 10108999 A JP10108999 A JP 10108999A JP 10899998 A JP10899998 A JP 10899998A JP H11300278 A JPH11300278 A JP H11300278A
Authority
JP
Japan
Prior art keywords
input
vibrating
tables
specimen
vibrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10108999A
Other languages
Japanese (ja)
Other versions
JP3495594B2 (en
Inventor
Chiaki Yasuda
千秋 安田
Shinichiro Kajii
紳一郎 梶井
Makoto Sakuno
誠 作野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10899998A priority Critical patent/JP3495594B2/en
Publication of JPH11300278A publication Critical patent/JPH11300278A/en
Application granted granted Critical
Publication of JP3495594B2 publication Critical patent/JP3495594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain on table observation waves of performance equivalent to the case of one vibrating table by a method in which when vibrating tables are connected through a specimen and vibrated the transmission characteristics of the whole coupled system comprising the vibrating tables and vibrator are identified, characteristic compensation calculations are implemented on the basis of the transmission characteristics, and input waves are formed. SOLUTION: In an electric hydraulic vibrating table system which reproduces actual earthquake waveforms and investigates the strength of a specimen against earthquakes, the specimen 2 such as a bridge model is mounted between vibrating tables 1a, 1b, and an accelerometer 3 is fitted to each of the vibrating tables 1a, 1b. When each vibrating table 1a, 1b is vibrated by an electrohydraulic actuator 9, and a vibrating experiment is performed, an acceleration signal measured by each accelerometer 3 is input into a computer 6 through an amplifier 4 and an A/D converter. In the computer 6, the characteristic compensation calculations of input waves to be vibrated next are done, and a driving control signal to be vibrated next is input into the actuator 9 through a D/A converter 7 and a servo amplifier 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ツイン振動台制御
装置に関する。例えば、電気油圧式振動台システムに適
用されるツイン振動台制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a twin shaking table controller. For example, the present invention relates to a twin shaking table control device applied to an electro-hydraulic shaking table system.

【0002】[0002]

【従来の技術】振動台となるテーブル上に試験供試体を
搭載した状態で、実際に気象台等で観測された地震波形
を再現して、試験供試体の地震に対する強度を調べるこ
と等を目的に利用される電気油圧式振動台システムがあ
った。この電気油圧式振動台システムに使用される振動
台制御装置は、地震波の加速度波形を正確に再現する必
要があり、実際の制御方法としては、台上観測波を目標
波形に極力追従させるようにしていた。
2. Description of the Related Art With a test specimen mounted on a table serving as a shaking table, the purpose is to reproduce the seismic waveform actually observed at a meteorological observatory, etc., and to examine the strength of the test specimen against earthquakes. There was an electro-hydraulic shaking table system utilized. The shaking table controller used in this electro-hydraulic shaking table system needs to accurately reproduce the acceleration waveform of the seismic wave. The actual control method is to make the table observation wave follow the target waveform as much as possible. I was

【0003】従来の振動台制御装置の全体系統図を図4
に示す。同図に示すように、振動台(テーブル)1は供
試体2が載置されると共に加速度計3が設けられてお
り、振動体1を電気油圧式アクチュエータ9により加振
することができるようになっている。従って、振動台1
に設けられた加速度計3は、その加振実験中に加速度信
号を計測し、測定された加速度信号は、増幅器4、A/
D変換器5を介し、計算機6に取り込まれる。
FIG. 4 is an overall system diagram of a conventional shaking table controller.
Shown in As shown in the figure, a vibrating table (table) 1 is provided with a specimen 2 and an accelerometer 3 so that the vibrating body 1 can be vibrated by an electro-hydraulic actuator 9. Has become. Therefore, shaking table 1
The accelerometer 3 provided in the device measures an acceleration signal during the vibration experiment, and the measured acceleration signal is supplied to the amplifier 4, A / A
The data is taken into the computer 6 via the D converter 5.

【0004】計算機6では、次回に加振する入力波の特
性補償計算を行い、D/A変換器7、サーボ増幅器8を
介し、次回加振する信号を電気油圧式アクチュエータ9
に入力され、振動台1を加振する。テーブル1の挙動
は、6自由度(並進3成分、回転3成分)で制御される
ため、計算機6の内部では6次元の演算構成となってい
る。
The computer 6 performs a characteristic compensation calculation of the input wave to be excited next time, and outputs a signal to be excited next time via the D / A converter 7 and the servo amplifier 8 to the electro-hydraulic actuator 9.
And vibrates the shaking table 1. Since the behavior of the table 1 is controlled with six degrees of freedom (three translational components and three rotational components), the computer 6 has a six-dimensional arithmetic configuration.

