JPH11299734A - Method and device for measurement of eye congestion degree - Google Patents

Method and device for measurement of eye congestion degree

Info

Publication number
JPH11299734A
JPH11299734A JP10111121A JP11112198A JPH11299734A JP H11299734 A JPH11299734 A JP H11299734A JP 10111121 A JP10111121 A JP 10111121A JP 11112198 A JP11112198 A JP 11112198A JP H11299734 A JPH11299734 A JP H11299734A
Authority
JP
Japan
Prior art keywords
eye
light
white
photographing
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10111121A
Other languages
Japanese (ja)
Inventor
Satoshi Naito
智 内藤
Ryozo Nakai
良三 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP10111121A priority Critical patent/JPH11299734A/en
Publication of JPH11299734A publication Critical patent/JPH11299734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To determinatively and easily measure the eye congestion degree by photographing the white part of the eye under a prescribed condition and digitizing the photographed data. SOLUTION: A shielded part 20 of a photographing mechanism 1 is made abut on the left eye of a subject to shield the surrounding of the eye to cut off invasion of light into the eye ball surface from outside, and light from a light source 40 is passed through a light transmitting part 30 to make the light an indirect light and cast on the eye in all surrounding directions. Under such a condition, an image of the eye is taken by an imaging part 50. Obtained photographed data are set to a calculation mechanism through a cable. The area of the white of the eye is selected from the photographed data. R, G, and B values on each pixel are read in respectively and their sizes are evaluated to digitize them into one of red or white. Thus a pixel finally discriminated red corresponds to a congestion part and the rate (%) of the number of pixels finally discriminated red against the total number of pixels in the selected area is calculated. The value is made the eye congestion degree.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、眼の充血度の定量
的で簡便な測定方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for quantitatively and easily measuring the degree of hyperemia of the eye.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】眼の充
血の程度は、眼自体の健康の尺度の一つとして、又、美
容的な観点からも重要なファクターとなる。即ち、眼が
過度に充血していると、美容的に良い印象を与えない。
しかし、充血の程度は一般に感覚的なものであり、充血
の仕方によっては実際はそれほど充血していないにもか
かわらず、かなり充血しているような場合もあれば、そ
の逆の場合もある。そして、眼の充血を抑えることに対
する従来の美容的な処置も、ある程度感覚に頼るところ
があったことから、眼の充血の程度を定量的に且つ簡便
に評価できる方法が望まれていた。
BACKGROUND OF THE INVENTION The degree of redness of the eye is an important factor as a measure of the health of the eye itself and also from a cosmetic point of view. That is, if the eyes are excessively hyperemic, they do not give a cosmetically good impression.
However, the degree of hyperemia is generally sensory, and depending on the method of hyperemia, there may be a case that the blood is not so much congested, but it is quite congested, and vice versa. Conventional cosmetic treatments for suppressing ocular hyperemia also depend on the senses to some extent. Therefore, a method capable of quantitatively and easily evaluating the degree of ocular hyperemia has been desired.

【0003】従って、本発明の目的は、定量的に且つ簡
便に眼の充血度を測定できる方法および装置を提供する
ことにある。
Accordingly, an object of the present invention is to provide a method and an apparatus which can quantitatively and easily measure the degree of redness of the eye.

【0004】[0004]

【課題を解決するための手段】本発明者らは、一定の条
件下に眼の白眼の部分を撮影し、その撮像のデータを二
値化処理することにより、簡便に且つ正確に眼の充血の
程度を測定し得ることを知見した。
Means for Solving the Problems The present inventors take a picture of the white eye part of the eye under a certain condition, and binarize the data of the image, thereby easily and accurately congesting the eye. Was found to be able to measure the degree of

【0005】本発明は、眼の周囲を遮蔽して外部から眼
球表面への光の進入を遮断すると共に該眼球に間接光を
照射し、斯る状態下に上記眼を撮影し、その撮像を二値
化処理して該眼球の白眼の部分における充血部の面積を
算出することを特徴とする眼の充血度の測定方法を提供
することにより上記目的を達成したものである。
According to the present invention, an eye is shielded from surroundings to block light from entering the surface of the eye from the outside, and the eye is irradiated with indirect light, and the eye is photographed in such a state. The above object has been achieved by providing a method for measuring the degree of hyperemia of an eye, characterized in that a binarization process is performed to calculate an area of a hyperemic portion in a white eye portion of the eyeball.

