JPH11300180A - Porous resin membrane - Google Patents

Porous resin membrane

Info

Publication number
JPH11300180A
JPH11300180A JP10320291A JP32029198A JPH11300180A JP H11300180 A JPH11300180 A JP H11300180A JP 10320291 A JP10320291 A JP 10320291A JP 32029198 A JP32029198 A JP 32029198A JP H11300180 A JPH11300180 A JP H11300180A
Authority
JP
Japan
Prior art keywords
porous resin
resin film
less
film according
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10320291A
Other languages
Japanese (ja)
Inventor
Yasuaki Miki
康彰 三木
Tetsuya Aya
哲也 綾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10320291A priority Critical patent/JPH11300180A/en
Publication of JPH11300180A publication Critical patent/JPH11300180A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous resin membrane of which affinity for org. solvent is improved while maintaining the air permeability and which is useful as a separator for a battery, especially for a lithium secondary battery. SOLUTION: This porous resin membrane has 5-200 μm thickness, 20-80% porosity and 10-1,000 sec/100 cc air permeability by a Gurley permeability tester. The contact angle θ1 of the droplet of the liq. mixture of ethylene carbonate and diethyl carbonate in 1:1 volume ration is <=30 deg.C immediately after being dripped, and the contact angle θ1 and the contact angle θ2 of the droplet one minute after being dripped are limited to conform to θ2 /θ1 <=0.85.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は気体透過性を有する
多孔質樹脂膜に関する。詳しくは、有機溶媒、水に対す
る親和性を向上させた多孔質樹脂膜を提供するものであ
る。具体的には、濾過膜、電池セパレ−ター、通気性を
要する各種包装材料、医療材料、衣料材料等に適した多
孔質樹脂膜を提供することができるが、特にはリチウム
2次電池用セパレーターに好適な多孔樹脂膜を提供する
ものである。
TECHNICAL FIELD The present invention relates to a porous resin membrane having gas permeability. More specifically, the present invention provides a porous resin film having improved affinity for an organic solvent and water. Specifically, a porous resin membrane suitable for filtration membranes, battery separators, various packaging materials requiring air permeability, medical materials, clothing materials, and the like can be provided. In particular, separators for lithium secondary batteries can be provided. It is intended to provide a porous resin film suitable for the above.

【0002】[0002]

【従来の技術】多孔膜は濾過膜、電池セパレ−タ−、包
装・医療・衣料材料等の様々な工業分野で用いられてい
る。特にリチウム二次電池用のセパレーターとして用い
る場合には、正負極を直接接触させないように絶縁(電
極の絶縁)しつつ、電解液を保持しイオン透過性を有す
る特性が必要とされている。
2. Description of the Related Art Porous membranes are used in various industrial fields such as filtration membranes, battery separators, packaging, medical and clothing materials. In particular, when used as a separator for a lithium secondary battery, there is a need for a property of retaining an electrolyte and having ion permeability while insulating the positive and negative electrodes so as not to directly contact them (insulating the electrodes).

【0003】現在、リチウム二次電池用のセパレーター
としてはポリオレフィンの多孔膜が多く使われている。
このポリオレフィン多孔膜は化学的安定性に優れ電池内
部での不要な化学反応を誘発しにくく、異常過熱時には
多孔膜自身が融け、孔を閉塞させ電極間の絶縁を起こす
ため電池内部での異常反応抑止の役割も果たす等の利点
を有している。
At present, porous polyolefin membranes are widely used as separators for lithium secondary batteries.
This polyolefin porous membrane has excellent chemical stability and is unlikely to induce unnecessary chemical reactions inside the battery, and in the event of abnormal overheating, the porous membrane itself melts, closing the pores and causing insulation between the electrodes, causing an abnormal reaction inside the battery. It also has the advantage of playing a role of deterrence.

【0004】[0004]

【本発明が解決しようとする課題】上記のリチウム二次
電池では、一般に、炭酸エチレン、炭酸ジメチル、炭酸
ジエチル等の有機溶媒と電解質からなる組み合わせの非
水系電解液を用いるが、ポリオレフィン多孔膜等からな
るセパレーターでは、必ずしもこれら電解液に対する濡
れ性が良好なわけではなく、電解液の保液性に優れるも
のではない。このため、電池を組み立てる際セパレータ
に電解液を浸透させるのに時間を要したり、また、電池
内の電解液の分布などが生じる原因になっている。さら
に、セパレータ中に、電解質が充分保持されない場合
は、電池容量、サイクル特性など電池性能そのものも充
分なものが得られないといった問題がある。
In the above-mentioned lithium secondary battery, a nonaqueous electrolytic solution comprising a combination of an organic solvent such as ethylene carbonate, dimethyl carbonate and diethyl carbonate and an electrolyte is generally used. Is not necessarily good in wettability to these electrolytes, and is not excellent in electrolyte retention. For this reason, when assembling the battery, it takes time to infiltrate the electrolyte into the separator, and also causes the distribution of the electrolyte in the battery. Further, when the electrolyte is not sufficiently retained in the separator, there is a problem that sufficient battery performance such as battery capacity and cycle characteristics cannot be obtained.