【0005】計算機6における具体的な演算内容につい
て図5を参照して説明する。図5は入力波の特性補償計
算の流れ図を示したものである。演算内容は、大きく分
けて2種類ある。一つは特性把握加振に関する演算であ
り、他は入力補償加振に関する演算である。
[0005] The specific operation of the computer 6 will be described with reference to FIG. FIG. 5 shows a flowchart of the characteristic compensation calculation of the input wave. The contents of the operation are roughly classified into two types. One is an operation related to characteristic grasp excitation, and the other is an operation related to input compensation excitation.

【0006】〔I.特性把握加振に関する演算〕この演
算は、加振機への入力からテーブル応答までの伝達特性
を把握する場合の演算である。入力となる加速度信号を
フーリエ変換10により時間データから周波数データに
変換し、2回積分11により加速度から変位信号に変換
し、この変位信号を逆フーリエ変換12することによ
り、加振機に入力する時間領域での変位信号となる。加
振13は、加振機およびテーブルから構成されるシステ
ムを表している。
[I. Calculation for Characteristic Excitation and Excitation] This calculation is for calculating transmission characteristics from the input to the exciter to the table response. An input acceleration signal is converted from time data to frequency data by Fourier transform 10, converted from acceleration to a displacement signal by two-time integration 11, and the displacement signal is subjected to inverse Fourier transform 12 to be input to a shaker. It becomes a displacement signal in the time domain. The vibrator 13 represents a system including a vibrator and a table.

【0007】テーブル上で観測された時間領域での応答
加速度信号はフーリエ変換14することにより周波数デ
ータに変換され、フーリエ変換10で変換された入力信
号の両者から周波数応答計算15することにより、振動
台システムの伝達特性が得られる。ここで得られる伝達
特性は、一般的にテーブルは6自由度で制御されるた
め、6×6行列の構成になっている。
[0007] The response acceleration signal in the time domain observed on the table is converted to frequency data by performing a Fourier transform 14, and a frequency response calculation 15 is performed from both of the input signals converted by the Fourier transform 10 to obtain a vibration. The transfer characteristics of the platform system are obtained. The transfer characteristics obtained here are generally in the form of a 6 × 6 matrix because the table is controlled with six degrees of freedom.

【0008】〔II.入力補償加振に関する演算〕この演
算は、上記で得られた伝達特性を用い、加振のための入
力波の特性補償を行う演算である。先ず、上記で得られ
た伝達特性の逆特性計算17を算出し、目標波28をフ
ーリエ変換18した周波数領域での目標波データの両者
から初期入力補償計算19を行う。
[II. Calculation for Input Compensation Excitation] This calculation uses the transfer characteristics obtained above to compensate for the characteristics of the input wave for excitation. First, an inverse characteristic calculation 17 of the transfer characteristic obtained above is calculated, and an initial input compensation calculation 19 is performed from both target wave data in the frequency domain obtained by performing a Fourier transform 18 on the target wave 28.

【0009】得られた初期入力補償波を2階積分20お
よび逆フーリエ変換21し、加振機への入力信号を生成
する。テーブルの応答加速度信号と目標波28との偏差
29が、判定23を満足しない場合には、得られた信号
をフーリエ変換24し、入力補償25を繰り返して計算
し、入力補償波を生成する。
The obtained initial input compensation wave is subjected to a second-order integration 20 and an inverse Fourier transform 21 to generate an input signal to a vibrator. If the deviation 29 between the response acceleration signal in the table and the target wave 28 does not satisfy the determination 23, the obtained signal is subjected to the Fourier transform 24, and the input compensation 25 is repeatedly calculated to generate an input compensated wave.

【0010】[0010]

【発明が解決しようとする課題】上述した従来の振動台
制御装置は、テーブルが1台であり、テーブルは6自由
度で制御されているため、6×6行列の演算構成になっ
ており、制御対象が6自由度以上の自由度数になると適
用できない問題点があった。
The above-mentioned conventional shaking table control device has one table, and the table is controlled with six degrees of freedom, so that it has a 6 × 6 matrix operation configuration. There is a problem that the method cannot be applied when the control target has six or more degrees of freedom.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明の請求項1に係るツイン振動台制御装置は、供試体を
介して複数の振動台を連結して加振する際、予め、供試
体を介して連結される振動台及び加振機の連成系全体の
伝達特性を同定し、該伝達特性に基づいた入力波の特性
補償計算を実施し入力波を生成したことを特徴とする。
According to a first aspect of the present invention, there is provided a twin-shaking table control apparatus for solving the above-mentioned problems, in which a plurality of shaking tables are connected and vibrated via a test piece in advance. The transmission characteristic of the entire coupled system of the shaking table and the exciter connected via the specimen is identified, and the input wave is generated by performing the characteristic compensation calculation of the input wave based on the transmission characteristic. .

