JPH11299779A - Ultrasonic probe, manufacture thereof, and ultrasonic diagnostic equipment using the same - Google Patents

Ultrasonic probe, manufacture thereof, and ultrasonic diagnostic equipment using the same

Info

Publication number
JPH11299779A
JPH11299779A JP10106672A JP10667298A JPH11299779A JP H11299779 A JPH11299779 A JP H11299779A JP 10106672 A JP10106672 A JP 10106672A JP 10667298 A JP10667298 A JP 10667298A JP H11299779 A JPH11299779 A JP H11299779A
Authority
JP
Japan
Prior art keywords
ultrasonic
vibrator
probe
laminated
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10106672A
Other languages
Japanese (ja)
Other versions
JP4118381B2 (en
Inventor
Hidezo Sano
野 秀 造 佐
Shosaku Ishihara
原 昌 作 石
Masato Nakamura
村 真 人 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP10667298A priority Critical patent/JP4118381B2/en
Publication of JPH11299779A publication Critical patent/JPH11299779A/en
Application granted granted Critical
Publication of JP4118381B2 publication Critical patent/JP4118381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/064Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface with multiple active layers

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic probe which enables to reduce the generating of artifacts, to observe a tomographic image inside a subject with high resolution, and to three dimensionally display an arbitrary location by electronic scanning. SOLUTION: The vibrator of this ultrasonic probe is constituted of outer electrodes and inner electrodes. The outer electrodes are placed on the top and bottom faces in the thickness direction and the inner electrodes are placed at prescribed intervals within the thickness. Both kinds of electrodes are connected so that the outer electrodes at the top or bottom faces and the inner electrodes placed alternately are to be mutually different wiring in two side faces. Plural vibrator elements made by such a manner are arranged in orthogonally crossed two directions to form a two dimensionally arranged vibrator so as to execute transmit/receive ultrasonic waves by every vibrator element. Thus the generation of artifact is reduced to enable to observe the tomographic image inside the subject in high resolution and to stereoscopically display an arbitrary location by electronic scanning.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を利用して
被検体の診断部位を検査するのに用いる超音波探触子及
びその製造方法並びにその超音波探触子を用いた超音波
診断装置に関し、特に、アーチファクトの発生を少なく
して、被検体内部の断層像を高分解能に観察したり、電
子走査で任意箇所の3次元表示を可能とする超音波探触
子及びその製造方法並びにその超音波探触子を用いた超
音波診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe used for examining a diagnostic site of a subject using ultrasonic waves, a method for manufacturing the same, and an ultrasonic diagnosis using the ultrasonic probe. Ultrasound probe capable of observing a tomographic image inside a subject with high resolution while reducing the occurrence of artifacts, and enabling three-dimensional display of an arbitrary portion by electronic scanning, and a method for manufacturing the same, and The present invention relates to an ultrasonic diagnostic apparatus using the ultrasonic probe.

【0002】[0002]

【従来の技術】従来のアレイ形の超音波探触子は、図8
に示すように、圧電材料からなる振動子1の上下両面に
電極2及び3が形成されており、この振動子1及び電極
2,3は電子的に超音波を走査するように長軸方向y−
y’において短冊状に分割され1列状に配列されてい
る。そして、被検体側に位置する電極2はグランドに接
続され、その上面には1層ないし2層の音響整合層4が
設けられると共に、反対側の電極3には音響減衰層5が
設けられている。上記各電極2,3には、それぞれフレ
キシブルプリント板6,7のパターン8が半田付け9な
どにより接続されており、図示省略のコネクタを介して
本体としての超音波診断装置に接続される。なお、上記
音響整合層4の上面には、さらに音響レンズ10が固定
されている。
2. Description of the Related Art A conventional array type ultrasonic probe is shown in FIG.
As shown in FIG. 1, electrodes 2 and 3 are formed on the upper and lower surfaces of a vibrator 1 made of a piezoelectric material. The vibrator 1 and the electrodes 2 and 3 are moved in the long axis direction y so as to electronically scan ultrasonic waves. −
It is divided into strips at y ′ and arranged in a row. The electrode 2 located on the subject side is connected to the ground, one or two acoustic matching layers 4 are provided on the upper surface thereof, and the acoustic attenuation layer 5 is provided on the opposite electrode 3. I have. A pattern 8 of a flexible printed board 6, 7 is connected to each of the electrodes 2, 3 by soldering 9 or the like, and is connected to an ultrasonic diagnostic apparatus as a main body via a connector (not shown). Note that an acoustic lens 10 is further fixed on the upper surface of the acoustic matching layer 4.

【0003】図8の構成の超音波探触子において、電子
的に超音波を走査して断層像を得る場合、上記短冊状に
分割された振動子1の複数の素子で集束超音波を形成
し、そのビームで送受波を繰り返しながら走査すること
により断層像を得るようになっている。しかし、上記振
動子1の複数の素子が並ぶ長軸方向y−y’では、使用
する素子数を適当に選ぶことにより焦点距離Lを振動子
1の近くから遠くまで任意に設定できるが、これと直交
する短軸方向x−x’では、上記音響レンズ10による
焦点距離Lが一定であり、焦点深度に相当するL1の範
囲では鮮明な断層像を得ることができるものの、これ以
外の領域では像が不鮮明になるという問題点があった。
In the ultrasonic probe having the structure shown in FIG. 8, when a tomographic image is obtained by electronically scanning an ultrasonic wave, a plurality of elements of the vibrator 1 divided into strips form focused ultrasonic waves. Then, a tomographic image is obtained by scanning while repeating the transmission and reception of the beam. However, in the long axis direction yy ′ in which a plurality of elements of the vibrator 1 are arranged, the focal length L can be arbitrarily set from near to far from the vibrator 1 by appropriately selecting the number of elements to be used. In the short-axis direction xx ′ perpendicular to the above, the focal length L of the acoustic lens 10 is constant, and a clear tomographic image can be obtained in a range of L 1 corresponding to the depth of focus, but other regions are not included. Then, there was a problem that the image became unclear.

【0004】図9は上記のような問題点を解決するため
に提案されたもので、振動子1を長軸方向y−y’にお
いて分割するだけでなく、これと直交する短軸方向x−
x’においても分割し、平面内で2次元に分割してブロ
ック化したものである。この場合には、前記の音響レン
ズ10を用いることなく短軸方向x−x’についても焦
点距離Lを振動子1の近くから遠くまで任意に設定でき
るため、焦点深度L2を図8のときの焦点深度L1に対し
てL2≧L1とすることが可能で、断層像全体について鮮
明な像が得られると期待される。このような超音波探触
子が、“1996IEEE ULTRASONICS SYMPOSIUM, pp1523-152
6(1996)”に掲載されている。
FIG. 9 is proposed to solve the above-mentioned problem. In addition to dividing the vibrator 1 in the long-axis direction yy ', the vibrator 1 is not only divided in the short-axis direction x-y', but also in the short-axis direction x-y '.
x ′ is also divided and divided into blocks in a two-dimensional plane to form a block. In this case, it is possible to arbitrarily set the focal distance L also far from nearby vibrator 1 for minor axis direction x-x 'without using an acoustic lens 10 of the, when the focal depth L 2 of FIG. 8 It is possible to satisfy L 2 ≧ L 1 with respect to the focal depth L 1 , and it is expected that a clear image can be obtained for the entire tomographic image. Such an ultrasonic probe is described in “1996 IEEE ULTRASONICS SYMPOSIUM, pp1523-152
6 (1996) ”.

【0005】しかし、図9に示すように振動子1を短軸
方向x−x’において分割していくと電気的なインピー
ダンスが高くなって、電源から効率的にエネルギが供給
されなくなる恐れがある。図10はその状況を説明する
もので、振動子1の短軸方向x−x’の分割数nと素子
インピーダンスΩとの関係を定性的に示したグラフであ
る。振動子1を短軸方向x−x’に分割する前の素子イ
ンピーダンスをΩ0とすると、 Ω∝n・Ω0 となり、素子インピーダンスΩは分割数nに比例して高
くなることが分かり、これに伴って振動子1の感度が劣
化すると予想される。
However, as shown in FIG. 9, when the vibrator 1 is divided in the short-axis direction xx ', the electrical impedance becomes high, and there is a possibility that energy is not efficiently supplied from the power supply. . FIG. 10 explains the situation, and is a graph qualitatively showing the relationship between the number n of divisions of the vibrator 1 in the short-axis direction xx ′ and the element impedance Ω. Assuming that the element impedance before dividing the vibrator 1 in the short-axis direction xx ′ is Ω 0 , Ω∝n · Ω 0 is obtained , and the element impedance Ω increases in proportion to the division number n. It is expected that the sensitivity of the vibrator 1 will be degraded as a result.