【0006】また、本発明は、上記眼の充血度の測定方
法の実施に用いられる好ましい測定装置として眼の周囲
を遮蔽して外部から眼球表面への光の進入を遮断する遮
蔽部と、遮蔽された該眼に間接光を照射するように該遮
蔽部の内側に設けた光透過部と、該光透過部に光路が連
通する光源と、上記間接光の照射下に上記眼を撮影する
撮影部とを有する撮影機構、及び該撮影部により得られ
た撮像を二値化処理して上記眼球の白眼の部分における
充血部の面積を算出する演算機構を具備してなることを
特徴とする眼の充血度の測定装置を提供するものであ
る。
According to the present invention, there is further provided a shielding unit which shields the periphery of the eye and blocks light from entering the surface of the eyeball from the outside, as a preferable measuring device used for performing the method for measuring the degree of redness of the eye, A light transmitting part provided inside the shielding part so as to irradiate the indirect light to the eye, a light source having an optical path communicating with the light transmitting part, and a photographing for photographing the eye under irradiation of the indirect light And an arithmetic mechanism for calculating the area of the hyperemic portion in the white eye portion of the eye by binarizing the image obtained by the imaging unit. The present invention provides an apparatus for measuring the degree of hyperemia.

【0007】[0007]

【発明の実施の形態】先ず、本発明の眼の充血度の測定
装置の好ましい実施形態を図面を参照しながら説明す
る。ここで図1は、本発明の眼の充血度の測定装置の一
例を示す斜視図、図2は図1に示す測定装置の正面図、
図3は図2におけるI−I線断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a preferred embodiment of an eye hyperemia measuring apparatus according to the present invention will be described with reference to the drawings. Here, FIG. 1 is a perspective view showing an example of the eye redness measuring apparatus of the present invention, FIG. 2 is a front view of the measuring apparatus shown in FIG.
FIG. 3 is a sectional view taken along line II in FIG.

【0008】本実施形態の眼の充血度の測定装置(以
下、単に測定装置ともいう)は、図1〜図3に示す撮影
機構1と演算機構(図示せず)とから構成されており、
両者は別体に設けられている。撮影機構1は、本体10
の正面に配され、且つ眼の周囲を遮蔽して外部から眼球
表面への光の進入を遮断する遮蔽部20、遮蔽された該
眼に間接光を照射するように遮蔽部20の内側に設けた
光透過部30、光透過部30に光路が連通する光源4
0、及び上記間接光の照射下に上記眼を撮影する撮影部
50を有している。一方、演算機構は、パーソナルコン
ピュータから構成されている。撮影機構1と演算機構と
は、ケーブルを介して電気的に又はその他の公知の手段
によって、撮影部50により得られた撮像のデータの受
け渡しが可能になされている。
The measuring device (hereinafter simply referred to as a measuring device) of the degree of redness of the eye of the present embodiment comprises a photographing mechanism 1 and an arithmetic mechanism (not shown) shown in FIGS.
Both are provided separately. The photographing mechanism 1 includes a main body 10
A shielding portion 20 that is arranged in front of the eye and shields the periphery of the eye and blocks light from entering the eyeball surface from outside, and is provided inside the shielding portion 20 so as to irradiate indirect light to the shielded eye The light transmitting part 30 and the light source 4 whose optical path communicates with the light transmitting part 30
0, and an imaging unit 50 for imaging the eye under irradiation of the indirect light. On the other hand, the operation mechanism is constituted by a personal computer. The photographing mechanism 1 and the arithmetic mechanism are configured to be able to exchange imaging data obtained by the photographing unit 50 electrically or other known means via a cable.

【0009】撮影機構1を構成する各部の詳細について
引き続き図1〜図3を参照しながら説明すると、本体1
0は、やや扁平な箱形の形状をなしており、測定に際し
て測定者が撮影機構1を把持する把持部として作用す
る。本体10の正面部11における縦方向中心線からや
や右方寄りの部分には三角錐状の凹陥部12が形成され
ており、測定の際に被測定者の鼻が該凹陥部12収容さ
れるようになされている。本体10の内部は空洞となっ
ており、その内壁は金属箔等の高反射性材料13によっ
て被覆されている。本体10の右側方部の下部からは腕
部14が水平方向に延出しており、その端部には球頭部
15および柱状支持部16からなる焦点合わせ部17が
立設されている。球頭部15は、その高さ方向の位置
が、後述するレンズ窓31と同位置になるように配置さ
れている。
The details of the components constituting the photographing mechanism 1 will be described with reference to FIGS.
Numeral 0 has a slightly flat box shape, and acts as a grip for the measurement person to grip the photographing mechanism 1 during measurement. A triangular pyramid-shaped concave portion 12 is formed in a portion of the front portion 11 of the main body 10 slightly to the right from the vertical center line, and the nose of the subject is accommodated in the concave portion 12 at the time of measurement. It has been made like that. The inside of the main body 10 is hollow, and its inner wall is covered with a highly reflective material 13 such as a metal foil. An arm 14 extends in a horizontal direction from a lower portion on the right side of the main body 10, and a focusing unit 17 including a ball head 15 and a columnar support 16 is provided upright at an end thereof. The ball head 15 is arranged so that the position in the height direction is the same as the position of a lens window 31 described later.