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面に示す実施例を参照して詳細に説明する。 〔実施例1〕本発明の第1の実施例に係るツイン振動台
制御装置を図1に示す。図1は二つの振動体(テーブ
ル)にまたがって搭載された供試体を含んだ加振制御系
構成概念図である。
Embodiments of the present invention will be described below in detail with reference to embodiments shown in the drawings. Embodiment 1 FIG. 1 shows a twin shaking table control apparatus according to a first embodiment of the present invention. FIG. 1 is a conceptual diagram of a vibration control system including a specimen mounted over two vibrators (tables).

【0013】同図に示すように、振動台1aと振動台1
bとの間に供試体2がまたがって搭載されると共に各振
動台1a,1bには各々加速度計3が設けられ、更に、
各振動台1a,1bは電気油圧式アクチュエータ9によ
り加振できるようになっている。従って、振動台1a,
1bを電気油圧式アクチュエータ9により加振して加振
実験を行うと、振動台1a,1bで観測される応答波
は、供試体2を介し各々互いの振動挙動の影響を受け易
いことになる。供試体2としては、例えば、橋梁のモデ
ルが用いられる。
As shown in FIG. 1, a shaking table 1a and a shaking table 1
b, the specimen 2 is mounted over the vibration table 1a, and each of the vibrating tables 1a and 1b is provided with an accelerometer 3 respectively.
Each of the vibrating tables 1a and 1b can be vibrated by an electrohydraulic actuator 9. Therefore, the shaking table 1a,
When a vibration experiment is performed by vibrating the electrohydraulic actuator 9 with the electrohydraulic actuator 9, the response waves observed at the vibrating tables 1 a and 1 b are easily affected by the vibration behavior of each other via the test piece 2. . As the specimen 2, for example, a bridge model is used.

【0014】各振動台1a,1bの加速度計3で計測さ
れた加速度信号は、増幅器4、A/D変換器5を介し、
計算機6に取り込まれる。計算機6では、次回に加振す
る入力波の特性補償計算を行い、D/A変換器7、サー
ボ増幅器8を介し、次回加振する信号を電気油圧式アク
チュエータ9に入力され、振動台1a,1bを加振す
る。
An acceleration signal measured by the accelerometer 3 of each of the vibrating tables 1a and 1b passes through an amplifier 4 and an A / D converter 5,
The data is taken into the computer 6. The computer 6 performs a characteristic compensation calculation of the input wave to be excited next time, and a signal to be excited next time is input to the electro-hydraulic actuator 9 via the D / A converter 7 and the servo amplifier 8, and the vibration table 1a, Vibrate 1b.

【0015】〔実施例2〕本発明の第2の実施例に係る
ツイン振動台制御装置を図2に示す。図2は解析で確認
した際に用いたツインテーブル特性把握時解析モデルを
表わす構成図である。本実施例は、前述した実施例1の
加振制御系構成を、具体的な解析モデルとして表わした
ものである。図2において、各ブロックは、要素を構成
する支配方程式の集合を示す。
[Embodiment 2] FIG. 2 shows a twin shaking table control apparatus according to a second embodiment of the present invention. FIG. 2 is a configuration diagram showing an analysis model at the time of grasping the characteristics of the twin table used at the time of confirming the analysis. In this embodiment, the configuration of the vibration control system of the first embodiment described above is represented as a specific analysis model. In FIG. 2, each block indicates a set of governing equations constituting the element.

【0016】図2に示すように、入力信号30a,30
bは、入力制御盤31a,31bで、各加振機(x、
y、zの3方向)34a,34bへの指令信号に変換さ
れ、サーボ制御盤32a,32b、サーボ弁33a,3
3b、三次元継手35a,35bを介し、テーブル36
a,36bに加振力として伝達される。ここで、二つの
テーブル36a,36bの間には供試体37が介在して
いるために、供試体37を通じて二つのテーブル36
a,36bには相互に振動が伝達される。
As shown in FIG. 2, input signals 30a, 30a
b denotes input control panels 31a and 31b, and each of the vibrators (x,
are converted into command signals to the three directions (y, z) 34a, 34b, and the servo control boards 32a, 32b, the servo valves 33a, 33
3b, the table 36 via the three-dimensional joints 35a and 35b.
a and 36b are transmitted as excitation force. Here, since the specimen 37 is interposed between the two tables 36a and 36b, the two tables 36 are passed through the specimen 37.
Vibration is transmitted to a and 36b mutually.