【0006】そこで、上記のように振動子1を短軸方向
x−x’に分割しても素子インピーダンスΩが高くなら
ないように、図11(a)に示す単層の振動子1を電源
11で駆動する場合に対して、図11(b)に示すよう
に振動子1を複数層に積層化する方法が有効であると考
えられる。即ち、例えば、振動子1の厚み内に所定間隔
で複数の内部電極12,13を対向する両側面の一方側
に交互に寄せて配設し、一方の電極2と内部電極13と
を配線14で接続すると共に、他方の電極3と内部電極
12とを配線15で接続して3層に積層した場合、素子
インピーダンスΩは、図11(a)に示す単層の振動子
1の場合の1/9に低減できると考えられる。
Therefore, the single-layer vibrator 1 shown in FIG. 11A is connected to a power supply 11 so that the element impedance Ω does not increase even if the vibrator 1 is divided in the short-axis direction xx ′ as described above. It is considered that a method of laminating the vibrator 1 in a plurality of layers as shown in FIG. That is, for example, a plurality of internal electrodes 12, 13 are alternately arranged at predetermined intervals within the thickness of the vibrator 1 on one side of both opposing side surfaces, and one electrode 2 and the internal electrode 13 are connected to the wiring 14. And the other electrode 3 and the internal electrode 12 are connected by the wiring 15 and laminated in three layers, the element impedance Ω is 1 in the case of the single-layer vibrator 1 shown in FIG. It is thought that it can be reduced to / 9.

【0007】図12はその状況を説明するもので、振動
子1を複数層に積層化した素子積層数Nと素子インピー
ダンスΩとの関係を定性的に示したグラフである。単層
の振動子1の素子インピーダンスをΩ1とすると、 Ω∝Ω1/N2 となり、素子インピーダンスΩは積層数Nの2乗に反比
例することが分かり、これにより振動子1の短軸方向x
−x’の分割によるインピーダンスの上昇を該振動子1
の積層化で抑えることが可能である。このような超音波
探触子が、“ULTRASONIC IMAGING 17, pp95-113(199
5)”に掲載されている。
FIG. 12 is a graph for explaining the situation, and is a graph qualitatively showing a relationship between the number N of stacked devices in which the vibrator 1 is stacked in a plurality of layers and the device impedance Ω. Assuming that the element impedance of the single-layer vibrator 1 is Ω 1 , Ω∝Ω 1 / N 2 , and it is understood that the element impedance Ω is inversely proportional to the square of the number N of layers. x
-X 'is divided by the vibrator 1
Can be suppressed by stacking. Such an ultrasonic probe is described in “ULTRASONIC IMAGING 17, pp95-113 (199
5) ".

【0008】図13は上記のように提案された超音波探
触子の概略構造を示す図であり、(a)は平面図の一部
であり、(b)は正面図である。図13(b)におい
て、一方の電極2と内部電極13とを配線14で接続す
ると共に、他方の電極3と内部電極12とを配線15で
接続するのは、前述の図11(b)の場合と同様である
が、図13(a)に示すように個々の振動子1の素子に
分割する境界部位にスルーホール16を形成してその内
部に導電材料を充填し、図13(b)に示すように上記
スルーホール16に対して隣接する素子と素子の上部電
極2と内部電極13と内部電極12’と下部電極3’と
をそれぞれ接続し、その後上記スルーホール16の位置
で長軸方向y−y’の切断溝17により切断すると共に
短軸方向x−x’の切断溝18で各素子に分割したもの
である。
FIG. 13 is a diagram showing a schematic structure of an ultrasonic probe proposed as described above, wherein (a) is a part of a plan view and (b) is a front view. In FIG. 13B, the connection between one electrode 2 and the internal electrode 13 by the wiring 14 and the connection between the other electrode 3 and the internal electrode 12 by the wiring 15 are the same as those in FIG. As in the case, as shown in FIG. 13 (a), a through hole 16 is formed at a boundary portion divided into elements of the individual vibrator 1, and the inside thereof is filled with a conductive material. As shown in FIG. 7, the element adjacent to the through hole 16, the upper electrode 2, the internal electrode 13, the internal electrode 12 ', and the lower electrode 3' of the element are connected to each other. Each element is cut by a cutting groove 17 in the direction yy ′ and is divided into respective elements by a cutting groove 18 in the short-axis direction xx ′.

【0009】[0009]

【発明が解決しようとする課題】しかし、図13のよう
に振動子を2次元に配列して構成された従来の超音波探
触子においては、各素子の横幅Wが例えば 3.45mm 、ス
ルーホール16の径Dが例えば 0.2mm 、奥行きBが例
えば 0.37mm 、高さHが例えば 0.66mm とされており、
各素子の横幅Wが比較的大きいことから構造的に実現性
があるが、長軸方向y−y’と短軸方向x−x’の2方
向から超音波ビームの焦点位置を可変にして高画質の断
層像を得るためには、上記横幅Wも奥行きBと同程度に
狭くする必要がある。そして、このように各素子の横幅
Wを狭くした場合には、該横幅Wがスルーホール16の
径Dと略同等になり、電極2,3の面積が縮小して素子
インピーダンスが増大してしまうこととなる。したがっ
て、振動子1の感度が劣化することがある。また、前記
内部電極12,13の位置決めやスルーホール16の形
成のばらつき等により、各素子の特性に不均一を生じる
ことがある。このことから、得られる超音波断層像にア
ーチファクトが発生することがある。
However, in a conventional ultrasonic probe in which transducers are two-dimensionally arranged as shown in FIG. 13, the width W of each element is, for example, 3.45 mm and the through hole 16 has a diameter D of, for example, 0.2 mm, a depth B of, for example, 0.37 mm, a height H of, for example, 0.66 mm,
Although it is structurally feasible because the lateral width W of each element is relatively large, the focal position of the ultrasonic beam can be varied from two directions, ie, the major axis direction yy ′ and the minor axis direction xx ′, to increase the height. In order to obtain a tomographic image of image quality, the width W needs to be as narrow as the depth B. When the lateral width W of each element is reduced in this way, the lateral width W is substantially equal to the diameter D of the through hole 16, the area of the electrodes 2 and 3 is reduced, and the element impedance is increased. It will be. Therefore, the sensitivity of the vibrator 1 may be deteriorated. In addition, the characteristics of each element may be non-uniform due to variations in the positioning of the internal electrodes 12 and 13 and the formation of the through holes 16. For this reason, artifacts may occur in the obtained ultrasonic tomographic image.

【0010】そこで、本発明は、このような問題点に対
処し、アーチファクトの発生を少なくして、被検体内部
の断層像を高分解能に観察したり、電子走査で任意箇所
の3次元表示を可能とする超音波探触子及びその製造方
法並びにその超音波探触子を用いた超音波診断装置を提
供することを目的とする。
Accordingly, the present invention addresses such problems, reduces the occurrence of artifacts, observes a tomographic image inside a subject with high resolution, and displays a three-dimensional display of an arbitrary portion by electronic scanning. It is an object of the present invention to provide an ultrasonic probe which can be used, a method for manufacturing the same, and an ultrasonic diagnostic apparatus using the ultrasonic probe.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明による超音波探触子は、圧電材料の厚み方向
の上下両面に外部電極を、厚み内に所定間隔で複数層の
内部電極を有すると共に、互いに異なる二つの側面にお
いて上記上面又は下面の外部電極と一つおきの内部電極
とを別系統の配線となるように接続してなる振動子素子
の複数個を直交する2方向に配列して2次元配列振動子
を構成し、上記振動子素子毎に超音波の送受信を行うよ
うにしたものである。
In order to achieve the above object, an ultrasonic probe according to the present invention comprises external electrodes on both upper and lower surfaces in the thickness direction of a piezoelectric material, and a plurality of layers inside a plurality of layers at predetermined intervals within the thickness. A plurality of vibrator elements each having electrodes and connecting the external electrodes on the upper surface or the lower surface and every other internal electrode on two different side surfaces so as to form a separate system of wirings in two orthogonal directions. To form a two-dimensional array transducer, and transmit and receive ultrasonic waves for each transducer element.