【0005】他方、多孔膜を液体の濾過などに用いる場
合も、液体に対する濡れ性が悪いと濾過速度が低くな
り、効率が悪くなるという問題がある。そこで、本発明
の目的は、以上の問題を解決した液体に対する濡れ性が
良好な多孔膜、特にリチウム二次電池のセパレーターと
してその電解液に対する優れた耐久性や親和性を有し、
且つ、高い電解液保液性能を有する多孔膜を提供するこ
とにある。
[0005] On the other hand, when the porous membrane is used for filtering a liquid, if the wettability to the liquid is poor, there is a problem that the filtration rate is reduced and the efficiency is lowered. Therefore, an object of the present invention is to provide a porous membrane having good wettability to a liquid that has solved the above problems, and particularly has excellent durability and affinity for the electrolyte as a separator of a lithium secondary battery,
Another object of the present invention is to provide a porous membrane having high electrolytic solution retention performance.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
のため鋭意検討した結果、特定の処理条件で製造した多
孔質膜によれば、電解液に対する優れた耐久性や親和
性、また、高い電解液保液性能が発現しうることを見い
だし、本発明に到達した。即ち、本発明の要旨は、
(a)厚み5μm以上200μm以下、(b)空孔率が
20%以上80%以下、(c)ガーレ式透気度が10秒
/100cc以上1000秒/100cc以下、(d)
炭酸エチレンと炭酸ジエチルの1:1(容積比)混合液
の液滴の滴下直後の接触角θ1が30度以下、であるこ
とを特徴とする多孔質樹脂膜に存する。
Means for Solving the Problems The inventors of the present invention have made intensive studies for the above-mentioned objects, and as a result, according to the porous membrane manufactured under specific processing conditions, excellent durability and affinity for the electrolyte, and The present inventors have found that high electrolytic solution retention performance can be exhibited, and have reached the present invention. That is, the gist of the present invention is:
(A) thickness of 5 μm or more and 200 μm or less, (b) porosity of 20% or more and 80% or less, (c) Gurley type air permeability of 10 seconds / 100 cc to 1000 seconds / 100 cc, (d)
The porous resin film is characterized in that the contact angle θ 1 immediately after dropping of a 1: 1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate is 30 ° or less.

【0007】[0007]

【発明の実施の形態】以下本発明について更に詳しく説
明する。本発明の多孔質膜は、前記で規定する物性を有
するものであればその製造方法は特に限定されるもので
はないが、(a)厚みが5μm以上200μm以下、好
ましくは10μm以上50μm以下、(b)空孔率が2
0%以上80%以下、好ましくは40%以上60%以
下、及び(c)ガーレ式透気度が10秒/100cc以
上1000秒/100cc以下、好ましくは50秒/1
00cc以上900秒/100cc以下であるような物
性の多孔質樹脂基材に特定の表面処理等を行う方法が実
際的である。そして、表面処理の方法としては、特定の
プラズマ処理する方法が、多孔性樹脂基材の孔内部まで
処理することが可能であり、液の保持性をより効率よく
高めることができる点で特に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The production method of the porous membrane of the present invention is not particularly limited as long as it has the physical properties defined above, but (a) the thickness is 5 μm to 200 μm, preferably 10 μm to 50 μm, ( b) Porosity is 2
0% or more and 80% or less, preferably 40% or more and 60% or less, and (c) Gurley air permeability is 10 seconds / 100 cc or more and 1000 seconds / 100 cc or less, preferably 50 seconds / 1.
It is practical to perform a specific surface treatment or the like on a porous resin base material having a physical property of not less than 00 cc and not more than 900 seconds / 100 cc. As the surface treatment method, a specific plasma treatment method is particularly preferable because it is possible to treat the inside of the pores of the porous resin base material, and it is possible to more efficiently increase the liquid holding property. .

【0008】本発明に用いることができる上記の多孔質
樹脂基材の材質は特に制限はないが、素材の耐久性など
から、ポリオレフィン樹脂、あるいは、フッ素系樹脂が
好ましく用いられる。その中では、特に、超高分子量ポ
リエチレン多孔質膜、ポリテトラフルオロエチレン多孔
質膜、ポリエチレンやポリプロピレンからなる不織布な
どが用いられる。最も好ましくは、より低い温度で熱閉
塞性を発現する超高分子量ポリエチレン多孔質膜が用い
られる。
The material of the above-mentioned porous resin substrate which can be used in the present invention is not particularly limited, but polyolefin resin or fluorine resin is preferably used from the viewpoint of durability of the material. Among them, a porous ultrahigh molecular weight polyethylene membrane, a polytetrafluoroethylene porous membrane, a nonwoven fabric made of polyethylene or polypropylene, and the like are used. Most preferably, an ultra-high molecular weight polyethylene porous membrane that exhibits heat blocking properties at a lower temperature is used.

【0009】このような多孔質樹脂基材は公知の方法で
製造することができる。例えば、超高分子量ポリエチレ
ン多孔質膜の場合、常温で固体又は液体で、溶融成形条
件下で液状である膨潤剤を、超高分子量ポリエチレンに
溶融混練し、該組成物を押し出し成形などの成形方法に
より製膜し、膨潤剤を抽出し、必要に応じて、抽出の前
もしくは後に延伸を行うことにより得られる。
Such a porous resin substrate can be manufactured by a known method. For example, in the case of an ultra-high molecular weight polyethylene porous membrane, a swelling agent which is solid or liquid at ordinary temperature, and which is liquid under melt molding conditions, is melt-kneaded with ultra-high molecular weight polyethylene, and the composition is extruded and formed by a molding method such as extrusion molding. To extract a swelling agent, and if necessary, stretching before or after the extraction.