【0017】このように二つのテーブル36a,36b
にまたがって搭載された供試体37を含んだ加振制御装
置を対象とした加振を行う場合、二つのテーブル36
a,36bは供試体37の剛性を介して連成しているた
め、テーブル36aのみあるいはテーブル36bのみの
伝達特性を計測し、入力波の補償計算に反映するだけで
は、台上観測波を目標波に一致させる制御は非常に困難
である。このため、本発明では、供試体特性を含んだテ
ーブル36a,36bの連成系の伝達特性を測定し、こ
の結果を入力波の補償計算に反映させることとしたもの
である。
As described above, the two tables 36a and 36b
When a vibration is applied to the vibration control device including the specimen 37 mounted over the two
Since a and 36b are coupled through the rigidity of the specimen 37, the transfer characteristics of only the table 36a or only the table 36b are measured, and the reflection on the input wave is calculated. Control to match the waves is very difficult. Therefore, in the present invention, the transfer characteristics of the coupled system of the tables 36a and 36b including the characteristics of the specimen are measured, and the results are reflected in the compensation calculation of the input wave.

【0018】即ち、図2に示す入力信号30a,30b
は、各テーブル36a,36bを各々6自由度の特性把
握加振ができるように、合計12成分(6成分+6成
分)のランダム信号とした。このように、12成分のラ
ンダム入力信号を同時に入力し、その際得られる12の
出力信号38a,38bから、一般的に良く知られてい
る多入力多出力系の伝達特性として、供試体37を含ん
だテーブル36a,36bの連成系の伝達特性が同定で
きる。
That is, the input signals 30a and 30b shown in FIG.
Is a random signal of a total of 12 components (6 components + 6 components) so that the respective tables 36a and 36b can grasp and excite characteristics with 6 degrees of freedom. In this way, the random input signals of 12 components are simultaneously inputted, and the sample 37 is obtained from the 12 output signals 38a and 38b obtained at that time as the transfer characteristics of a generally well-known multi-input multi-output system. The transfer characteristics of the coupled system of the included tables 36a and 36b can be identified.

【0019】伝達特性の同定は、種々の手法が存在する
が、FFT法に基づいた手法は以下となる。図6に示す
ように、n個の入力と、m個の出力点で構成される多入
出力系の応答は、(1)式で与えられる。
There are various methods for identifying the transfer characteristic, but the method based on the FFT method is as follows. As shown in FIG. 6, the response of a multi-input / output system composed of n inputs and m output points is given by equation (1).

【0020】[0020]

【数1】 (Equation 1)

【0021】ここで、Yi:i番目の出力のスペクトル Xj:j番目の入力のスペクトル Hij:i−j間の伝達関数 Ni:i番目の出力点で計測されるノイズ[0021] Here, Y i: i-th output of the spectrum X j: j-th input spectrum H ij of: transmitting between ij functions N i: noise measured by the i-th output point

【0022】そこで、計測誤差を最小とする伝達関数
は、式(2)となる。 [GYX]=[H][GXX]+[Z] …(2) ここで、[GYX]:m×nの入出力間のクロススペク
トルマトリクス [GXX]:n×nの入力間のクロススペクトルマトリ
クス [H] :m×nの伝達関数マトリクス [Z] :ノイズのクロススペクトルマトリクス なお、信号の平均化処理を実施することにより、[Z]
を充分小さくすることが可能であり、最終的には、伝達
関数は式(3)で求められる。
Thus, the transfer function that minimizes the measurement error is given by equation (2). [GYX] = [H] [GXX] + [Z] (2) Here, [GYX]: cross spectrum matrix between m × n inputs and outputs [GXX]: cross spectrum matrix between n × n inputs [H]: mxn transfer function matrix [Z]: Cross-spectral matrix of noise By performing signal averaging, [Z]
Can be made sufficiently small, and finally, the transfer function is obtained by Expression (3).