【0012】また、上記振動子の下面側には、上記2次
元に配列した個々の振動子素子に対応する位置に接点を
有する電極板を接続されている。
An electrode plate having a contact at a position corresponding to each of the two-dimensionally arranged transducer elements is connected to the lower surface side of the transducer.

【0013】さらに、上記振動子の下面側には、異方導
電性を有する音響減衰層を固定すると共に、この音響減
衰層の下面には、上記2次元に配列した個々の振動子素
子に対応する位置に接点を有する電極板を接続してもよ
い。
Further, an acoustically attenuating layer having anisotropic conductivity is fixed on the lower surface side of the vibrator, and the lower surface of the acoustically attenuating layer has a lower surface corresponding to each of the two-dimensionally arranged vibrator elements. May be connected to an electrode plate having a contact point.

【0014】さらにまた、上記振動子の下面側には、音
響減衰層を固定し、上記2次元に配列した各振動子素子
の一側面には、一方の外部電極と一つおきの内部電極と
を接続する配線が形成された電極板を設け、この電極板
を上記各振動子素子が1列に並ぶ列毎に並列に設けても
よい。
Furthermore, an acoustic attenuation layer is fixed on the lower surface side of the vibrator, and one external electrode and every other internal electrode are provided on one side surface of each of the two-dimensionally arranged vibrator elements. May be provided, and the electrode plates may be provided in parallel for each row in which the transducer elements are arranged in one row.

【0015】また、上記の超音波探触子の製造方法は、
圧電材料の厚み内に所定間隔で複数の内部電極を横断状
に配設して複数層に積層化した振動子の上下両面に外部
電極を設けて積層振動子を形成し、この積層振動子を所
定の幅で短冊状に切断して切断素子を形成し、この各切
断素子の長手方向に沿った対向する両側面において上下
両面の外部電極と一つおきの内部電極とを別系統の配線
となるように接続し、その後上記各切断素子を所定の間
隔で整列固定してそれらの切断素子の長手方向と直交す
る方向にて所定間隔で切断することにより、平面内で2
次元に配列した振動子素子群を形成するものである。
Further, the method of manufacturing the above-mentioned ultrasonic probe includes:
A plurality of internal electrodes are disposed transversely at predetermined intervals within the thickness of the piezoelectric material, and external electrodes are provided on the upper and lower surfaces of a vibrator laminated in a plurality of layers to form a laminated vibrator. A cutting element is formed by cutting into a strip shape with a predetermined width, and external electrodes on the upper and lower surfaces and alternate internal electrodes are separated from each other by wiring of another system on both opposing side surfaces along the longitudinal direction of each cutting element. The cutting elements are aligned and fixed at predetermined intervals, and cut at predetermined intervals in a direction orthogonal to the longitudinal direction of the cutting elements.
This is to form a transducer element group arranged in a dimension.

【0016】さらに、関連発明としての超音波診断装置
は、被検体に超音波を送受信する探触子と、この探触子
から所定のビーム波形の超音波を送波させると共に該探
触子で受信した受波信号から所定の受波波形を形成しさ
らに受波信号を処理する超音波回路部と、この超音波回
路部の送波タイミング及び受波信号からの表示タイミン
グを制御する制御部と、超音波画像を表示する表示部と
を有する超音波診断装置において、上記探触子として、
上記各手段における超音波探触子を用いたものである。
Further, an ultrasonic diagnostic apparatus according to a related invention includes a probe for transmitting and receiving an ultrasonic wave to and from a subject, an ultrasonic wave having a predetermined beam waveform transmitted from the probe, and An ultrasonic circuit unit that forms a predetermined reception waveform from the received reception signal and further processes the reception signal; and a control unit that controls transmission timing of the ultrasonic circuit unit and display timing from the reception signal. In an ultrasonic diagnostic apparatus having a display unit that displays an ultrasonic image, as the probe,
Each of the above means uses the ultrasonic probe.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳細に説明する。図1は本発明による超
音波探触子の実施の形態を示す概略構成図である。この
超音波探触子は、超音波を利用して被検体の診断部位を
検査する超音波診断装置において実際に被検体内に超音
波を送信及び反射波を受信するもので、積層振動子20
と、導電性を有する音響整合層21と、導電膜を付加し
た絶縁シート22と、導電性を有する音響減衰層23
と、フレキシブルプリント板24と、ベース25とを有
して成る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of an ultrasonic probe according to the present invention. This ultrasonic probe is a device that actually transmits ultrasonic waves into a subject and receives reflected waves in an ultrasonic diagnostic apparatus that inspects a diagnostic site of the subject using ultrasonic waves.
A conductive acoustic matching layer 21, an insulating sheet 22 to which a conductive film is added, and a conductive acoustic attenuation layer 23.
, A flexible printed board 24, and a base 25.

【0018】上記積層振動子20は、本発明の特徴とな
る部分で、図2に示すように、ジルコンチタン酸鉛系磁
器(PZT)などの圧電材料26の厚み方向の上下両面
に外部電極27,28を設け、この圧電材料26の厚み
内に所定間隔で複数層の内部電極29,30を一方の側
面から他方の側面まで横断状に配設して例えば3層に積
層化すると共に、互いに異なる二つの側面において上面
又は下面の外部電極27,28と一つおきの内部電極2
9,30とを別系統の配線となるように接続している。
そして、この積層振動子20の複数個を直交する2方向
に配列して2次元配列振動子が構成されている。例え
ば、図1に示す短軸方向x−x’及び長軸方向y−y’
を含む平面内で2次元に配列した振動子素子群とされて
いる。なお、図1において、符号31は上記圧電材料2
6を2次元に配列して振動子素子群とする長軸方向y−
y’の切断溝を示し、符号32は短軸方向x−x’の切
断溝を示している。
The laminated vibrator 20 is a feature of the present invention. As shown in FIG. 2, external electrodes 27 are provided on both upper and lower sides in the thickness direction of a piezoelectric material 26 such as lead zirconate titanate ceramic (PZT). , 28 are provided, and a plurality of layers of internal electrodes 29, 30 are disposed transversely from one side surface to the other side surface at predetermined intervals within the thickness of the piezoelectric material 26 so as to be laminated into, for example, three layers. External electrodes 27, 28 on the upper or lower surface and alternate internal electrodes 2 on two different side surfaces
9 and 30 are connected so as to form a separate system of wiring.
A plurality of the laminated vibrators 20 are arranged in two orthogonal directions to form a two-dimensionally arranged vibrator. For example, the short axis direction xx 'and the long axis direction yy' shown in FIG.
Are arranged in a plane two-dimensionally in a plane including. In FIG. 1, reference numeral 31 denotes the piezoelectric material 2
6 are arranged two-dimensionally to form a transducer element group.
Reference numeral 32 denotes a cutting groove in the short axis direction xx '.

【0019】すなわち、図2において、上記圧電材料2
6の厚み内に配設された一の内部電極29の一方側の端
面部に絶縁膜33を形成すると共に、他の内部電極30
の反対側の端面部にも絶縁膜34を形成し、この状態で
上部の外部電極27と他の内部電極30の一方側の端面
部との間に導電膜35を形成し、且つ下部の外部電極2
8と一の内部電極29の反対側の端面部との間に導電膜
36を形成してある。これにより、上記上部の外部電極
27と導電膜35と他の内部電極30とを接続する一の
系統の配線と、下部の外部電極28と導電膜36と一の
内部電極29とを接続する他の系統の配線とが構成され
る。この結果、上部の外部電極27と一の内部電極29
との間、一の内部電極29と他の内部電極30との間、
他の内部電極30と下部の外部電極28との間、にそれ
ぞれ極性の異なる外部電極が配置されたのと同等にな
り、3層に積層化された積層振動子20となる。
That is, in FIG.
6, an insulating film 33 is formed on one end face of one internal electrode 29 disposed within the thickness of the other internal electrode 30.
An insulating film 34 is also formed on the end face on the side opposite to the above, a conductive film 35 is formed between the upper external electrode 27 and one end face of the other internal electrode 30 in this state, and the lower external Electrode 2
A conductive film 36 is formed between 8 and the end face on the opposite side of one internal electrode 29. Thus, one system wiring for connecting the upper external electrode 27, the conductive film 35, and the other internal electrode 30, and another for connecting the lower external electrode 28, the conductive film 36, and the one internal electrode 29, are provided. And the system wiring. As a result, the upper external electrode 27 and one internal electrode 29
Between one internal electrode 29 and the other internal electrode 30,
This is equivalent to the arrangement of external electrodes having different polarities between the other internal electrodes 30 and the lower external electrode 28, and the laminated vibrator 20 is laminated in three layers.