【0010】以上のような多孔質樹脂基材より本発明の
多孔質膜を得る方法として好ましい前記プラズマ処理
は、基材の片面あるいは両面に施され、そのどちらの場
合も、もとより存在する基材の孔を閉塞させることなく
実施することが必要である。基材に対しプラズマ処理を
施す際に用いるプラズマソースとしては、ラジオ波電
源、マイクロ波電源、直流電源等が挙げられる。このな
かでは、ラジオ波電源が好ましい。また、プラズマ処理
は、通常、適当なチャンバー内で行われ、その内圧は通
常0.1Pa(約1mmTorr)〜大気圧、好ましく
は2Pa(約20mmTorr)〜400Pa(約3T
orr)、特に好ましくは3Pa(約30mmTor
r)〜100Pa(約750mmTorr)の範囲の圧
力下で放電を行い、プラズマを発生させ、そのプラズマ
雰囲気下で基材の処理を行う。チャンバー内には、希ガ
ス類(ヘリウム、ネオン、アルゴン、キセノン)、窒
素、酸素、二酸化炭素、水素、あるいは、炭化水素、含
酸素有機化合物、含窒素有機化合物等の有機化合物の蒸
気などから選ばれる気体を1種以上を、好ましくは希ガ
ス、あるいは、希ガス類と有機化合物蒸気の混合物を導
入し、必要に応じて真空ポンプにて減圧を行い、適当な
圧力に調整する。
The above-mentioned plasma treatment, which is preferable as a method for obtaining the porous film of the present invention from the porous resin substrate as described above, is performed on one or both surfaces of the substrate. It is necessary to carry out without closing the holes. Examples of a plasma source used when performing plasma processing on a substrate include a radio-frequency power source, a microwave power source, and a DC power source. Of these, a radio frequency power supply is preferred. The plasma treatment is usually performed in an appropriate chamber, and the internal pressure is generally 0.1 Pa (about 1 mmTorr) to atmospheric pressure, preferably 2 Pa (about 20 mmTorr) to 400 Pa (about 3 T).
orr), particularly preferably 3 Pa (about 30 mmTorr).
r) Discharge is performed under a pressure in the range of 100 Pa (about 750 mmTorr) to generate plasma, and the substrate is processed under the plasma atmosphere. The chamber contains a gas selected from rare gases (helium, neon, argon, xenon), nitrogen, oxygen, carbon dioxide, hydrogen, or vapors of organic compounds such as hydrocarbons, oxygen-containing organic compounds, and nitrogen-containing organic compounds. , Preferably a rare gas or a mixture of a rare gas and an organic compound vapor is introduced, and if necessary, the pressure is reduced by a vacuum pump to adjust the pressure to an appropriate pressure.

【0011】チャンバー内で放電を行いプラズマ処理を
行う際の気体の導入量や種類、有機化合物の特性、チャ
ンバー圧力、プラズマ出力などの処理条件を制御するこ
とにより基材表面の官能基生成や基材表面及び、または
孔内部の表面エネルギー制御が可能となる。プラズマ処
理の好ましい条件としては、プラズマ出力W(J/se
c)を極板面積S(cm2)で除した数値W/S値が
0.01〜2J/sec・cm2、特に0.02〜0.
6J/sec・cm2である。
[0011] By controlling the processing conditions such as the amount and type of gas introduced during discharge and plasma processing in the chamber, characteristics of organic compounds, chamber pressure, plasma output, etc., the generation of functional groups on the substrate surface and The surface energy of the material surface and / or the inside of the hole can be controlled. Preferred conditions for the plasma treatment include a plasma output W (J / sec).
c) divided by the electrode plate area S (cm 2 ) is 0.01 to 2 J / sec · cm 2 , particularly 0.02 to 0.
It is 6 J / sec · cm 2 .

【0012】以上のように特定のプラズマ処理等を施し
て得られる本発明の多孔質樹脂膜は、厚みが5μm以上
200μm以下、好ましくは10μm以上50μm以下
であり、かつ、空孔率が20%以上80%以下、好まし
くは40%以上60%以下である。また、膜のガーレ式
透気度は、10秒/100cc以上1500秒/100
cc以下、好ましくは50秒/100cc以上900秒
/100cc以下である。以上の膜の厚み、空孔率は及
びガーレ式透気度は、原料の多孔質樹脂基材の場合と同
じ範囲にあることが好ましく、かかる範囲をはずれる
と、電池用セパレーターとしての利用が難しくなるので
好ましくない。
As described above, the porous resin film of the present invention obtained by performing a specific plasma treatment or the like has a thickness of 5 μm to 200 μm, preferably 10 μm to 50 μm, and a porosity of 20%. Not less than 80%, preferably not less than 40% and not more than 60%. The Gurley air permeability of the membrane is 10 seconds / 100 cc or more and 1500 seconds / 100
cc or less, preferably 50 seconds / 100 cc or more and 900 seconds / 100 cc or less. The film thickness, porosity and Gurley type air permeability of the above membrane are preferably in the same range as in the case of the raw material porous resin substrate, and if it is outside of this range, it is difficult to use as a battery separator. Is not preferred.

【0013】また、本発明の多孔質樹脂膜において、原
料の多孔質基材と物性的に大きく異なる点は、炭酸エチ
レンと炭酸ジエチルの1:1(容積比)混合液に対する
液滴の滴下直後の接触角θ1が30度以下であり、電解
液との親和性の観点から好ましくは25度以下となる点
にある。更に、電解液の浸透性の観点からは、炭酸エチ
レンと炭酸ジエチルの1:1(容積比)混合液に対する
液滴の滴下直後の接触角θ1及び液滴の滴下1分後の接触
角θ2の関係がθ21≦0.85であることがより好ま
しく、更にθ2の絶対値としては20度以下であること
が最も好ましい。なお、上記の接触角θ1、θ2とは、試
料膜表面上に炭酸エチレンと炭酸ジエチルの1:1(容
積比)混合液の液滴を形成し、液滴表面と試料膜表面と
が交わる点を通る液滴に対する接線を引き、その接線と
試料膜表面とが形成する角で、液滴を含む方の角度をそ
の試料膜の該混合液に対する接触角とし、液滴を滴下し
た直後の値(θ1)と滴下後1分経過した後の値(θ2
を示すものである。
In addition, the porous resin film of the present invention differs greatly in physical properties from the raw material porous substrate immediately after the dropping of the droplet in the 1: 1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate. Is 30 degrees or less, and preferably 25 degrees or less from the viewpoint of affinity with the electrolyte. Further, from the viewpoint of the permeability of the electrolyte, the contact angle θ 1 immediately after dropping and the contact angle θ 1 minute after dropping with respect to a 1: 1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate are considered. more preferably 2 relationship is θ 2 / θ 1 ≦ 0.85, and most preferably a further absolute value of theta 2 is less than 20 degrees. The above-mentioned contact angles θ 1 and θ 2 are defined as follows: a droplet of a 1: 1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate is formed on the surface of the sample film, and the surface of the droplet and the surface of the sample film are A tangent to the droplet passing through the intersection is drawn, and the angle formed by the tangent and the surface of the sample film, and the angle that includes the droplet is the contact angle of the sample film with the mixture, and immediately after the droplet is dropped. Value (θ 1 ) and the value one minute after dropping (θ 2 )
It shows.