【0023】[H]=[GYX][GXX]-1
(3) ただし、式(3)における[GXX]の逆行列の計算を
行う際、入力信号間に相関がある場合には、[GXX]
の各行は独立でなくなり、[GXX]の行列式が0にな
り逆行列が計算不可能になるため、各入力信号はコヒー
レンス関数が0となる信号を用いる必要がある。このよ
うに得られた伝達特性を用いて、入力波の特性補償計算
を上述した図5に示す手順に従って行った。
[H] = [GYX] [GXX] -1 ...
(3) However, when calculating the inverse matrix of [GXX] in equation (3), if there is a correlation between input signals, [GXX]
Are not independent, and the determinant of [GXX] becomes 0 and the inverse matrix cannot be calculated. Therefore, it is necessary to use a signal having a coherence function of 0 for each input signal. Using the transfer characteristics thus obtained, the characteristic compensation calculation of the input wave was performed according to the procedure shown in FIG. 5 described above.

【0024】補償計算手順は従来の振動台の場合と同じ
であるが、演算規模が異なりツインテーブル系での補償
演算は12×12行列となる。ここで、シミュレーショ
ンで具体的に使用した入力波は、図3に示すように、自
然地震波の3方向成分である。図3は、目標波と台上観
測波の応答スペクトルを表わしたものである。3回の特
性補償の計算を行うと目標波と台上観測波が一致するシ
ミュレーション結果が得られた。
The compensation calculation procedure is the same as that of the conventional shaking table, but the calculation scale is different and the compensation calculation in the twin table system is a 12 × 12 matrix. Here, the input waves specifically used in the simulation are three-directional components of the natural seismic wave, as shown in FIG. FIG. 3 shows a response spectrum of the target wave and the bench observation wave. When the calculation of the characteristic compensation was performed three times, a simulation result in which the target wave and the bench observation wave coincided was obtained.

【0025】[0025]

【発明の効果】以上、詳述したように、本発明の請求項
1に係るツイン振動台制御装置は、供試体を介して複数
の振動台を連結して加振する際、予め、供試体を介して
達成する振動台及び加振機の連成系全体の伝達特性を同
定し、該伝達特性に基づいた入力波の特性補償計算を実
施し入力波を生成したため、テーブルが1台の場合の振
動台加振装置と同等な性能の台上観測波が得られる。
As described above in detail, the twin shaking table control apparatus according to the first aspect of the present invention is configured such that when a plurality of shaking tables are connected and vibrated via the test pieces, Identifies the transfer characteristics of the entire coupled system of the shaking table and the exciter achieved through, performs the input wave characteristic compensation calculation based on the transfer characteristics, and generates the input wave. A bench observation wave with the same performance as that of the shaking table shaker can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】二つの振動台(テーブル)にまたがって搭載さ
れた供試体を含んだ加振制御系構成概念図である。
FIG. 1 is a conceptual diagram of a vibration control system configuration including a specimen mounted over two vibration tables (tables).

【図2】解析で確認した際に用いたツインテーブル特性
把握時解析モデルを表わす構成図である。
FIG. 2 is a configuration diagram showing an analysis model at the time of grasping a twin table characteristic used at the time of confirming by analysis.

【図3】目標波と台上観測波の応答スペクトルを表わし
たグラフである。
FIG. 3 is a graph showing response spectra of a target wave and a table observation wave.

【図4】従来の振動台制御装置の全体系統図である。FIG. 4 is an overall system diagram of a conventional shaking table controller.

【図5】入力波の特性補償計算の流れ図を示したもので
ある。
FIG. 5 shows a flowchart of a characteristic compensation calculation of an input wave.

【図6】n個の入力とm個の出力点で構成される多入出
力系の応答を示す説明図である。
FIG. 6 is an explanatory diagram showing a response of a multi-input / output system including n inputs and m output points.

【符号の説明】[Explanation of symbols]

1,1a,1b 振動台 2 供試体 3 加速度計 4 増幅器 5 A/D変換器 6 計算機 7 D/A変換器 8 サーボ増幅器 9 電気油圧式アクチュエータ 1, 1a, 1b Shaking table 2 Specimen 3 Accelerometer 4 Amplifier 5 A / D converter 6 Computer 7 D / A converter 8 Servo amplifier 9 Electro-hydraulic actuator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 供試体を介して複数の振動台を連結して
加振する際、予め、供試体を介して連結される振動台及
び加振機の連成系全体の伝達特性を同定し、該伝達特性
に基づいた入力波の特性補償計算を実施し入力波を生成
したことを特徴とするツイン振動台制御装置。
1. When a plurality of shaking tables are connected via a specimen and vibrated, the transfer characteristics of the entire coupled system of the shaking table and the vibrator connected via the specimen are identified in advance. A twin shaking table control device, wherein the input wave is generated by performing a characteristic compensation calculation of the input wave based on the transfer characteristic.
JP10899998A 1998-04-20 1998-04-20 Twin shaking table controller Expired - Fee Related JP3495594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10899998A JP3495594B2 (en) 1998-04-20 1998-04-20 Twin shaking table controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10899998A JP3495594B2 (en) 1998-04-20 1998-04-20 Twin shaking table controller

Publications (2)

Publication Number Publication Date
JPH11300278A true JPH11300278A (en) 1999-11-02
JP3495594B2 JP3495594B2 (en) 2004-02-09

Family

ID=14499016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10899998A Expired - Fee Related JP3495594B2 (en) 1998-04-20 1998-04-20 Twin shaking table controller

Country Status (1)

Country Link
JP (1) JP3495594B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167557A (en) * 2012-02-16 2013-08-29 Kayaba System Machinery Kk Vibration testing machine
CN103399589A (en) * 2013-08-01 2013-11-20 大连海事大学 Random vibration control method for electro-hydraulic acceleration servo system
JP2018100875A (en) * 2016-12-20 2018-06-28 ビイック株式会社 Interlayer displacement analyzing method and interlayer displacement analyzing device using dwelling house earthquake history gauge
CN108827570A (en) * 2018-06-20 2018-11-16 南京林业大学 A kind of experimental provision and its experimental method of earthquake simulation shaking table
CN110594213A (en) * 2019-09-12 2019-12-20 清华大学 Electro-hydraulic servo actuator capable of realizing long-stroke high-frequency loading and control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167557A (en) * 2012-02-16 2013-08-29 Kayaba System Machinery Kk Vibration testing machine
CN103399589A (en) * 2013-08-01 2013-11-20 大连海事大学 Random vibration control method for electro-hydraulic acceleration servo system
JP2018100875A (en) * 2016-12-20 2018-06-28 ビイック株式会社 Interlayer displacement analyzing method and interlayer displacement analyzing device using dwelling house earthquake history gauge
CN108827570A (en) * 2018-06-20 2018-11-16 南京林业大学 A kind of experimental provision and its experimental method of earthquake simulation shaking table
CN108827570B (en) * 2018-06-20 2024-02-02 南京林业大学 Experimental device and experimental method for earthquake simulation vibrating table
CN110594213A (en) * 2019-09-12 2019-12-20 清华大学 Electro-hydraulic servo actuator capable of realizing long-stroke high-frequency loading and control method

Also Published As

Publication number Publication date
JP3495594B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
JP3644292B2 (en) Structure vibration test apparatus and vibration test method
Sung et al. The response of and sound power radiated by a clamped rectangular plate
Van Den Abeele Elastic pulsed wave propagation in media with second‐or higher‐order nonlinearity. Part I. Theoretical framework
JPH0510846A (en) Device and method for performing vibration test on structure and vibration response analyzing device
JP3495594B2 (en) Twin shaking table controller
Helderweirt et al. Application of accelerometer-based rotational degree of freedom measurements for engine subframe modelling.
JP3396425B2 (en) Shaking table controller
JP3618235B2 (en) Vibration test equipment
Gavric et al. Measurement of structural intensity using a normal mode approach
JP3242260B2 (en) Vibration test apparatus for structure, vibration test method for structure, and structure
JP3495595B2 (en) Shaking table controller
Zahui et al. Narrow band active control of sound radiated from a baffled beam using local volume displacement minimization
Audrain et al. The use of PVDF strain sensing in active control of structural intensity in beams
JP2002156308A (en) Shaking table and its control device and control method
JP3626858B2 (en) Shaking table waveform distortion control device
JP2000121488A (en) Apparatus and method for testing vibration
JP6297362B2 (en) Vibration test equipment
JPH10281925A (en) Vibration test device
JP2003161670A (en) Evaluation method for response and feature for auxiliary vibration table
JP4092878B2 (en) Shaking table, control device therefor, and control method
JP3435167B2 (en) Multi-axis vibration device and control method thereof
Vorländer et al. Transfer Path Analysis and Synthesis
Cao et al. Numerical and experimental analysis of structure-borne sound transmission in coupled systems
JPH10254555A (en) Control method and controller for multi-axis exciter and single axis exciter
JPH10339685A (en) Vibration tester

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031021

LAPS Cancellation because of no payment of annual fees