【0020】このような積層振動子20の構成によれ
ば、内部電極29,30は一方の側面から他方の側面ま
で横断状に配設されているだけなので、従来のように所
定の長さで止めるという寸法精度は出さなくてよい。ま
た、絶縁膜33,34と導電膜35,36とで外部電極
27,28及び内部電極29,30を配線しているの
で、従来のようにスルーホールを用いずスルーホール径
による寸法の制約を受けることがない。
According to such a configuration of the laminated vibrator 20, since the internal electrodes 29 and 30 are only disposed transversely from one side surface to the other side surface, the internal electrodes 29 and 30 have a predetermined length as in the prior art. It is not necessary to give the dimensional accuracy of stopping. In addition, since the outer electrodes 27 and 28 and the inner electrodes 29 and 30 are wired by the insulating films 33 and 34 and the conductive films 35 and 36, there is no need to use through holes as in the related art, and the dimensional restriction due to the through hole diameter is limited. I will not receive it.

【0021】図1に示す音響整合層21は、上記圧電材
料26の音響インピーダンスと被検体としての生体の音
響インピーダンスとの整合をとるもので、この実施形態
においては、導電材料を混入するなどして導電性を有す
るものとされている。
The acoustic matching layer 21 shown in FIG. 1 matches the acoustic impedance of the piezoelectric material 26 with the acoustic impedance of a living body as a subject. In this embodiment, the acoustic matching layer 21 is made by mixing a conductive material. And have conductivity.

【0022】絶縁シート22は、上記のように構成され
た各積層振動子20全体の上面を覆うもので、音響的に
低減衰の例えばポリイミド等でできており、この実施形
態においては、その下面側に銅などから成る導電膜37
が付加されている。この結果、上記各積層振動子20の
上部の外部電極27は、導電性を有する音響整合層21
を介して上記の導電膜37に電気的に接続され、この導
電膜37によりグランドに接続されている。なお、図1
において、符号38は前記切断溝31,32内に充填さ
れた樹脂を示しており、この樹脂38により各積層振動
子20を接着すると共に、音響的に各素子間の信号のク
ロストークを低減している。
The insulating sheet 22 covers the entire upper surface of each of the laminated vibrators 20 constructed as described above, and is made of acoustically low attenuation, such as polyimide. Conductive film 37 made of copper or the like on the side
Is added. As a result, the external electrode 27 on each of the laminated vibrators 20 is connected to the acoustic matching layer 21 having conductivity.
Is electrically connected to the above-mentioned conductive film 37, and is connected to the ground by the conductive film 37. FIG.
In the figure, reference numeral 38 denotes a resin filled in the cutting grooves 31 and 32. The resin 38 bonds the laminated vibrators 20 and acoustically reduces crosstalk of signals between the elements. ing.

【0023】音響減衰層23は、上記各積層振動子20
の背面から出る超音波が再び該積層振動子20に戻って
こないように超音波を減衰させるもので、この実施形態
においては、導電材料を混入するなどして導電性を有す
るものとされている。
The sound attenuating layer 23 is formed by each of the laminated vibrators 20.
Attenuates the ultrasonic waves so that the ultrasonic waves exiting from the back surface of the multilayer oscillator 20 do not return to the laminated vibrator 20 again. In this embodiment, the ultrasonic waves are made conductive by mixing a conductive material. .

【0024】また、フレキシブルプリント板24は、上
記のように構成された各積層振動子20の下面側にて図
示外の超音波診断装置本体に接続する電極板となるもの
で、上記2次元に配列された個々の振動子素子に対応す
る位置に例えばBGA(Ball Grid Alley)と呼ばれ
る接点39を有し、ケーブルを介して本体と接続するた
めのコネクタ(図示せず)が組み込まれた多層のプリン
ト板に形成されている。この結果、上記各積層振動子2
0の下部の外部電極28は、導電性を有する音響減衰層
23を介して上記のフレキシブルプリント板24に電気
的に接続されている。
The flexible printed board 24 serves as an electrode plate connected to an ultrasonic diagnostic apparatus main body (not shown) on the lower surface side of each of the laminated vibrators 20 configured as described above. At a position corresponding to each of the arranged transducer elements, there is provided a contact point 39 called, for example, BGA (Ball Grid Alley), and a connector (not shown) for connecting to a main body via a cable is built in a multilayer structure. It is formed on a printed board. As a result, each of the laminated oscillators 2
The external electrode 28 below the zero is electrically connected to the above-mentioned flexible printed board 24 via the acoustic attenuation layer 23 having conductivity.

【0025】さらに、ベース25は、上記各積層振動子
20の全体を固定すると共に、該各積層振動子20の背
面から出る超音波が再び該積層振動子20に戻ってこな
いように超音波を減衰させるもので、超音波の減衰の大
きい材料で構成されている。このような状態で、上記配
列した個々の振動子素子毎の積層振動子20により超音
波の送受信を行うようにされている。なお、図1におい
ては、積層振動子20の積層数は3層としたが、本発明
はこれに限らず、奇数層であるならば他の積層数であっ
てもよい。また、以上において、前記の音響減衰層23
は必ずしも必要ではなく、省略することも可能である。
Further, the base 25 fixes the whole of the laminated vibrators 20, and transmits the ultrasonic waves so that the ultrasonic waves emitted from the back surface of each of the laminated vibrators 20 do not return to the laminated vibrators 20 again. It is a material that attenuates, and is made of a material that greatly attenuates ultrasonic waves. In such a state, ultrasonic waves are transmitted and received by the laminated transducers 20 of the individual transducer elements arranged as described above. In FIG. 1, the number of laminated layers of the laminated vibrator 20 is three, but the present invention is not limited to this, and another laminated number may be used as long as it is an odd-numbered layer. In the above, the sound attenuation layer 23
Is not always necessary and can be omitted.

【0026】以上の構成において、図示外の超音波診断
装置本体からの信号により上記フレキシブルプリント板
24を介して各積層振動子20を駆動することにより該
積層振動子20から超音波を発生させ、測定対象物たと
えば被検体内の診断部位から反射してきた超音波を上記
各積層振動子20で受信し、この受信信号を超音波診断
装置本体で処理することにより超音波画像の表示を行
う。このとき、図1に示すように平面内で2次元に配列
した振動子素子群とした多数の積層振動子20を、長軸
方向y−y’だけでなく短軸方向x−x’についても焦
点の範囲が広くなるように所定の関係で制御しながら駆
動することにより、被検体内の診断部位の近傍から深部
まで鮮明な断層像を得ることができる。また、上記多数
の積層振動子20を2次元的に電子走査することによ
り、任意方向の複数のBモード走査を行ったり、集束ビ
ームを全視野或いは部分的な視野内で走査を行うこと
で、リアルタイムの3次元画像を得ることが可能とな
る。
In the above configuration, each laminated oscillator 20 is driven through the flexible printed board 24 by a signal from an ultrasonic diagnostic apparatus main body (not shown) to generate ultrasonic waves from the laminated oscillator 20, Ultrasonic waves reflected from an object to be measured, for example, a diagnostic site in the subject, are received by each of the laminated transducers 20, and the received signals are processed by the ultrasonic diagnostic apparatus main body to display an ultrasonic image. At this time, as shown in FIG. 1, a large number of laminated vibrators 20 as vibrator element groups arranged two-dimensionally in a plane are arranged not only in the long axis direction yy 'but also in the short axis direction xx'. By driving while controlling in a predetermined relationship so that the range of the focal point is widened, a clear tomographic image can be obtained from the vicinity of the diagnosis site in the subject to a deep portion. In addition, by performing a plurality of B-mode scanning in an arbitrary direction by two-dimensionally electronically scanning the large number of laminated oscillators 20, or by scanning a focused beam within the entire field of view or a partial field of view, It is possible to obtain a real-time three-dimensional image.