【0010】遮蔽部20は、本体10の正面部における
凹陥部12に隣接してその左方に設けられている。従っ
て、遮蔽部20と凹陥部12との位置関係から明らかな
ように、本実施形態の装置によれば被測定者の左眼が測
定対象となる。遮光部20は、遮光性材料から構成され
ており、後述する光透過部30を囲繞するように本体1
0の正面部から起立して形成されている。起立した遮蔽
部20の上面部21は、被測定者の眼の周囲の凹凸形状
にフィットし得るような滑らかな曲面形状をなしてお
り、これにより測定に際して被測定者の眼の周囲を遮蔽
して外部から眼球表面への光の進入が遮断されるように
なされている。
The shielding portion 20 is provided adjacent to and to the left of the concave portion 12 in the front portion of the main body 10. Therefore, as is clear from the positional relationship between the shielding portion 20 and the concave portion 12, according to the device of the present embodiment, the left eye of the subject is a measurement target. The light-shielding portion 20 is made of a light-shielding material, and surrounds a light-transmitting portion 30 to be described later.
No. 0 is formed upright. The upper surface part 21 of the standing shield part 20 has a smooth curved surface shape that can fit the irregular shape around the eye of the subject, and thereby shields the periphery of the eye of the subject during measurement. Thus, the entrance of light from the outside to the surface of the eyeball is blocked.

【0011】光透過部30は、遮蔽部20の内側に位置
し且つ本体10の内部に突出するように設けられてい
る。光透過部30は4枚の半透明散乱板から構成されて
おり、これらの半透明散乱板は被測定者の眼を囲繞する
ように上下左右方向に配されている。これにより、遮蔽
部20によって遮蔽された被測定者の眼に全周囲方向か
ら間接光が照射され、眼球表面に影できたり或いはハレ
ーションが起こることが効果的に防止される。4枚の上
記半透明散乱板により囲繞されて形成された矩形状の部
分は開口しており、後述する撮影部50のレンズ窓31
を構成している。そして、該レンズ窓31を通じて被測
定者の眼が撮影部50によって撮影されるようになされ
ている。
The light transmitting portion 30 is provided so as to be located inside the shielding portion 20 and protrude into the main body 10. The light transmitting section 30 is composed of four translucent scattering plates, and these translucent scattering plates are arranged vertically and horizontally so as to surround the eye of the subject. Thus, the indirect light is radiated from all directions to the eye of the subject, which is shielded by the shielding unit 20, and it is possible to effectively prevent the surface of the eyeball from being shadowed or halation from occurring. A rectangular portion formed by being surrounded by the four translucent scattering plates is open, and a lens window 31 of an imaging unit 50 described later is opened.
Is composed. The eye of the subject is photographed by the photographing unit 50 through the lens window 31.

【0012】光源40は本体10の内部の左側方部に配
置されている。上述した通り本体10の内部は空洞にな
っており、該空洞を介して光源40は光透過部30に光
路が連通している。更に、上述した通り、本体10の内
部は高反射性材料13で被覆されているので、光源40
からの光は本体10の内部で反射を繰り返した後、光透
過部30を透過して間接光となり、被測定者の眼をその
全周囲方向から照明する。これにより、上述した通り、
撮影の際に、被測定者の眼球表面に影できたり或いはハ
レーションが起きることを効果的に防止することがで
き、鮮明な撮像を得ることができる。光源40の種類に
特に制限は無く、例えば蛍光灯、ハロゲンランプ、キセ
ノンランプ、タングステンランプ等が用いられる。光源
40の形状は直線状、環状等の如何なる形状でもよい。
環状光源を用いる場合であれば、その中心部に眼を配置
することになる。本実施形態では直線光源を用いた場合
を例にとり説明するが、環状光源を用いた場合でも同様
の方法によって間接光を眼に照射することができる。
The light source 40 is disposed inside the main body 10 on the left side. As described above, the inside of the main body 10 is hollow, and the light path of the light source 40 communicates with the light transmitting unit 30 through the hollow. Further, as described above, since the inside of the main body 10 is covered with the highly reflective material 13,
After being repeatedly reflected inside the main body 10, the light transmitted through the light transmitting unit 30 becomes indirect light, and illuminates the eye of the subject from all directions. Thereby, as described above,
At the time of photographing, it is possible to effectively prevent a shadow or halation from occurring on the surface of the eyeball of the subject, and to obtain a clear image. The type of the light source 40 is not particularly limited, and for example, a fluorescent lamp, a halogen lamp, a xenon lamp, a tungsten lamp, or the like is used. The shape of the light source 40 may be any shape such as a linear shape and a ring shape.
If an annular light source is used, the eye will be placed at the center. In the present embodiment, a case where a linear light source is used will be described as an example. However, even when a ring light source is used, the eyes can be irradiated with indirect light by the same method.

【0013】撮影部50は本体10の背面部18に配さ
れている。この背面部18には上述したレンズ窓31と
連通する開口が形成されており、撮影部50におけるレ
ンズ部51は、該開口内に嵌入してレンズ窓31を通じ
て本体10の正面部11側に露出している。レンズ部5
1の端面52は、光透過部30における半透明散乱板の
端面と当接しており、これにより本体10の背面部18
側から眼球への直接光の進入が遮断されている。撮影部
50としては被測定者の眼の撮影が可能なものであれば
その種類に特に制限は無いが、デジタル式のものを用い
ると、後述する演算機構における撮像のデータの二値化
処理が容易となる。デジタル式の撮影部50は、所定の
画素数を有する電荷結合素子(CCD)を備えており、
測定対象となる眼の各部分が、対応する画素上に結像さ
れ、画素全体として一つの撮像が形成される。各画素上
に結像された像は、RGB三色の分光成分ごとに8ビッ
ト、即ち0〜255迄の256段階の数値をとるデジタ
ルデータとして保存される。このデータは演算機構に送
られ、該演算機構に組み込まれたプログラムにより所定
の二値化処理が行われる。
The photographing section 50 is disposed on the back section 18 of the main body 10. An opening communicating with the above-described lens window 31 is formed in the rear portion 18, and the lens portion 51 of the photographing section 50 is fitted into the opening and exposed to the front portion 11 side of the main body 10 through the lens window 31. doing. Lens part 5
1 is in contact with the end face of the translucent scattering plate in the light transmitting section 30, whereby the rear face 18
Direct light entry into the eyeball from the side is blocked. The type of the imaging unit 50 is not particularly limited as long as it can image the eye of the subject, but if a digital type is used, the binarization processing of the imaging data by the arithmetic mechanism described later is performed. It will be easier. The digital photographing unit 50 includes a charge-coupled device (CCD) having a predetermined number of pixels.
Each part of the eye to be measured is imaged on the corresponding pixel, and one image is formed as a whole pixel. The image formed on each pixel is stored as digital data that takes 8 bits for each of the three RGB spectral components, that is, 256-step numerical values from 0 to 255. This data is sent to an arithmetic mechanism, and predetermined binarization processing is performed by a program incorporated in the arithmetic mechanism.

【0014】次に、図1〜図3に示す実施形態の測定装
置による本発明の眼の充血度の測定方法の好ましい実施
形態を、図4を参照しながら説明する。図4は、図1〜
図3に示す実施形態の測定装置を用いた眼の充血度を測
定する方法を示す模式図、図5は、撮像のデータの二値
化処理の手順を示すブロック図である。
Next, a preferred embodiment of the method for measuring the degree of redness of the eye of the present invention using the measuring apparatus of the embodiment shown in FIGS. 1 to 3 will be described with reference to FIG. FIG.
FIG. 5 is a schematic diagram showing a method for measuring the degree of redness of the eye using the measuring apparatus of the embodiment shown in FIG. 3, and FIG. 5 is a block diagram showing a procedure of binarization processing of imaging data.

【0015】先ず、撮影機構1の遮蔽部20を図4に示
すように、測定対象となる被測定者の左眼に当接させ、
眼の周囲を遮蔽して外部から眼球表面への光の進入を遮
断する。これと共に、光源40からの光を光透過部30
を通して間接光となして該眼に全周囲方向から照射す
る。斯る状態下に該眼を撮影部50により撮影する。撮
影に際しては、測定対象となっていない右眼の焦点を、
顔の右方向である本体10に設けられた焦点合わせ部1
7に合わせる。これにつられて測定対象である左眼の焦
点も顔の右方向である焦点合わせ部17の方向を向く。
これにより眼球における白眼の部分が、撮影部50のレ
ンズ部51により多く向くことになり、該白眼の部分が
多く撮影されるようになる。尚、この場合、本体10に
焦点合わせ部17を設けることによって、容易に白眼の
部分が多く撮影されるようになるが、これに代えて、白
眼の部分が多く撮影されるようになる限りにおいて、焦
点合わせ部17を設けること無く、撮影の際に被測定者
の眼の焦点を顔の左右何れかの方向に合わせるようにし
てもよい。
First, as shown in FIG. 4, the shielding portion 20 of the photographing mechanism 1 is brought into contact with the left eye of the subject to be measured,
It shields the periphery of the eye and blocks light from entering the eyeball surface from outside. At the same time, the light from the light source 40 is
And irradiates the eye from all directions. The eye is photographed by the photographing unit 50 in such a state. When shooting, focus the right eye, which is not the measurement target,
Focusing unit 1 provided on main body 10 in the right direction of the face
Adjust to 7. Accordingly, the focus of the left eye to be measured is also directed to the focusing unit 17 which is the right direction of the face.
As a result, the white-eye portion of the eyeball is more oriented to the lens unit 51 of the photographing unit 50, and the white-eye portion is photographed more. In this case, by providing the focusing unit 17 in the main body 10, many white-eye portions can be easily photographed. However, instead of this, as long as many white-eye portions can be photographed. Instead of providing the focusing unit 17, the eye of the subject may be focused on either the left or right direction of the face during imaging.