【0014】以上の本発明の多孔質膜をセパレーターと
して用いたリチウム二次電池では、例えば、負極として
リチウム金属、リチウムとアルミニウム等との合金、あ
るいはリチウムイオンを吸収、放出できるようにした炭
素電極などが用いられ、正極としては二酸化マンガン等
の公知の電極が用いられる。電池の形状としては、例え
ば、本発明の複合多孔質膜を正極と負極との間に巻き込
んだもの、あるいは各電極を袋状にした複合多孔質膜に
包みこんだもの等を電解液と共にケースに収納して密閉
された電池が例示できる。電解液としては、例えば、エ
チレンカーボネート(EC)、ジメチルカーボネート
(DMC)などの非プロトン性極性溶媒にLiPF6
どの電解質を溶かした非水溶液が用いられる。
In a lithium secondary battery using the porous membrane of the present invention as a separator, for example, as a negative electrode, a lithium metal, an alloy of lithium and aluminum, or a carbon electrode capable of absorbing and releasing lithium ions is used. And a known electrode such as manganese dioxide is used as the positive electrode. As the shape of the battery, for example, a case in which the composite porous membrane of the present invention is wound between the positive electrode and the negative electrode, or a case in which each electrode is wrapped in a bag-shaped composite porous membrane together with an electrolytic solution, And a sealed battery. As the electrolyte, for example, a non-aqueous solution in which an electrolyte such as LiPF 6 is dissolved in an aprotic polar solvent such as ethylene carbonate (EC) or dimethyl carbonate (DMC) is used.

【0015】[0015]

【実施例】本発明を実施例により具体的に説明するが、
本発明はその要旨を越えない限り、以下の実施例に限定
されるものではない。なお、以下の諸例において、各測
定は次の方法によった。 (1)透気度 JIS P8117に従って測定した。測定機材は、東
洋精機社製B型ガーレ式デンソーメータ(商品名)を用
いた。 (2)空孔率 膜の体積と重量および材料の密度から、膜内部のに占め
る空孔部分(材料のない空間)の体積を百分率で表し
た。 (3)接触角 試料樹脂膜上に炭酸エチレンと炭酸ジエチルの1:1
(容積比)混合液の液滴を形成し、液滴表面と試料膜が
交わる点を通る液滴に対する接線を引きその接線と膜表
面とが形成する角で液滴を含む方の角度をその試料の上
記混合液に対する接触角とした。液滴を滴下した直後の
値(θ1)と滴下後1分経過した後の値(θ2)を測定し
た。 比較例1 粘度平均分子量が230万であるポリエチレン20重量
%に対してステアリルアルコール80重量%をパウダー
ブレンドした後、170℃のオーブン中に30分間放置
し、ポリエチレンをアルコールで湿潤させた。この際混
合物100重量部に対して0.5重量部のフェノール系
安定剤を添加した。この混合物を温度170℃、回転数
100rpmの条件で10分間混練りした。樹脂温は1
85℃で一定、トルクも一定であり混合物は溶融状態で
透明であり均一であった。
EXAMPLES The present invention will be described specifically with reference to Examples.
The present invention is not limited to the following examples unless it exceeds the gist. In addition, in the following examples, each measurement was based on the following method. (1) Air permeability Measured according to JIS P8117. As a measuring device, a B-type Gurley type densometer (trade name) manufactured by Toyo Seiki Co., Ltd. was used. (2) Porosity From the volume and weight of the film and the density of the material, the volume of the void portion (space without material) occupying the inside of the film was expressed in percentage. (3) Contact angle 1: 1 of ethylene carbonate and diethyl carbonate on the sample resin film
(Volume ratio) A droplet of the mixed liquid is formed, a tangent to the droplet passing through the point where the droplet surface and the sample film intersect is drawn, and the angle formed by the tangent and the film surface and the angle containing the droplet is defined as the angle. The contact angle of the sample with the above-mentioned mixed solution was defined as the contact angle. The value immediately after dropping (θ 1 ) and the value one minute after dropping (θ 2 ) were measured. Comparative Example 1 After 20% by weight of polyethylene having a viscosity average molecular weight of 2.3 million was blended with 80% by weight of stearyl alcohol, the mixture was left in an oven at 170 ° C. for 30 minutes to wet the polyethylene with alcohol. At this time, 0.5 part by weight of a phenolic stabilizer was added to 100 parts by weight of the mixture. This mixture was kneaded for 10 minutes at a temperature of 170 ° C. and a rotation speed of 100 rpm. Resin temperature is 1
The mixture was constant at 85 ° C., the torque was constant, and the mixture was transparent and homogeneous in the molten state.

【0016】該均一混合物が冷却固化する前に170℃
の温度でプレス成形し0.5mmのプレスシートを得
た。該シートを、二軸延伸機を用い120℃の温度で2
00%/secで縦横同時に、4×4倍の延伸を行っ
た。延伸後のシートを60℃のイソプロパノール中に5
分間浸漬しステアリルアルコールを抽出した。このシー
トは多孔化のため白色を示した。この最終的に得られた
多孔質樹脂膜の物性を表ー1に示す。 比較例2 粘度平均分子量が230万である超高分子量ポリエチレ
ン18重量%に対してステアリルアルコール82重量部
とフェノール系添加物0.5重量部をパウダーブレンド
した後、水冷ジャケットで供給部を冷却した50mmφ
押出機に供給し、この先端に更に40mmφ押出機を付
設して210℃で溶融混合し、均一な溶融体にした。
170 ° C. before the homogeneous mixture cools and solidifies
At a temperature of 0.5 mm to obtain a 0.5 mm pressed sheet. The sheet is subjected to a biaxial stretching at a temperature of 120 ° C. for 2 hours.
Stretching 4 × 4 times was performed at the same time at 00% / sec. The stretched sheet is placed in isopropanol at 60 ° C. for 5 minutes.
It was immersed for a minute to extract stearyl alcohol. This sheet was white due to porosity. Table 1 shows the physical properties of the finally obtained porous resin film. Comparative Example 2 82 parts by weight of stearyl alcohol and 0.5 part by weight of a phenolic additive were powder-blended to 18% by weight of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 2.3 million, and the supply unit was cooled with a water cooling jacket. 50mmφ
The mixture was supplied to an extruder, and a 40 mmφ extruder was further attached to the end of the extruder. The extruder was melted and mixed at 210 ° C. to obtain a uniform melt.