【0027】図3は、本発明に係る超音波探触子の第二
の実施形態を示す概略構成図である。この実施形態は、
図1に示す各積層振動子20の下面側に設けられた音響
減衰層23の下面側に、異方導電性を有する第二の音響
減衰層40を固定すると共に、この音響減衰層40の下
面にフレキシブルプリント板24を接続したものであ
る。上記第二の音響減衰層40は、前記音響減衰層23
と同様に上記各積層振動子20の背面から出る超音波が
再び該積層振動子20に戻ってこないように超音波を更
に減衰させるもので、超音波の減衰特性と共に電気的異
方性を有する材料から成る。これにより、上記各積層振
動子20とフレキシブルプリント板24との間におい
て、戻ってくる超音波をよく減衰させることができると
共に、フレキシブルプリント板24を介して図示外の超
音波診断装置本体から送られる信号を各積層振動子20
によく伝送することができる。なお、この実施形態にお
いても、上記音響減衰層23は必ずしも必要ではなく、
省略することも可能である。
FIG. 3 is a schematic configuration diagram showing a second embodiment of the ultrasonic probe according to the present invention. This embodiment is
A second acoustic attenuation layer 40 having anisotropic conductivity is fixed to the lower surface side of the acoustic attenuation layer 23 provided on the lower surface side of each laminated vibrator 20 shown in FIG. Is connected to a flexible printed board 24. The second sound attenuating layer 40 includes the sound attenuating layer 23.
In the same manner as described above, the ultrasonic wave is further attenuated so that the ultrasonic wave emitted from the back surface of each of the laminated vibrators 20 does not return to the laminated vibrator 20 again. Consists of materials. This makes it possible to well attenuate the returning ultrasonic waves between each of the laminated vibrators 20 and the flexible printed board 24 and to transmit the ultrasonic waves from the ultrasonic diagnostic apparatus main body (not shown) via the flexible printed board 24. The signal to be applied is
Can be transmitted well. In addition, also in this embodiment, the above-mentioned sound attenuation layer 23 is not necessarily required,
It can be omitted.

【0028】図4は、本発明に係る超音波探触子の第三
の実施形態を示す概略構成図である。この実施形態は、
図1に示すフレキシブルプリント板24を設ける代わり
に、各積層振動子20の下面側に、音響減衰層23を固
定し、上記2次元に配列された各積層振動子20の一側
面には、例えば下部の外部電極28と一つおきの内部電
極29とを接続する配線(導電膜36)が形成された電
極板41を設け、この電極板41を上記各積層振動子2
0が1列に並ぶ列毎に並列に設けたものである。なお、
上記電極板41は、図2に示す積層振動子20の一側面
に設けられた導電膜36に接続されるフレキシブルプリ
ント板に構成されている。また、この実施形態において
も、上記音響減衰層23は必ずしも必要ではなく、省略
することも可能である。
FIG. 4 is a schematic configuration diagram showing a third embodiment of the ultrasonic probe according to the present invention. This embodiment is
Instead of providing the flexible printed board 24 shown in FIG. 1, an acoustic attenuation layer 23 is fixed on the lower surface side of each laminated vibrator 20, and one side surface of each of the two-dimensionally arranged laminated vibrators 20 is, for example, An electrode plate 41 on which a wiring (conductive film 36) for connecting the lower external electrode 28 to every other internal electrode 29 is provided, and this electrode plate 41 is
0 is provided in parallel for each row arranged in one row. In addition,
The electrode plate 41 is configured as a flexible printed board connected to the conductive film 36 provided on one side surface of the laminated vibrator 20 shown in FIG. Also in this embodiment, the acoustic attenuation layer 23 is not always necessary and can be omitted.

【0029】図5は、上記のように構成された超音波探
触子の製造方法を説明するための工程図である。まず、
図5(a)に示すように、上部の外部電極27と第一の
圧電材料26aと一の内部電極29と第二の圧電材料2
6bと他の内部電極30と第三の圧電材料26cと下部
の外部電極28とを上下に層状に積層し、この状態で積
層一体焼結する。これにより、ある広がりを有する3層
の圧電材料26a,26b,26cを含む積層体が形成
される。
FIG. 5 is a process chart for explaining a method of manufacturing the ultrasonic probe configured as described above. First,
As shown in FIG. 5A, the upper external electrode 27, the first piezoelectric material 26a, one internal electrode 29, and the second piezoelectric material 2
6b, the other internal electrode 30, the third piezoelectric material 26c, and the lower external electrode 28 are vertically stacked in layers, and in this state, the layers are integrally sintered. As a result, a laminate including three layers of piezoelectric materials 26a, 26b, and 26c having a certain extent is formed.

【0030】次に、上記のように積層一体焼結した積層
振動子の材料を、図5(b)に示すように、図1に示す
短軸方向x−x’において所定の幅Wで切断分離して短
冊状の切断素子42を形成する。したがって、図5
(a)に示す積層一体焼結した材料からは、図5(b)
に示す短冊状の切断素子42が複数本形成される。
Next, as shown in FIG. 5B, the material of the laminated vibrator laminated and sintered as described above is cut at a predetermined width W in the short-axis direction xx ′ shown in FIG. The strip-shaped cutting elements 42 are formed separately. Therefore, FIG.
FIG. 5 (b)
A plurality of strip-shaped cutting elements 42 shown in FIG.

【0031】次に、上記のように形成された短冊状の切
断素子42に対して、図5(c)に示すように、該切断
素子42の長手方向の対向する両側面において、一の内
部電極29の一方側の端面部に所定幅の絶縁膜33を、
他の内部電極30の反対側の端面部に所定幅の絶縁膜3
4をそれぞれ形成する。したがって、上記一の内部電極
29の一方側の端面部及び他の内部電極30の反対側の
端面部は、それぞれ絶縁加工されたこととなる。
Next, with respect to the strip-shaped cutting element 42 formed as described above, as shown in FIG. An insulating film 33 having a predetermined width is provided on one end surface of the electrode 29.
An insulating film 3 having a predetermined width is formed on the end face opposite to the other internal electrode 30.
4 are formed. Therefore, the one end face of the one internal electrode 29 and the end face opposite to the other internal electrode 30 are each insulated.

【0032】次に、上記のように絶縁加工された切断素
子42’に対して、さらに図5(d)に示すように、上
記絶縁膜33が形成された側面において上部の外部電極
27と他の内部電極30の一方側の端面部とを接続する
ように導電膜35を形成し、他の絶縁膜34が形成され
た側面において下部の外部電極28と一の内部電極29
の反対側の端面部とを接続するように導電膜36を形成
する。これにより、各切断素子42’の長手方向に沿っ
た対向する両側面において上下両面の外部電極27,2
8と一つおきの内部電極29,30とが別系統の配線と
なるように接続される。
Next, as shown in FIG. 5D, the cutting element 42 ′ which has been subjected to the insulating processing as described above is further provided with the upper external electrode 27 on the side surface on which the insulating film 33 is formed. A conductive film 35 is formed so as to be connected to one end face of the internal electrode 30 of the first electrode, and the lower external electrode 28 and one internal electrode 29 are formed on the side surface on which another insulating film 34 is formed.
The conductive film 36 is formed so as to be connected to the end face on the opposite side. Thereby, the external electrodes 27, 2 on the upper and lower surfaces on both opposing side surfaces along the longitudinal direction of each cutting element 42 '.
8 and every other internal electrode 29, 30 are connected so as to be wirings of different systems.