【0016】撮影部50によって得られた撮像はカラー
の画像であり、該撮像のデータは、R、G及びBの三色
の分光成分ごとにデジタル化されている。このデータは
ケーブルを介して電気的に又は着脱式のメモリーカード
等のその他の公知の手段によって、図示しない演算機構
に送られる。演算機構は上述の通りパーソナルコンピュ
ータから構成されており、該パーソナルコンピュータに
よって上記データに対して以下に述べる二値化処理が行
われ、眼球の白眼の部分における充血部の面積が算出さ
れる。
The image picked up by the image pickup unit 50 is a color image, and the data of the image picked up is digitized for each of three spectral components of R, G and B. This data is sent to an arithmetic unit (not shown) electrically via a cable or by other known means such as a removable memory card. The arithmetic mechanism is composed of a personal computer as described above, and the personal computer performs the following binarization processing on the data to calculate the area of the hyperemic portion in the white part of the eyeball.

【0017】演算機構による二値化処理の手順は図5に
示す通りである。この二値化処理は、各画素を赤色およ
び白色の何れかに二値化することからなる。即ち、ま
ず、撮像のデータから白眼の領域を選択する。この領域
の選択は撮影部50における特定領域の画素の選択に等
しい。次に、選択された領域の各画素について、R、G
及びBの値をそれぞれ読み込む。通常R、G及びBの値
は8ビット、即ち0〜225迄の256段階の数値をと
るが、4ビットや12ビットの場合でも同様な処理が行
える。
The procedure of the binarization processing by the arithmetic mechanism is as shown in FIG. This binarization process consists of binarizing each pixel into either red or white. That is, first, a white-eye region is selected from the imaging data. The selection of this area is equal to the selection of the pixels of the specific area in the imaging unit 50. Next, for each pixel in the selected area, R, G
And B are read. Normally, the values of R, G and B take 8 bits, that is, numerical values of 256 steps from 0 to 225, but the same processing can be performed in the case of 4 bits or 12 bits.

【0018】各画素についてそれぞれ読み込まれた各R
GB値に関し、各画素ごとにR、G及びBの値の大小関
係を評価して、各画素を赤色および白色の何れかに二値
化する仮判定を行う。詳細には、Rの値とGの値との大
小関係およびRの値とBの値との大小関係をそれぞれ評
価し、R>Gであるか又はR>Bである画素を赤色と仮
判定し、それ以外となる画素を白色と仮判定する。
Each R read for each pixel
With respect to the GB value, the magnitude relationship between the values of R, G, and B is evaluated for each pixel, and a tentative decision is made to binarize each pixel into either red or white. In detail, the magnitude relationship between the value of R and the value of G and the magnitude relationship between the value of R and the value of B are evaluated, and a pixel in which R> G or R> B is temporarily determined to be red. The other pixels are provisionally determined to be white.

【0019】次に、仮判定された各画素の色について、
隣接する画素の仮判定の色との関係において色を再判定
する。詳細には、注目している画素について、それに隣
接する8つの画素のうちの5つ以上が、上記の仮判定で
赤色であると判定されている場合には、注目している当
該画素の色を赤色と再判定し(上記の仮判定で当該画素
の色が白色と判定された場合であっても)、それ以外の
場合には白色と再判定する(上記の仮判定で当該画素の
色が赤色と判定された場合であっても)。この操作を選
択領域の画素すべてについて行う。
Next, with respect to the color of each pixel temporarily determined,
The color is redetermined in relation to the tentative color of the adjacent pixel. More specifically, when five or more of the eight pixels adjacent to the pixel of interest are determined to be red in the above-described provisional determination, the color of the pixel of interest is determined. Is re-determined as red (even if the color of the pixel is determined to be white in the above-described provisional determination), and otherwise re-determined as white (the color of the pixel is determined in the above-described provisional determination) Is determined to be red). This operation is performed for all pixels in the selected area.

【0020】最後に、再判定された各画素の色につい
て、隣接する画素の再判定の色との関係において、色を
最終判定する。詳細には、注目している画素について、
それに隣接する画素のうちの6つ以上が、上記の再判定
で白色であると判定されている場合には、注目している
当該画素の色を白色と最終判定し、それ以外の場合には
赤色と最終判定する。この操作を選択領域の画素すべて
について行う。
Finally, the color of each re-determined pixel is finally determined in relation to the re-determined color of an adjacent pixel. Specifically, for the pixel of interest,
If six or more of the pixels adjacent to it are determined to be white in the above re-determination, the color of the pixel of interest is finally determined to be white, otherwise, The final judgment is red. This operation is performed for all pixels in the selected area.

【0021】このようにして、選択領域の画素すべての
色が赤色であるか或いは白色であるかが判定されて、す
べての画素が赤色および白色の何れかに二値化される。
赤色と最終判定された画素は眼球における充血している
部分に相当し、白色と最終判定された部分は充血してい
ない部分に相当する。従って、赤色部分の画素数が眼球
における充血部の面積に相当することになる。そして、
選択領域の全画素数に対する赤色と最終判定された画素
数の割合(%)を算出して、この割合を眼の充血度とす
る。
In this way, it is determined whether all the pixels in the selected area are red or white, and all the pixels are binarized to either red or white.
The pixel finally determined to be red corresponds to a portion of the eyeball that is reddened, and the portion that is finally determined to be white corresponds to a portion that is not reddened. Therefore, the number of pixels in the red portion corresponds to the area of the hyperemic portion in the eyeball. And
The ratio (%) of the number of pixels finally determined to be red to the total number of pixels in the selected area is calculated, and this ratio is defined as the degree of redness of the eye.

【0022】このようにして測定された眼の充血度の値
に応じて美容的な観点から種々の処置を施すことができ
る。例えば、眼の充血をしずめるために眼に冷貼布を貼
る際に、上記の値に基づく充血の程度に応じて、適切な
冷却能を有する薬剤が含有された冷貼布を選択して用い
ることができる。
Various treatments can be performed from a cosmetic point of view according to the value of the degree of redness of the eye thus measured. For example, when applying a cold patch to the eye to reduce redness of the eye, depending on the degree of hyperemia based on the above value, select and use a cold patch containing a drug having an appropriate cooling capacity be able to.

【0023】以上、本発明の眼の充血度の測定方法およ
び測定装置をその好ましい実施形態に基づき説明した
が、本発明は上記実施形態に制限されず、本発明の趣旨
を逸脱しない限り種々の変更が可能である。例えば、上
記実施形態の測定装置は左眼の測定用のものであるが、
該装置における各部を左右対称に配置した装置によれ
ば、右眼を測定することができる。また、上記実施形態
の測定装置と、該装置における各部を左右対称に配置し
た装置とを一体化することにより、左右の眼を測定する
ことができる。また、上記実施形態においては撮影機構
と演算機構とが別体であるが、これに代えて両機構を一
体・コンパクト化して運搬・携帯等に便利なようにして
もよい。また、演算機構における二値化処理は上述した
方法に限られず、種々の変更が可能である。
Although the method and apparatus for measuring the degree of hyperemia of the eye according to the present invention have been described based on the preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the spirit of the present invention. Changes are possible. For example, although the measuring device of the above embodiment is for measuring the left eye,
According to the device in which each part of the device is arranged symmetrically, the right eye can be measured. In addition, by integrating the measuring device of the above-described embodiment and a device in which each part of the device is arranged symmetrically, the left and right eyes can be measured. Further, in the above-described embodiment, the photographing mechanism and the arithmetic mechanism are separate bodies. Alternatively, the two mechanisms may be integrated and compacted to make them convenient for transportation and carrying. Further, the binarization processing in the arithmetic mechanism is not limited to the above-described method, and various changes can be made.

【0024】[0024]

【実施例】以下、実施例を挙げて、本発明の眼の充血度
測定装置を用いた本発明の眼の充血度の測定方法による
効果を具体的に説明する。
EXAMPLES The effects of the method for measuring the degree of redness of the eye of the present invention using the apparatus for measuring the degree of redness of the eye of the present invention will be specifically described below with reference to examples.

【0025】〔実施例1〕図1〜図3に示す撮影機構1
を、図4に示すように被測定者の左眼の部分に密着さ
せ、測定部位内への光の進入を遮断した状態で、白眼の
部分を撮影した。この際、白眼の部分が多く撮影される
ように、被測定者に、眼の焦点を、焦点合わせ部17に
合わせるようにしてもらった。撮影により得られた撮像
データを演算機構としてのパーソナルコンピュータを用
いて上述の二値化処理を行う充血度を算出した。測定
後、被測定者にコンピュータディスプレーを注視する作
業を8時間行わせ、その後、上記と同様の測定を再び行
い、充血度を算出した。その結果、下記の表1に示すデ
ータが得られた。
[Embodiment 1] Photographing mechanism 1 shown in FIGS. 1 to 3
Was brought into close contact with the left eye of the subject as shown in FIG. 4, and the white eye was photographed in a state where light penetration into the measurement site was blocked. At this time, the subject was asked to focus the eye on the focusing unit 17 so that many white eyes were photographed. The degree of congestion for performing the above-described binarization processing was calculated using image data obtained by imaging using a personal computer as an arithmetic mechanism. After the measurement, the subject was gazed at the computer display for 8 hours, and then the same measurement was performed again to calculate the degree of congestion. As a result, the data shown in Table 1 below was obtained.

【0026】[0026]

【表1】 [Table 1]

【0027】上記の表1に示す結果によれば、長時間の
眼の酷使により被測定者の眼の充血度が高くなっている
ことが判り、この結果から、本発明の眼の充血度測定装
置を用いた本発明の眼の充血度の測定方法の有効性が明
らかである。
According to the results shown in Table 1 above, it was found that the degree of redness of the eye of the subject was increased due to prolonged overuse of the eyes, and from this result, the degree of redness of the eyes of the present invention was measured. The effectiveness of the method for measuring ocular hyperemia of the present invention using the device is clear.

【0028】[0028]

【発明の効果】本発明の眼の充血度の測定方法および測
定装置によれば、眼の充血度を簡便に且つ短時間で定量
的に測定できる。しかも、測定に際して測定装置を被測
定者の眼に単に当接させるだけなので、被測定者の身体
的な負担が少ない。
According to the method and the apparatus for measuring the degree of redness of the eye of the present invention, the degree of redness of the eye can be measured simply and quantitatively in a short time. In addition, since the measuring device is simply brought into contact with the eye of the subject at the time of measurement, the physical burden on the subject is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明の眼の充血度の測定装置の一
例を示す斜視図である。
FIG. 1 is a perspective view showing an example of the eye hyperemia measuring apparatus of the present invention.

【図2】 図1に示す測定装置の正面図である。FIG. 2 is a front view of the measuring device shown in FIG.

【図3】 図2におけるI−I線断面図である。FIG. 3 is a sectional view taken along line II in FIG. 2;

【図4】 図1〜図3に示す実施形態の測定装置を用い
た眼の充血度を測定する方法を示す模式図である。
FIG. 4 is a schematic view showing a method for measuring the degree of redness of the eye using the measuring device of the embodiment shown in FIGS.

【図5】 撮像のデータの二値化処理の手順を示すブロ
ック図である。
FIG. 5 is a block diagram illustrating a procedure of binarization processing of imaging data.

【符号の説明】[Explanation of symbols]

1 撮影機構 10 本体 20 遮蔽部 30 光透過部 40 光源 50 撮影部 DESCRIPTION OF SYMBOLS 1 Imaging mechanism 10 Main body 20 Shielding part 30 Light transmission part 40 Light source 50 Imaging part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 眼の周囲を遮蔽して外部から眼球表面へ
の光の進入を遮断すると共に該眼球に間接光を照射し、
斯る状態下に上記眼を撮影し、その撮像を二値化処理し
て該眼球の白眼の部分における充血部の面積を算出する
ことを特徴とする眼の充血度の測定方法。
1. A method for shielding the periphery of an eye to block light from entering the surface of the eye from outside and irradiating the eye with indirect light.
A method for measuring the degree of redness of an eye, characterized in that the eye is photographed in such a state, and the imaging is binarized to calculate the area of the hyperemic portion in the white eye portion of the eyeball.
【請求項2】 上記撮影に際し、上記白眼の部分が多く
撮影されるように、眼の焦点を顔の左右何れかの方向に
合わせることを特徴とする請求項1記載の眼の充血度の
測定方法。
2. The measurement of the degree of redness of the eye according to claim 1, wherein the eye is focused on one of the left and right directions of the face so that a large amount of the white eye is photographed during the photographing. Method.
【請求項3】 眼の周囲を遮蔽して外部から眼球表面へ
の光の進入を遮断する遮蔽部と、遮蔽された該眼に間接
光を照射するように該遮蔽部の内側に設けた光透過部
と、該光透過部に光路が連通する光源と、上記間接光の
照射下に上記眼を撮影する撮影部とを有する撮影機構、
及び該撮影部により得られた撮像を二値化処理して上記
眼球の白眼の部分における充血部の面積を算出する演算
機構を具備してなることを特徴とする眼の充血度の測定
装置。
3. A shielding portion for shielding the periphery of the eye to block light from entering the eyeball surface from the outside, and light provided inside the shielding portion so as to irradiate the shielded eye with indirect light. A transmitting unit, a light source having an optical path communicating with the light transmitting unit, and a photographing mechanism having a photographing unit that photographs the eye under irradiation of the indirect light,
And an arithmetic mechanism for calculating the area of the hyperemic portion in the white part of the eyeball by performing binarization processing on the image obtained by the photographing unit.
【請求項4】 上記白眼の面積が多く撮影されるよう
に、上記眼の焦点合わせ部を、上記撮影部の左右何れか
の方向に上記撮影機構と一体的に設けたことを特徴とす
る請求項3記載の眼の充血度の測定装置。
4. The imaging device according to claim 1, wherein a focusing unit for the eye is provided integrally with the photographing mechanism in a right or left direction of the photographing unit so that a large area of the white eye is photographed. Item 4. The measuring device for degree of hyperemia of an eye according to Item 3.
【請求項5】 上記撮影機構と上記演算機構とが別体に
設けられていることを特徴とする請求項3又は4に記載
の眼の充血度の測定装置。
5. The measuring apparatus according to claim 3, wherein the photographing mechanism and the arithmetic mechanism are provided separately.
JP10111121A 1998-04-21 1998-04-21 Method and device for measurement of eye congestion degree Pending JPH11299734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10111121A JPH11299734A (en) 1998-04-21 1998-04-21 Method and device for measurement of eye congestion degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10111121A JPH11299734A (en) 1998-04-21 1998-04-21 Method and device for measurement of eye congestion degree