【0017】該均一混合物を幅550mm、ダイクリア
ランス0.3mmのTダイより押し出し、更にドラフト
率1.8で引き取ることにより厚さ0.15mmのシー
トを得た。このシートからステアリルアルコールを60
℃のイソプロパノールで抽出除去して多孔性シートを得
た。該シートを、ロール延伸機を用い100℃で縦方向
に3.0倍延伸し、続いてテンター延伸機を用い130
℃で横方向に5.5倍延伸を行った。得られたフィルム
の性質を表−1に示す。 実施例1 直径15cmの円形の平行平板型電極を内部にもつチャ
ンバー内に上述の比較例1の方法で得た超高分子量ポリ
エチレン多孔質膜を置き、チャンバーを充分排気した後
毎分5ccの割合でアルゴンガスを導入しながらチャン
バーを約20Paに保った。13.56MHzのラジオ
波電源により放電を開始し、40Wの出力で1分間処理
を行った。このときのW/S値は0.22(J/sec
・cm2)である。得られた多孔質樹脂膜の物性を表ー
1に示す。 実施例2 実施例1においてアルゴンの代わりにヘリウムを用いた
以外は同様にして多孔質樹脂膜を得た。得られた多孔質
樹脂膜の物性を表ー1に示す。 実施例3 実施例1においてアルゴンの代わりに窒素を用いた以外
は同様にして多孔質樹脂膜を得た。得られた多孔質樹脂
膜の物性を表ー1に示す。 実施例4 直径15cmの円形の平行平板型電極を内部にもつチャ
ンバー内に上述の比較例1の方法で得た超高分子量ポリ
エチレン多孔膜を置き、チャンバーを充分排気した後ア
ルゴンガスを毎分5cc、炭酸ジメチルの蒸気を毎分5
cc導入しながらチャンバー圧を約20Paに保った。
13.56MHzのラジオ波電源により放電を開始し、
40Wの出力で1分間処理を行った。得られた多孔質樹
脂膜の物性を表−1に示す。 実施例5 平行平板型電極を内部にもつチャンバー内に上述した方
法で得た超高分子量ポリエチレン多孔膜を置き、チャン
バーを充分排気した後アルゴンガスを導入してチャンバ
ー圧を約20Paに保った。13.56MHzのラジオ
波電源により放電を開始し、80Wの出力で1分間処理
を行った。このときのW/S値は0.45(J/sec
・cm2)である。得られた多孔質樹脂膜の物性を表ー
1に示す。 実施例6 比較例2で得た多孔性フィルムを幅30cm、長さ25
cmの並行平板電極を内部に持つチャンバー内に入れチ
ャンバーを充分に排気した後、アルゴンガスと酸素ガス
をそれぞれ毎分10ccおよび30ccの割合で導入し
ながらチャンバー内を約40Paに保った。13.56
MHzのラジオ波電源により10Wの出力で放電を開始
して該多孔性フィルムを並行平板電極間を連続的に通過
させ、処理を行った。フィルムが電極間を通過するのに
要した時間は30秒であり、W/S値は0.013(J
/sec・cm2)であった。得られた多孔質膜の物性
を表−1に示す。
The homogenous mixture was extruded from a T-die having a width of 550 mm and a die clearance of 0.3 mm, and was drawn at a draft rate of 1.8 to obtain a sheet having a thickness of 0.15 mm. 60% stearyl alcohol from this sheet
Extraction and removal with isopropanol at ℃ resulted in a porous sheet. The sheet is stretched 3.0 times in the machine direction at 100 ° C. using a roll stretching machine, and then stretched 130 times using a tenter stretching machine.
The film was stretched 5.5 times in the transverse direction at ℃. Table 1 shows the properties of the obtained film. Example 1 The ultrahigh molecular weight polyethylene porous membrane obtained by the method of Comparative Example 1 described above was placed in a chamber having a circular parallel plate electrode having a diameter of 15 cm inside, and the chamber was sufficiently evacuated. And the chamber was maintained at about 20 Pa while introducing argon gas. Discharge was started by a 13.56 MHz radio wave power supply, and processing was performed for 1 minute at an output of 40 W. The W / S value at this time is 0.22 (J / sec.
Cm 2 ). Table 1 shows the physical properties of the obtained porous resin film. Example 2 A porous resin film was obtained in the same manner as in Example 1 except that helium was used instead of argon. Table 1 shows the physical properties of the obtained porous resin film. Example 3 A porous resin film was obtained in the same manner as in Example 1 except that nitrogen was used instead of argon. Table 1 shows the physical properties of the obtained porous resin film. Example 4 The ultrahigh molecular weight polyethylene porous membrane obtained by the method of Comparative Example 1 described above was placed in a chamber having a circular parallel plate type electrode having a diameter of 15 cm inside, and the chamber was sufficiently evacuated. , Dimethyl carbonate vapor at 5
While introducing cc, the chamber pressure was maintained at about 20 Pa.
The discharge is started by the radio frequency power of 13.56 MHz,
Processing was performed for 1 minute at an output of 40 W. Table 1 shows the physical properties of the obtained porous resin film. Example 5 The ultrahigh molecular weight polyethylene porous membrane obtained by the above-described method was placed in a chamber having a parallel plate type electrode inside, and after sufficiently exhausting the chamber, argon gas was introduced to maintain the chamber pressure at about 20 Pa. Discharge was started by a 13.56 MHz radio wave power supply, and processing was performed at an output of 80 W for 1 minute. The W / S value at this time is 0.45 (J / sec).
Cm 2 ). Table 1 shows the physical properties of the obtained porous resin film. Example 6 The porous film obtained in Comparative Example 2 was 30 cm wide and 25 cm long.
After placing the inside of a chamber having a parallel plate electrode having a diameter of 10 cm and exhausting the chamber sufficiently, the inside of the chamber was maintained at about 40 Pa while introducing argon gas and oxygen gas at a rate of 10 cc and 30 cc per minute, respectively. 13.56
Discharge was started at an output of 10 W with a radio frequency power supply of MHz, and the porous film was continuously passed between parallel plate electrodes to perform processing. The time required for the film to pass between the electrodes was 30 seconds, and the W / S value was 0.013 (J
/ Sec · cm 2 ). Table 1 shows the physical properties of the obtained porous membrane.

【0018】以上のことから、特定のプラズマ処理を行
った実施例1〜6の多孔質膜は、プラズマ処理を行わな
かった比較例1及び2の多孔質樹脂膜に対して、炭酸エ
チレンと炭酸ジエチルの1:1(容量比)混合液に対す
る接触角が低下しており、さらに、実施例1〜6の多孔
質樹脂膜では、比較例の多孔質膜よりも、炭酸エチレン
と炭酸ジエチルの1:1(容量比)混合液が浸透しやす
いことがわかる。
As described above, the porous films of Examples 1 to 6 which were subjected to the specific plasma treatment were different from the porous resin films of Comparative Examples 1 and 2 which were not subjected to the plasma treatment, in that ethylene carbonate and carbonate were used. The contact angle with respect to a 1: 1 (volume ratio) mixed solution of diethyl was reduced, and the porous resin membranes of Examples 1 to 6 were smaller than the porous membrane of the comparative example by 1 to 1 times of ethylene carbonate and diethyl carbonate. It can be seen that a 1: 1 (volume ratio) mixed solution easily permeates.

【0019】[0019]

【表1】 θ1:滴下直後の接触角。[Table 1] θ1: contact angle immediately after dropping.

【0020】θ2:滴下1分後の接触角。 Ar :アルゴン、Θ2: contact angle one minute after dropping. Ar: argon,

【0021】[0021]

【発明の効果】本発明によれば、透気性を維持したま
ま、有機溶媒に対する親和性が向上し、電池用パレータ
ーとして、特にリチウム二次電池用セパレーターとして
有用な多孔質樹脂膜が提供される。
According to the present invention, there is provided a porous resin membrane having improved affinity for an organic solvent while maintaining air permeability, and which is useful as a battery parator, particularly as a separator for a lithium secondary battery. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08J 9/00 CEW C08J 9/00 CEWZ H01M 2/16 H01M 2/16 P // H01M 10/40 10/40 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08J 9/00 CEW C08J 9/00 CEWZ H01M 2/16 H01M 2/16 P // H01M 10/40 10/40 Z

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 (a)厚み5μm以上200μm以下、
(b)空孔率が20%以上80%以下、(c)ガーレ式
透気度が10秒/100cc以上1000秒/100c
c以下、(d)炭酸エチレンと炭酸ジエチルの1:1
(容積比)混合液の液滴の滴下直後の接触角θ1が30
度以下、であることを特徴とする多孔質樹脂膜。
(1) a thickness of 5 μm or more and 200 μm or less,
(B) Porosity of 20% or more and 80% or less, (c) Gurley type air permeability of 10 seconds / 100cc or more and 1000 seconds / 100c
c or less, (d) 1: 1 of ethylene carbonate and diethyl carbonate
(Volume ratio) The contact angle θ 1 immediately after the drop of the mixed liquid is 30
A porous resin film, wherein the temperature is not more than a degree.
【請求項2】 炭酸エチレンと炭酸ジエチルの1:1
(容積比)混合液の液滴滴下直後の接触角θ1及び液滴
の滴下1分後の接触角θ2の関係がθ21≦0.85で
あることを特徴とする請求項1の多孔質樹脂膜。
2. A 1: 1 mixture of ethylene carbonate and diethyl carbonate.
(Volume ratio) The relationship between the contact angle θ 1 immediately after dropping of the mixed liquid droplet and the contact angle θ 2 one minute after dropping of the liquid droplet is θ 2 / θ 1 ≦ 0.85. 1 porous resin membrane.
【請求項3】 多孔質樹脂をプラズマ処理してなること
を特徴とする請求項1又は2の多孔質樹脂膜。
3. The porous resin film according to claim 1, wherein the porous resin is subjected to a plasma treatment.
【請求項4】 (a)厚み5μm以上200μm以下、
(b)空孔率が20%以上80%以下、(c)ガーレ式
透気度が10秒/100cc以上1000秒/100c
c以下である多孔質樹脂をプラズマ処理してなることを
特徴とする請求項3の多孔質樹脂膜。
4. (a) a thickness of 5 μm or more and 200 μm or less,
(B) Porosity of 20% or more and 80% or less, (c) Gurley type air permeability of 10 seconds / 100cc or more and 1000 seconds / 100c
4. The porous resin film according to claim 3, wherein the porous resin having a value of c or less is subjected to plasma treatment.
【請求項5】 プラズマ処理が、プラズマ処理槽内に、
希ガス類、ハロゲンガス、窒素、酸素、水素、二酸化炭
素から選ばれる1種または2種以上の気体を導入し、該
雰囲気下0.1Pa以上の圧力下での放電処理であるこ
とを特徴とする請求項3又は4の多孔質樹脂膜。
5. A plasma processing apparatus comprising:
A discharge process in which one or two or more gases selected from rare gases, halogen gases, nitrogen, oxygen, hydrogen, and carbon dioxide are introduced, and the atmosphere is subjected to a discharge treatment under a pressure of 0.1 Pa or more. Item 4. The porous resin film according to item 3 or 4.
【請求項6】 プラズマ処理が、プラズマ処理槽内に希
ガス類と有機化合物蒸気の混合物を導入し、該雰囲気下
0.1Pa以上の圧力下での放電処理であることを特徴
とする請求項3又は4の多孔質樹脂膜。
6. The plasma treatment is a discharge treatment in which a mixture of a rare gas and an organic compound vapor is introduced into a plasma treatment tank, and the plasma treatment is performed under a pressure of 0.1 Pa or more in the atmosphere. 4 is a porous resin film.
【請求項7】 プラズマ処理が、プラズマ出力(W)を
極板面積(S)で除した数値(W/S値)が0.01〜
2J/sec・cm2で行われることを特徴とする請求
項3〜6のいずれかの多孔質樹脂膜。
7. A plasma processing method, wherein a value (W / S value) obtained by dividing a plasma output (W) by an electrode plate area (S) is 0.01 to
The porous resin film according to any one of claims 3 to 6, which is performed at 2 J / sec · cm 2 .
【請求項8】 多孔質樹脂がポリオレフィン樹脂である
ことを特徴とする請求項1〜7のいずれかの多孔質樹脂
膜。
8. The porous resin film according to claim 1, wherein the porous resin is a polyolefin resin.
【請求項9】 多孔質樹脂がフッ素含有樹脂であること
を特徴とする請求項1〜7のいずれかの多孔質樹脂膜。
9. The porous resin film according to claim 1, wherein the porous resin is a fluorine-containing resin.
【請求項10】 請求項1〜9のいずれかの多孔質樹脂
膜からなることを特徴とする電池用セパレータ−。
10. A battery separator comprising the porous resin film according to any one of claims 1 to 9.
【請求項11】 請求項10の電池用セパレータ−を組
み込んでなることを特徴とするリチウム二次電池。
11. A lithium secondary battery comprising the battery separator according to claim 10.
JP10320291A 1998-02-20 1998-11-11 Porous resin membrane Pending JPH11300180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10320291A JPH11300180A (en) 1998-02-20 1998-11-11 Porous resin membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3830598 1998-02-20
JP10-38305 1998-02-20
JP10320291A JPH11300180A (en) 1998-02-20 1998-11-11 Porous resin membrane

Publications (1)

Publication Number Publication Date
JPH11300180A true JPH11300180A (en) 1999-11-02

Family

ID=26377524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10320291A Pending JPH11300180A (en) 1998-02-20 1998-11-11 Porous resin membrane

Country Status (1)

Country Link
JP (1) JPH11300180A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1255319A2 (en) 2001-05-02 2002-11-06 Ngk Insulators, Ltd. Electrode body evaluation method and lithium secondary cell using the same
JP2005209452A (en) * 2004-01-21 2005-08-04 Tonen Chem Corp Method for producing microporous membrane and use of microporous membrane to be obtained by that producing method
KR100837463B1 (en) * 2006-01-18 2008-06-12 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
JP2008302359A (en) * 2000-06-23 2008-12-18 Lg Chemical Co Ltd Multicomponent composite separation membrane and its manufacturing method
JP2009535433A (en) * 2006-04-03 2009-10-01 インテグリス・インコーポレーテッド Atmospheric pressure microwave plasma treated porous membrane
US8349501B2 (en) 2006-01-18 2013-01-08 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2015533626A (en) * 2012-08-24 2015-11-26 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ Method for treating porous substrate and production of membrane
US9421499B2 (en) 2012-01-27 2016-08-23 Sumitomo Electric Fine Polymer, Inc. Microporous modified-polytetrafluoroethylene membrane, porous-modified-polytetrafluoroethylene-membrane composite and production process thereof, and separation membrane element
US9463420B2 (en) 2006-08-09 2016-10-11 Sumitomo Electric Fine Polymer, Inc. Manufacturing methods for a porous fluororesin composite
JP2016194065A (en) * 2015-03-31 2016-11-17 日東電工株式会社 Hydrophilic ultrahigh molecular weight plastic porous sheet and manufacturing method thereof
KR101867762B1 (en) * 2016-06-21 2018-06-15 스미또모 가가꾸 가부시키가이샤 Laminated body
US10361418B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10367182B2 (en) 2016-06-21 2019-07-30 Sumitomo Chemical Company, Limited Laminated body
US10388932B2 (en) 2016-06-21 2019-08-20 Sumitomo Chemical Company, Limited Laminated body
US10461297B2 (en) 2016-06-21 2019-10-29 Sumitomo Chemical Company, Limited Laminated body
US10476066B2 (en) 2016-06-21 2019-11-12 Sumitomo Chemical Company, Limited Laminated body
US10573867B2 (en) 2015-11-30 2020-02-25 Sumitomo Chemical Company, Limited Method for producing nonaqueous electrolyte secondary battery separator
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290446A (en) * 1990-04-07 1991-12-20 Fukui Pref Gov Processing of porous film
JPH0525305A (en) * 1991-07-19 1993-02-02 Tonen Corp Polyethylene porous membrane, its production and battery separator made of the same membrane
JPH0594812A (en) * 1991-10-03 1993-04-16 Tonen Corp Polyolefine microporous membrane and its manufacture, and separator using such membrane
JPH05310989A (en) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp Polyethylenic porous film
JPH05317661A (en) * 1992-05-22 1993-12-03 Dainippon Ink & Chem Inc Treatment of separating membrane
JPH0668864A (en) * 1984-05-31 1994-03-11 Mitsubishi Kasei Corp Separator for battery
JPH06234181A (en) * 1993-02-10 1994-08-23 Mitsubishi Kasei Corp Polyolefin porous laminated body
JPH07246322A (en) * 1994-03-11 1995-09-26 Mitsubishi Chem Corp Modified polyolefin porous membrane and filter using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668864A (en) * 1984-05-31 1994-03-11 Mitsubishi Kasei Corp Separator for battery
JPH03290446A (en) * 1990-04-07 1991-12-20 Fukui Pref Gov Processing of porous film
JPH0525305A (en) * 1991-07-19 1993-02-02 Tonen Corp Polyethylene porous membrane, its production and battery separator made of the same membrane
JPH0594812A (en) * 1991-10-03 1993-04-16 Tonen Corp Polyolefine microporous membrane and its manufacture, and separator using such membrane
JPH05310989A (en) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp Polyethylenic porous film
JPH05317661A (en) * 1992-05-22 1993-12-03 Dainippon Ink & Chem Inc Treatment of separating membrane
JPH06234181A (en) * 1993-02-10 1994-08-23 Mitsubishi Kasei Corp Polyolefin porous laminated body
JPH07246322A (en) * 1994-03-11 1995-09-26 Mitsubishi Chem Corp Modified polyolefin porous membrane and filter using the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302359A (en) * 2000-06-23 2008-12-18 Lg Chemical Co Ltd Multicomponent composite separation membrane and its manufacturing method
EP1255319A2 (en) 2001-05-02 2002-11-06 Ngk Insulators, Ltd. Electrode body evaluation method and lithium secondary cell using the same
JP2005209452A (en) * 2004-01-21 2005-08-04 Tonen Chem Corp Method for producing microporous membrane and use of microporous membrane to be obtained by that producing method
US8367255B2 (en) 2006-01-18 2013-02-05 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8349501B2 (en) 2006-01-18 2013-01-08 Panasonic Corporation Non-aqueous electrolyte secondary battery
KR100837463B1 (en) * 2006-01-18 2008-06-12 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
JP2009535433A (en) * 2006-04-03 2009-10-01 インテグリス・インコーポレーテッド Atmospheric pressure microwave plasma treated porous membrane
US8668093B2 (en) 2006-04-03 2014-03-11 Entegris, Inc. Atmospheric pressure microwave plasma treated porous membranes
US8789708B2 (en) 2006-04-03 2014-07-29 Entegris, Inc. Atmospheric pressure microwave plasma treated porous membranes
EP2596853B1 (en) * 2006-08-09 2017-09-27 Sumitomo Electric Fine Polymer, Inc. Fluororesin membrane, fluororesin composite, porous fluororesin composite, manufacturing methods thereof, and separation membrane element
US9463420B2 (en) 2006-08-09 2016-10-11 Sumitomo Electric Fine Polymer, Inc. Manufacturing methods for a porous fluororesin composite
US9421499B2 (en) 2012-01-27 2016-08-23 Sumitomo Electric Fine Polymer, Inc. Microporous modified-polytetrafluoroethylene membrane, porous-modified-polytetrafluoroethylene-membrane composite and production process thereof, and separation membrane element
JP2015533626A (en) * 2012-08-24 2015-11-26 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ Method for treating porous substrate and production of membrane
CN107428985A (en) * 2015-03-31 2017-12-01 日东电工株式会社 Hydrophily ultra high molecular weight plastic porous chips and its manufacture method
JP2016194065A (en) * 2015-03-31 2016-11-17 日東電工株式会社 Hydrophilic ultrahigh molecular weight plastic porous sheet and manufacturing method thereof
KR20170133343A (en) * 2015-03-31 2017-12-05 닛토덴코 가부시키가이샤 Hydrophilic ultra-high molecular weight plastic porous sheet and manufacturing method thereof
US10573867B2 (en) 2015-11-30 2020-02-25 Sumitomo Chemical Company, Limited Method for producing nonaqueous electrolyte secondary battery separator
US10476066B2 (en) 2016-06-21 2019-11-12 Sumitomo Chemical Company, Limited Laminated body
US10361458B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
US10367182B2 (en) 2016-06-21 2019-07-30 Sumitomo Chemical Company, Limited Laminated body
US10388932B2 (en) 2016-06-21 2019-08-20 Sumitomo Chemical Company, Limited Laminated body
US10461297B2 (en) 2016-06-21 2019-10-29 Sumitomo Chemical Company, Limited Laminated body
US10361418B2 (en) 2016-06-21 2019-07-23 Sumitomo Chemical Company, Limited Laminated body
KR101867762B1 (en) * 2016-06-21 2018-06-15 스미또모 가가꾸 가부시키가이샤 Laminated body
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JPH11300180A (en) Porous resin membrane
KR101347460B1 (en) Microporous membranes and methods for making and using such membranes
JP5453272B2 (en) Microporous membranes and methods of making and using such membranes
JP4624304B2 (en) Multi-component composite film, polymer separation membrane including the same, and polymer electrolyte system including the same
JP5403633B2 (en) Microporous membrane, battery separator and battery
JP4685974B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
EP0814117B1 (en) Microporous polyethylene film and process for producing the film
JP3639535B2 (en) Breathable film made of polyolefin blend, method for producing the same, and secondary battery separator made by this method
US20100151310A1 (en) Microporous polyethylene membrane, its production method and battery separator
US8338017B2 (en) Microporous membrane and manufacturing method
JP2011500881A5 (en)
KR100373204B1 (en) Multi-component composite membrane for polymer electrolyte and method of preparing the same
JP4033546B2 (en) Method for producing separator for lithium ion secondary battery
JP2017014493A (en) Ionic conductive film, ionic conductive composite film, and electrode complex
JP3252016B2 (en) Method for producing polyolefin microporous membrane
JP2000204188A (en) Finely porous membrane of polyethylene
JP2016207649A (en) Battery separator and battery
JP4804630B2 (en) Microporous membrane and lithium battery separator
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012099324A (en) Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2012049018A (en) Separator for nonaqueous electrolyte battery
CN110556491B (en) Separator for nonaqueous electrolyte secondary battery
JPH11255931A (en) Porous film
JPH10265596A (en) Composite porous film
JP2015057460A (en) Aromatic polyamide porous membrane and cell separator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104