【0033】次に、上記のように配線加工された切断素
子42”を、図5(e)に示すように、所定の間隔Sで
所定個数だけ整列し、その間隔Sによる隙間43に接着
剤44を充填して固定した後、上記切断素子42”の長
手方向と直交する方向にて素子幅Bとなるように所定間
隔で切断する。そして、この長手方向と直交する方向で
の切断後にその部分の隙間45に、上記と同様に接着剤
44を充填して固定する。これにより、図1に示すよう
に、積層振動子20を、短軸方向x−x’及び長軸方向
y−y’を含む平面内で2次元に配列した振動子素子群
が形成される。
Next, as shown in FIG. 5 (e), a predetermined number of the cutting elements 42 ″ processed by wiring as described above are aligned at a predetermined interval S, and an adhesive After filling and fixing, the cutting element 42 "is cut at a predetermined interval so as to have an element width B in a direction orthogonal to the longitudinal direction of the cutting element 42". Then, after cutting in the direction perpendicular to the longitudinal direction, the adhesive 45 is filled and fixed in the gap 45 at that portion in the same manner as described above. Thereby, as shown in FIG. 1, a transducer element group in which the laminated transducers 20 are two-dimensionally arranged in a plane including the short-axis direction xx ′ and the long-axis direction yy ′ is formed.

【0034】このように、積層振動子20を2次元に配
列した振動子素子群を製造した後、図1に示す導電性を
有する音響整合層21と、導電膜37を付加した絶縁シ
ート22と、導電性を有する音響減衰層23と、フレキ
シブルプリント板24と、ベース25とを形成する工程
を順次進め、最終的に超音波探触子を製造する。なお、
図5においては、積層振動子20の積層数は3層とした
が、本発明はこれに限らず、奇数層であるならば他の積
層数であってもよい。また、上記の説明では、振動子の
部分のみを短軸方向x−x’及び長軸方向y−y’に切
断するものとしたが、振動子となる部分に図1に示す音
響整合層21及び音響減衰層23を接着固定してから切
断し、2次元に分割してもよい。
After manufacturing a transducer element group in which the laminated transducers 20 are two-dimensionally arranged as described above, the acoustic matching layer 21 having conductivity shown in FIG. Then, the steps of forming a conductive acoustic attenuation layer 23, a flexible printed board 24, and a base 25 are sequentially performed to finally manufacture an ultrasonic probe. In addition,
In FIG. 5, the number of laminated layers of the laminated vibrator 20 is three, but the present invention is not limited to this, and another laminated number may be used as long as it is an odd-numbered layer. In the above description, only the vibrator portion is cut in the short-axis direction xx ′ and the long-axis direction yy ′. However, the acoustic matching layer 21 shown in FIG. Alternatively, the sound attenuating layer 23 may be cut into two dimensions after being bonded and fixed.

【0035】図6は、上記超音波探触子の関連発明とし
ての超音波診断装置を示すブロック図である。この超音
波診断装置は、超音波を利用して被検体内の診断部位の
超音波画像を得て診断に役立てるもので、被検体に超音
波を送受信する探触子50と、この探触子50から所定
のビーム波形の超音波を送波させると共に該探触子50
で受信した受波信号から所定の受波波形を形成しさらに
受波信号を処理する超音波回路部51と、この超音波回
路部51の送波タイミング及び受波信号からの表示タイ
ミングを制御する制御部52と、超音波画像を表示する
表示部53とを有している。なお、上記超音波回路部5
1は、探触子50から所定のビーム波形の超音波を送波
させる送波整相部54と、該探触子50で受信した受波
信号から所定の受波波形を形成する受波整相部55と、
この受波整相部55からの受波信号を高S/Nに取り込
む信号処理部56とから成る。そして、上記探触子50
としては、前述の図1又は図3、図4に示すように構成
された超音波探触子を用いている。
FIG. 6 is a block diagram showing an ultrasonic diagnostic apparatus as a related invention of the ultrasonic probe. The ultrasonic diagnostic apparatus obtains an ultrasonic image of a diagnostic site in a subject using ultrasonic waves to assist in diagnosis, and includes a probe 50 that transmits and receives ultrasonic waves to and from the subject, An ultrasonic wave having a predetermined beam waveform is transmitted from the probe 50 and the probe 50
An ultrasonic circuit unit 51 that forms a predetermined reception waveform from the reception signal received at step S1 and further processes the reception signal, and controls a transmission timing of the ultrasonic circuit unit 51 and a display timing from the reception signal. It has a control unit 52 and a display unit 53 for displaying an ultrasonic image. The ultrasonic circuit 5
1 is a wave phasing unit 54 for transmitting an ultrasonic wave having a predetermined beam waveform from the probe 50, and a wave arranging unit 54 for forming a predetermined reception waveform from a received signal received by the probe 50. Phase part 55,
A signal processing unit 56 for taking in the signal received from the wave phasing unit 55 at a high S / N. Then, the probe 50
As an example, an ultrasonic probe configured as shown in FIG. 1 or FIGS. 3 and 4 is used.

【0036】図7は、本発明にかかる超音波探触子及び
超音波診断装置を用いて3次元画像を得る状態を示す説
明図である。図7(a)に示すように、探触子50を構
成する複数個の積層振動子20のうち任意の素子を選択
することにより、被検体内の診断部位57に対し扇状の
超音波ビームを符号58a,58bに示すように或る軸
を中心に回転させるように走査して、上記診断部位57
の複数方向の断層像を得てこれから3次元画像を構成す
る。また、図7(b)に示すように、上記複数個の積層
振動子20のうち任意の素子を選択することにより、被
検体内の診断部位57に対し扇状の超音波ビームを符号
59a,59b,59cに示すように振り子状に振るよ
うに走査して、上記診断部位57の複数方向の断層像を
得てこれから3次元画像を構成する。
FIG. 7 is an explanatory view showing a state in which a three-dimensional image is obtained using the ultrasonic probe and the ultrasonic diagnostic apparatus according to the present invention. As shown in FIG. 7A, by selecting an arbitrary element from among the plurality of laminated transducers 20 constituting the probe 50, a fan-shaped ultrasonic beam is emitted to the diagnostic site 57 in the subject. Scanning is performed so as to rotate about a certain axis as shown by reference numerals 58a and 58b,
Are obtained, and a three-dimensional image is constructed from this. Further, as shown in FIG. 7B, by selecting an arbitrary element from among the plurality of laminated vibrators 20, a fan-shaped ultrasonic beam is applied to the diagnostic site 57 in the subject by reference numerals 59a and 59b. , 59c so as to swing like a pendulum to obtain a tomographic image of the diagnostic site 57 in a plurality of directions, and construct a three-dimensional image from this.

【0037】[0037]

【発明の効果】本発明は以上のように構成されたので、
本発明に係る超音波探触子によれば、複数の内部電極を
従来のように所定の長さで止めるという寸法精度は出さ
なくてよい。また、上面又は下面の外部電極と一つおき
の内部電極とを別系統の配線となるように接続するの
に、従来のようなスルーホールを用いることがないの
で、スルーホール径による寸法の制約を受けることがな
い。したがって、複数層に積層化すると共に直交する2
方向に配列して2次元配列振動子を構成する複数個の振
動子素子の各素子間の特性ばらつきを排除することがで
きる。このことから、アーチファクトの発生を少なくし
て、被検体内部の断層像を高分解能に観察したり、電子
走査で任意箇所の3次元表示を可能とすることができ
る。これにより、超音波画像による診断の質を従来より
向上することができる。
The present invention has been configured as described above.
According to the ultrasonic probe according to the present invention, the dimensional accuracy of stopping the plurality of internal electrodes at a predetermined length as in the related art does not need to be obtained. In addition, since the through electrodes are not used to connect the external electrodes on the upper surface or the lower surface and every other internal electrode so as to form a separate line of wiring, there is no dimensional restriction due to the diameter of the through holes. I do not receive. Therefore, the layers are stacked in a plurality of layers and are orthogonal to each other.
It is possible to eliminate the characteristic variation among the plurality of transducer elements constituting the two-dimensionally arranged transducers arranged in the directions. From this, it is possible to observe the tomographic image inside the subject with high resolution and reduce the occurrence of artifacts, and to enable three-dimensional display of an arbitrary portion by electronic scanning. Thereby, the quality of diagnosis based on the ultrasonic image can be improved as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による超音波探触子の実施の形態を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an ultrasonic probe according to the present invention.

【図2】上記超音波探触子の積層振動子の構造を示す拡
大斜視図である。
FIG. 2 is an enlarged perspective view showing a structure of a laminated vibrator of the ultrasonic probe.