Publications (1)

Publication Number Publication Date
JPH11299734A true JPH11299734A (en) 1999-11-02

Family

ID=14552975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10111121A Pending JPH11299734A (en) 1998-04-21 1998-04-21 Method and device for measurement of eye congestion degree

Country Status (1)

Country Link
JP (1) JPH11299734A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7577344B2 (en) 2004-02-23 2009-08-18 Hoya Corporation Light-shielding device for oral photography
JP2011072446A (en) * 2009-09-30 2011-04-14 Nidek Co Ltd Program and method of calculating congestion level, and apparatus of calculating congestion level
JP2015177403A (en) * 2014-03-17 2015-10-05 セイコーエプソン株式会社 Head-mounted display device and method of controlling head-mounted display device
JP2016202999A (en) * 2016-09-13 2016-12-08 株式会社トプコン Portable Optometer
US10302944B2 (en) 2013-06-28 2019-05-28 Seiko Epson Corporation Head-mount type display device and method of controlling head-mount type display device
CN115868920A (en) * 2022-08-18 2023-03-31 上海佰翊医疗科技有限公司 Quantitative evaluation method and device for conjunctival hyperemia and storage medium
US11969212B2 (en) 2019-12-27 2024-04-30 Ohio State Innovation Foundation Methods and apparatus for detecting a presence and severity of a cataract in ambient lighting
US11969210B2 (en) 2019-12-27 2024-04-30 Ohio State Innovation Foundation Methods and apparatus for making a determination about an eye using color temperature adjusted lighting

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7577344B2 (en) 2004-02-23 2009-08-18 Hoya Corporation Light-shielding device for oral photography
JP2011072446A (en) * 2009-09-30 2011-04-14 Nidek Co Ltd Program and method of calculating congestion level, and apparatus of calculating congestion level
US10302944B2 (en) 2013-06-28 2019-05-28 Seiko Epson Corporation Head-mount type display device and method of controlling head-mount type display device
JP2015177403A (en) * 2014-03-17 2015-10-05 セイコーエプソン株式会社 Head-mounted display device and method of controlling head-mounted display device
JP2016202999A (en) * 2016-09-13 2016-12-08 株式会社トプコン Portable Optometer
US11969212B2 (en) 2019-12-27 2024-04-30 Ohio State Innovation Foundation Methods and apparatus for detecting a presence and severity of a cataract in ambient lighting
US11969210B2 (en) 2019-12-27 2024-04-30 Ohio State Innovation Foundation Methods and apparatus for making a determination about an eye using color temperature adjusted lighting
CN115868920A (en) * 2022-08-18 2023-03-31 上海佰翊医疗科技有限公司 Quantitative evaluation method and device for conjunctival hyperemia and storage medium
CN115868920B (en) * 2022-08-18 2023-11-21 上海佰翊医疗科技有限公司 Quantitative evaluation method, device and storage medium for conjunctival congestion
WO2024037581A1 (en) * 2022-08-18 2024-02-22 上海市内分泌代谢病研究所 Quantitative evaluation method for conjunctival congestion, apparatus, and storage medium

Similar Documents

Publication Publication Date Title
ES2843501T3 (en) Intraoral scanner with dental diagnostic capabilities
CA1288176C (en) Method and apparatus for improving the alignment of radiographic images
US9870613B2 (en) Detection of tooth condition using reflectance images with red and green fluorescence
US20160139039A1 (en) Imaging system and imaging method
KR20200104371A (en) Fluorescence imaging in a light-deficient environment
Pogue et al. Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions
JP2004321793A (en) Method and system for computational analysis of skin image
Smith et al. The quantification of dental plaque using an image analysis system: reliability and validation
Angelino et al. Near-infrared imaging for detecting caries and structural deformities in teeth
US10405754B2 (en) Standardized oral health assessment and scoring using digital imaging
US8861863B2 (en) Method and system for analyzing lip conditions using digital images
Pitts Detection and measurement of approximal radiolucencies by computer-aided image analysis
WO2010083623A1 (en) Method and apparatus for detection of caries
JPH05293108A (en) Method for detecting aberration of skin, especially melanoma, and device therefor
Mela et al. Real-time dual-modal vein imaging system
JPH11299734A (en) Method and device for measurement of eye congestion degree
JP2006512126A (en) Pupillometer
JP2018128294A (en) Area of interest tracking device
JP6844093B2 (en) Devices and methods for capturing medical images for ulcer analysis
JP4192292B2 (en) Personal feature pattern detector
JPH09106448A (en) Detecting method for abnormal shadow candidate
JP7435272B2 (en) Treatment support device and method of operating the treatment support device
JP4532781B2 (en) Thin hair area evaluation method and system, and thin hair positioning plate
JP3340971B2 (en) How to evaluate hair gloss
CN114366021A (en) System and method for assessing survival rate of parathyroid gland