【図3】本発明に係る超音波探触子の第二の実施形態を
示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing a second embodiment of the ultrasonic probe according to the present invention.

【図4】本発明に係る超音波探触子の第三の実施形態を
示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a third embodiment of the ultrasonic probe according to the present invention.

【図5】上記のように構成された超音波探触子の製造方
法を説明するための工程図である。
FIG. 5 is a process chart for explaining a method of manufacturing the ultrasonic probe configured as described above.

【図6】上記超音波探触子の関連発明としての超音波診
断装置を示すブロック図である。
FIG. 6 is a block diagram showing an ultrasonic diagnostic apparatus as a related invention of the ultrasonic probe.

【図7】本発明にかかる超音波探触子及び超音波診断装
置を用いて3次元画像を得る状態を示す説明図である。
FIG. 7 is an explanatory diagram showing a state in which a three-dimensional image is obtained using the ultrasonic probe and the ultrasonic diagnostic apparatus according to the present invention.

【図8】従来のアレイ形の超音波探触子の構造を示す概
略構成図である。
FIG. 8 is a schematic configuration diagram showing the structure of a conventional array-type ultrasonic probe.

【図9】従来において振動子を平面内で2次元に分割し
てブロック化したものを有する超音波探触子の構造を示
す概略構成図である。
FIG. 9 is a schematic configuration diagram showing a structure of an ultrasonic probe which conventionally has a vibrator divided two-dimensionally in a plane into blocks.

【図10】振動子を短軸方向に分割したときの素子イン
ピーダンスの変化を示すグラフである。
FIG. 10 is a graph showing a change in element impedance when a vibrator is divided in a short axis direction.

【図11】振動子を単層に形成した場合と、複数層に積
層化した場合とを示す説明図である。
FIG. 11 is an explanatory view showing a case where the vibrator is formed in a single layer and a case where the vibrator is stacked in a plurality of layers.

【図12】複数層に積層化した素子積層数と素子インピ
ーダンスの変化を示すグラフである。
FIG. 12 is a graph showing a change in the number of stacked devices and the device impedance in a plurality of layers.

【図13】複数層に積層化した振動子を2次元に分割し
て構成された従来の超音波探触子の構造を示す概略構成
図である。
FIG. 13 is a schematic configuration diagram showing a structure of a conventional ultrasonic probe configured by dividing a transducer laminated in a plurality of layers into two dimensions.

【符号の説明】[Explanation of symbols]

20…積層振動子 21…導電性を有する音響整合層 22…絶縁シート 23…導電性を有する音響減衰層 24,41…フレキシブルプリント板 25…ベース 26,26a,26b,26c…圧電材料 27,28…外部電極 29,30…内部電極 33,34…絶縁膜 35,36…導電膜 37…絶縁シートの導電膜 39…接点 40…異方導電性を有する第二の音響減衰層 42,42’,42”…切断素子 50…探触子 51…超音波回路部 52…制御部 53…表示部 Reference Signs List 20 laminated oscillator 21 conductive acoustic matching layer 22 insulating sheet 23 conductive acoustic attenuation layer 24, 41 flexible printed board 25 base 26, 26a, 26b, 26c piezoelectric material 27, 28 ... external electrodes 29, 30 ... internal electrodes 33, 34 ... insulating films 35, 36 ... conductive films 37 ... conductive films of insulating sheets 39 ... contacts 40 ... second acoustic attenuation layers 42, 42 'having anisotropic conductivity 42 "... cutting element 50 ... probe 51 ... ultrasonic circuit section 52 ... control section 53 ... display section

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧電材料の厚み方向の上下両面に外部電
極を、厚み内に所定間隔で複数層の内部電極を有すると
共に、互いに異なる二つの側面において上記上面又は下
面の外部電極と一つおきの内部電極とを別系統の配線と
なるように接続してなる振動子素子の複数個を直交する
2方向に配列して2次元配列振動子を構成し、上記振動
子素子毎に超音波の送受信を行うようにしたことを特徴
とする超音波探触子。
1. An external electrode is provided on both upper and lower surfaces in the thickness direction of a piezoelectric material, and a plurality of layers of internal electrodes are provided at predetermined intervals in the thickness. A plurality of vibrator elements formed by connecting the internal electrodes with each other so as to form a separate system wiring are arranged in two orthogonal directions to form a two-dimensional array vibrator. An ultrasonic probe characterized by transmitting and receiving.
【請求項2】 上記振動子の下面側には、上記2次元に
配列した個々の振動子素子に対応する位置に接点を有す
る電極板を接続したことを特徴とする請求項1記載の超
音波探触子。
2. An ultrasonic wave according to claim 1, wherein an electrode plate having a contact at a position corresponding to each of said two-dimensionally arranged transducer elements is connected to a lower surface side of said transducer. Probe.
【請求項3】 上記振動子の下面側には、異方導電性を
有する音響減衰層を固定すると共に、この音響減衰層の
下面には、上記2次元に配列した個々の振動子素子に対
応する位置に接点を有する電極板を接続したことを特徴
とする請求項1記載の超音波探触子。
3. An acoustically attenuating layer having anisotropic conductivity is fixed to the lower surface side of the vibrator, and the lower surface of the acoustically attenuating layer corresponds to each of the two-dimensionally arranged vibrator elements. 2. The ultrasonic probe according to claim 1, wherein an electrode plate having a contact point is connected at a position where the ultrasonic probe moves.
【請求項4】 上記振動子の下面側には、音響減衰層を
固定し、上記2次元に配列した各振動子素子の一側面に
は、一方の外部電極と一つおきの内部電極とを接続する
配線が形成された電極板を設け、この電極板を上記各振
動子素子が1列に並ぶ列毎に並列に設けたことを特徴と
する請求項1記載の超音波探触子。
4. An acoustic attenuation layer is fixed to the lower surface of the vibrator, and one external electrode and every other internal electrode are provided on one side surface of each of the two-dimensionally arranged vibrator elements. 2. The ultrasonic probe according to claim 1, wherein an electrode plate on which wiring to be connected is formed is provided, and the electrode plates are provided in parallel for each row in which the transducer elements are arranged in one row.
【請求項5】 圧電材料の厚み内に所定間隔で複数の内
部電極を横断状に配設して複数層に積層化した振動子の
上下両面に外部電極を設けて積層振動子を形成し、この
積層振動子を所定の幅で短冊状に切断して切断素子を形
成し、この各切断素子の長手方向に沿った対向する両側
面において上下両面の外部電極と一つおきの内部電極と
を別系統の配線となるように接続し、その後上記各切断
素子を所定の間隔で整列固定してそれらの切断素子の長
手方向と直交する方向にて所定間隔で切断することによ
り、平面内で2次元に配列した振動子素子群を形成する
ことを特徴とする超音波探触子の製造方法。
5. A laminated vibrator is formed by arranging a plurality of internal electrodes transversely at predetermined intervals within a thickness of a piezoelectric material and providing external electrodes on upper and lower surfaces of a vibrator laminated in a plurality of layers, The laminated vibrator is cut into strips with a predetermined width to form cutting elements, and external electrodes on both upper and lower surfaces and every other internal electrode are formed on both opposing side surfaces along the longitudinal direction of each cutting element. The wires are connected so as to form a separate line, and then the cutting elements are aligned and fixed at predetermined intervals, and cut at predetermined intervals in a direction orthogonal to the longitudinal direction of the cutting elements, thereby reducing A method of manufacturing an ultrasonic probe, comprising forming transducer elements arranged in a three-dimensional manner.
【請求項6】 被検体に超音波を送受信する探触子と、
この探触子から所定のビーム波形の超音波を送波させる
と共に該探触子で受信した受波信号から所定の受波波形
を形成しさらに受波信号を処理する超音波回路部と、こ
の超音波回路部の送波タイミング及び受波信号からの表
示タイミングを制御する制御部と、超音波画像を表示す
る表示部とを有する超音波診断装置において、上記探触
子として、請求項1〜4のいずれかに記載の超音波探触
子を用いたことを特徴とする超音波診断装置。
6. A probe for transmitting and receiving ultrasonic waves to and from a subject,
An ultrasonic circuit for transmitting an ultrasonic wave having a predetermined beam waveform from the probe, forming a predetermined reception waveform from a reception signal received by the probe, and further processing the reception signal; and In the ultrasonic diagnostic apparatus having a control unit for controlling a transmission timing of an ultrasonic circuit unit and a display timing from a received signal, and a display unit for displaying an ultrasonic image, the probe is used as the probe. 4. An ultrasonic diagnostic apparatus using the ultrasonic probe according to any one of 4.
JP10667298A 1998-04-16 1998-04-16 ULTRASONIC PROBE, MANUFACTURING METHOD THEREOF, AND ULTRASONIC DIAGNOSIS DEVICE USING THE ULTRASONIC PROBE Expired - Fee Related JP4118381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10667298A JP4118381B2 (en) 1998-04-16 1998-04-16 ULTRASONIC PROBE, MANUFACTURING METHOD THEREOF, AND ULTRASONIC DIAGNOSIS DEVICE USING THE ULTRASONIC PROBE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10667298A JP4118381B2 (en) 1998-04-16 1998-04-16 ULTRASONIC PROBE, MANUFACTURING METHOD THEREOF, AND ULTRASONIC DIAGNOSIS DEVICE USING THE ULTRASONIC PROBE

Publications (2)

Publication Number Publication Date
JPH11299779A true JPH11299779A (en) 1999-11-02
JP4118381B2 JP4118381B2 (en) 2008-07-16

Family

ID=14439574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10667298A Expired - Fee Related JP4118381B2 (en) 1998-04-16 1998-04-16 ULTRASONIC PROBE, MANUFACTURING METHOD THEREOF, AND ULTRASONIC DIAGNOSIS DEVICE USING THE ULTRASONIC PROBE

Country Status (1)

Country Link
JP (1) JP4118381B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299755A (en) * 2000-04-21 2001-10-30 Hitachi Medical Corp Ultrasonic probe and ultrasonographic instrument
JP2002232995A (en) * 2001-02-06 2002-08-16 Matsushita Electric Ind Co Ltd Ultrasonic wave probe and its manufacturing method
JP2006247025A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Ultrasonic probe for diagnosing body cavity
JP2006527567A (en) * 2003-06-09 2006-11-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Design method for ultrasonic transducers equipped with acoustically active integrated electronics
JP2007201901A (en) * 2006-01-27 2007-08-09 Toshiba Corp Ultrasonic transducer
JP2007215730A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Ultrasonic probe and ultrasonic diagnostic apparatus and ultrasonic test equipment each using it, and method of manufacturing ultrasonic probe
US7316059B2 (en) 2002-07-19 2008-01-08 Aloka Co., Ltd. Method of manufacturing an ultrasonic probe
CN100399596C (en) * 2003-03-12 2008-07-02 中国科学院声学研究所 Phased array probe for scanning imager
JP2009088869A (en) * 2007-09-28 2009-04-23 Denso Corp Ultrasonic sensor
DE112008001849T5 (en) 2007-07-19 2010-06-17 Panasonic Corporation An ultrasonic transducer, an ultrasonic diagnostic apparatus using the same, and an ultrasonic defect inspection apparatus using the same
JP2011507457A (en) * 2007-12-18 2011-03-03 ボストン サイエンティフィック サイムド,インコーポレイテッド Composite passive materials for ultrasonic transducers
JP2012182758A (en) * 2011-03-03 2012-09-20 Konica Minolta Medical & Graphic Inc Manufacturing method of ultrasonic probe
JP5331483B2 (en) * 2006-11-08 2013-10-30 パナソニック株式会社 Ultrasonic probe

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632478B2 (en) * 2000-04-21 2011-02-16 株式会社日立メディコ Ultrasonic probe and ultrasonic diagnostic apparatus
JP2001299755A (en) * 2000-04-21 2001-10-30 Hitachi Medical Corp Ultrasonic probe and ultrasonographic instrument
JP2002232995A (en) * 2001-02-06 2002-08-16 Matsushita Electric Ind Co Ltd Ultrasonic wave probe and its manufacturing method
US7316059B2 (en) 2002-07-19 2008-01-08 Aloka Co., Ltd. Method of manufacturing an ultrasonic probe
CN100399596C (en) * 2003-03-12 2008-07-02 中国科学院声学研究所 Phased array probe for scanning imager
JP2006527567A (en) * 2003-06-09 2006-11-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Design method for ultrasonic transducers equipped with acoustically active integrated electronics
JP2006247025A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Ultrasonic probe for diagnosing body cavity
JP2007201901A (en) * 2006-01-27 2007-08-09 Toshiba Corp Ultrasonic transducer
JP4703416B2 (en) * 2006-01-27 2011-06-15 株式会社東芝 Ultrasonic transducer
JP2007215730A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Ultrasonic probe and ultrasonic diagnostic apparatus and ultrasonic test equipment each using it, and method of manufacturing ultrasonic probe
JP5331483B2 (en) * 2006-11-08 2013-10-30 パナソニック株式会社 Ultrasonic probe
US8269400B2 (en) 2007-07-19 2012-09-18 Panasonic Corporation Ultrasonic transducer, ultrasonic diagnosis apparatus using the same, and ultrasonic flaw inspection apparatus using the same
DE112008001849B4 (en) * 2007-07-19 2016-07-21 Konica Minolta, Inc. An ultrasonic transducer, an ultrasonic diagnostic apparatus using the same, and an ultrasonic defect inspection apparatus using the same
DE112008001849T5 (en) 2007-07-19 2010-06-17 Panasonic Corporation An ultrasonic transducer, an ultrasonic diagnostic apparatus using the same, and an ultrasonic defect inspection apparatus using the same
JP2009088869A (en) * 2007-09-28 2009-04-23 Denso Corp Ultrasonic sensor
US7714482B2 (en) 2007-09-28 2010-05-11 Denso Corporation Ultrasonic sensor
JP2011507457A (en) * 2007-12-18 2011-03-03 ボストン サイエンティフィック サイムド,インコーポレイテッド Composite passive materials for ultrasonic transducers
JP2012182758A (en) * 2011-03-03 2012-09-20 Konica Minolta Medical & Graphic Inc Manufacturing method of ultrasonic probe

Also Published As

Publication number Publication date
JP4118381B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US8872412B2 (en) Ultrasound transducer, ultrasound probe, and a method for manufacturing ultrasound transducers
US6640634B2 (en) Ultrasonic probe, method of manufacturing the same and ultrasonic diagnosis apparatus
US8604671B2 (en) Ultrasound transducer, ultrasound probe, and a method for manufacturing ultrasound transducers
US7348712B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP4909115B2 (en) Ultrasound probe
JP5738671B2 (en) Ultrasonic transducer, ultrasonic probe, and method of manufacturing ultrasonic transducer
JP2000166923A (en) Ultrasonic transducer and its manufacture
US8231534B2 (en) Ultrasonic transmitter/receiver device, ultrasonic probe and ultrasonic diagnostic apparatus
JP2008022266A (en) Two dimensional array ultrasonic probe
JP4118381B2 (en) ULTRASONIC PROBE, MANUFACTURING METHOD THEREOF, AND ULTRASONIC DIAGNOSIS DEVICE USING THE ULTRASONIC PROBE
JP2001309493A (en) Two-dimensional array ultrasound probe and manufacturing method therefor
KR20120082642A (en) Two dimensional ultrasonic transducer
JP3288815B2 (en) 2D array ultrasonic probe
JP2008048276A (en) Ultrasonic transducer and ultrasonic transducer array
JP2006320415A (en) Ultrasonic probe and ultrasonic diagnostic system
JPH05228142A (en) Ultrasonic probe and ultrasonic diagnostic device
JP2010219774A (en) Ultrasound transducer, ultrasound probe, and ultrasound diagnostic apparatus
JPH05123317A (en) Two-dimensional array ultrasonic probe
JP6919295B2 (en) Ultrasonic probe and ultrasonic diagnostic equipment
JP2964147B2 (en) Ultrasound diagnostic equipment
JP2009201053A (en) Ultrasonic probe, manufacturing method thereof and ultrasonic diagnostic device using the ultrasonic probe
CN220653918U (en) Ultrasonic transducer
JP4434913B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP5377742B2 (en) Ultrasonic probe and ultrasonic transducer
JP5268421B2 (en) Ultrasonic transducer manufacturing method and ultrasonic probe manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees