JPH11299112A - Series-parallel switching power supply device - Google Patents

Series-parallel switching power supply device

Info

Publication number
JPH11299112A
JPH11299112A JP10097575A JP9757598A JPH11299112A JP H11299112 A JPH11299112 A JP H11299112A JP 10097575 A JP10097575 A JP 10097575A JP 9757598 A JP9757598 A JP 9757598A JP H11299112 A JPH11299112 A JP H11299112A
Authority
JP
Japan
Prior art keywords
series
batteries
parallel
pair
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10097575A
Other languages
Japanese (ja)
Other versions
JP3311670B2 (en
Inventor
Michio Okamura
廸夫 岡村
Masaaki Oshima
正明 大島
Masaaki Yamagishi
政章 山岸
Akinori Mogami
明矩 最上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Okamura Laboratory Inc
Power System Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Jeol Ltd
Tokyo Electric Power Co Inc
Okamura Laboratory Inc
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Tokyo Electric Power Co Inc, Okamura Laboratory Inc, Power System Co Ltd filed Critical Jeol Ltd
Priority to JP09757598A priority Critical patent/JP3311670B2/en
Publication of JPH11299112A publication Critical patent/JPH11299112A/en
Application granted granted Critical
Publication of JP3311670B2 publication Critical patent/JP3311670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid a cross current which is produced by a potential difference between a pair of batteries, when the charging method of the pair of batteries are switched from the parallel connection charging to the series connection charging. SOLUTION: A power supply device has a pair of batteries C1 and C2 whose voltages are much changed in accordance with charge/discharge values and three switching means which are connected in series to the pair of batteries respectively. The connection of the pair of batteries are switched between the series connection and the parallel connection at a predetermined voltage. Unilateral control rectification devices Q1 and Q2 are connected in series at least to the pair of batteries C1 and C2 respectively as the switching means. The unilateral control rectification devices Q1 and Q2 are connected in the flowing directions of the charging currents of the batteries to limit excessive charging currents or to avoid a cross current which flows from the battery with a higher voltage to the battery with a lower voltage at the time of charging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充放電量に応じて
電圧が大きく変化する対の電池と前記対の電池にそれぞ
れ直列に接続すると共に前記直列接続点間に接続する3
つの切り換え手段を備え、前記3つの切り換え手段によ
り前記対の電池を所定の電圧で並列接続または直列接続
に切り換えるように構成した直並列切換電源装置に関す
る。
The present invention relates to a pair of batteries whose voltage varies greatly according to the amount of charge and discharge, and a pair of batteries connected in series and connected between the series connection points.
The present invention relates to a series-parallel switching power supply device that is provided with two switching units and configured to switch the pair of batteries to a parallel connection or a series connection at a predetermined voltage by the three switching units.

【0002】[0002]

【従来の技術】電気二重層コンデンサを使用したECS
(Energy Capacitor System) による電力貯蔵装置は、電
気自動車の電源装置や大規模な電力貯蔵装置として注目
されている。電気二重層コンデンサは、鉛電池やニッケ
ル・カドミウム電池のような充電に時間がかかる化学電
池と比較して、他のコンデンサと同様に物理的な充電に
より急速充電が可能になる。しかも、電気二重層コンデ
ンサの電池は、大量にエネルギーが貯蔵できるという化
学電池にない大きなメリットを有している。しかし、化
学電池は、定電圧デバイスであり、正常な動作範囲では
負荷に給電してもその電池に蓄えられたエネルギー量に
かかわらず、その端子電圧はほぼ一定の定電圧特性を示
すのに対して、電気二重層コンデンサの電池は、電力の
貯蔵量を多くしてそれを有効に利用しようとすると、Q
=CV2 /2の関係に基づいて端子電圧が大きく変動す
る特性を持っている。そのため、蓄積されたエネルギー
を放電するにしたがい端子電圧が満充電電圧からゼロま
で大きく変化し、負荷に安定した定格電圧を供給するに
はECSで大幅な出力電圧の調整が必要になる。
2. Description of the Related Art ECS using an electric double layer capacitor
(Energy Capacitor System) has attracted attention as a power supply device for electric vehicles and a large-scale power storage device. Electric double layer capacitors can be rapidly charged by physical charging, like other capacitors, compared to chemical batteries that take a long time to charge, such as lead batteries and nickel-cadmium batteries. Moreover, the electric double-layer capacitor battery has a great advantage over a chemical battery in that a large amount of energy can be stored. However, a chemical battery is a constant voltage device.In a normal operating range, even if power is supplied to a load, its terminal voltage shows almost constant constant voltage characteristics regardless of the amount of energy stored in the battery. Therefore, the electric double-layer capacitor battery requires a large amount of stored power to use it effectively.
= Has the characteristic that the terminal voltage varies greatly based on the relation of CV 2/2. Therefore, as the stored energy is discharged, the terminal voltage greatly changes from the full charge voltage to zero, and a large output voltage adjustment is required by the ECS to supply a stable rated voltage to the load.

【0003】ECSは、コンデンサと並列モニタと電流
ポンプからなる電力エネルギー貯蔵システムとして既に
各種文献(例えば電子技術、1994−12、p1〜
3、電学論B、115巻5号、平成7年 p504〜6
10など)で紹介されている。ここで、並列モニタは、
複数のコンデンサが直並列に接続されたコンデンサバン
クの各コンデンサの端子間に接続され、コンデンサバン
クの充電電圧が並列モニタの設定値を越えると充電電流
をバイパスする装置である。
[0003] ECS is a power energy storage system comprising a capacitor, a parallel monitor and a current pump.
3, Denki Kagaku B, Vol. 115, No. 5, 1995, p.
10 etc.). Here, the parallel monitor is
In this device, a plurality of capacitors are connected between terminals of each capacitor of a capacitor bank connected in series and parallel, and a charging current is bypassed when a charging voltage of the capacitor bank exceeds a set value of a parallel monitor.

【0004】上記並列モニタを備えたコンデンサバンク
は、充電する際にコンデンサバンクの充電電圧が設定値
以上に上昇しないように充電電流をバイパスして一定に
保つので、コンデンサバンク内のすべてのコンデンサ
は、設定された電圧まで均等に充電され、コンデンサの
蓄積能力をほぼ100パーセント発揮させることができ
る。したがって、並列モニタは、コンデンサの特性のバ
ラツキや残留電荷の大小がある場合にも、最大電圧の均
等化、逆流防止、充電終止電圧の検出と制御などを行
い、耐電圧いっぱいまで使えるようにするものとして、
きわめて大きな役割を持ち、エネルギー密度の有効利用
の手段として不可欠な装置である。
[0004] The capacitor bank having the parallel monitor bypasses the charging current so as to prevent the charging voltage of the capacitor bank from rising above a set value when charging, so that all capacitors in the capacitor bank are kept constant. The capacitor is charged evenly to the set voltage, and the storage capacity of the capacitor can be exerted almost 100%. Therefore, even if there are variations in the characteristics of the capacitors and the magnitude of the residual charge, the parallel monitor performs equalization of the maximum voltage, prevention of backflow, detection and control of the charge termination voltage, etc. As a thing,
It has an extremely important role and is an indispensable device for effective use of energy density.

【0005】図4はECSの標準的な構成例を示す図、
図5はECS電流ポンプの昇圧、降圧動作領域を示す図
である。ECSによる電力貯蔵装置では、図4に示すよ
うに電力を蓄えた電気二重層コンデンサから、電流ポン
プと呼ばれるスイッチング方式のDC/DCコンバータ
で電力を取り出し、一定電圧にして負荷に供給してい
る。このときに使用する電流ポンプは、降圧チョッパ、
昇圧チョッパ、その他のDC/DCコンバータでよい
が、効率が高いことが必須条件であるため、トランスを
使ったタイプは有利ではない。
FIG. 4 is a diagram showing a standard configuration example of the ECS.
FIG. 5 is a diagram showing a step-up / step-down operation region of the ECS current pump. In the power storage device based on ECS, as shown in FIG. 4, power is taken out from an electric double layer capacitor storing power by a switching type DC / DC converter called a current pump, and supplied to a load at a constant voltage. The current pump used at this time is a step-down chopper,
A boost chopper or another DC / DC converter may be used, but a type using a transformer is not advantageous because high efficiency is an essential condition.

【0006】いま、ECSによる電力貯蔵装置におい
て、コンデンサの電圧を満充電時の1/4の電圧まで利
用しようとすれば、電力では15/16=93.75%
を使用することになる。それを実現する場合、昇圧コン
バータでは、出力電圧VO を満充電時の電圧VO * 4と
等しく選び、図5のupに示すようにコンバータで昇圧
して出力が常にVO * 4になるよう制御すればよい。こ
のとき、昇圧コンバータの動作範囲は1から4倍までの
昇圧となる。また、降圧コンバータでは、出力電圧VO
を満充電時の1/4の電圧VO * 1と等しく選び、図5
のdownに示すようにコンバータで放電開始時は1/
4に降圧し、放電に伴って降圧比を減らして出力が常に
O * 1になるよう制御すれば、コンデンサの電圧がは
じめの1/4になるまで定格電圧を供給できる。このと
きの降圧コンバータの動作範囲は1/4から1までの降
圧となる。
Now, in an ECS-based power storage device, if it is attempted to use the capacitor voltage up to 1/4 of the voltage when fully charged, the power is 15/16 = 93.75%.
Will be used. When implementing it in the boost converter, the output voltage V O to select fully equal to the charge voltage V O * 4 at the converter output boosts is always V O * 4 in as shown in up to 5 Control may be performed as follows. At this time, the operation range of the boost converter is boosted from 1 to 4 times. In a step-down converter, the output voltage V O
5 is selected to be equal to 1/4 of the voltage V O * 1 when fully charged.
As shown in the down of FIG.
If the voltage is reduced to 4 and the step-down ratio is reduced along with the discharge to control the output to always be V O * 1, the rated voltage can be supplied until the voltage of the capacitor becomes the first quarter. The operation range of the step-down converter at this time is step-down from 1/4 to 1.

【0007】上記のようにECSでは、利用するコンデ
ンサの電圧範囲を広くとって、貯蔵できる電力量を増や
したのであるから、コンデンサの端子電圧が大幅に変化
するのは本質的な現象である。しかし、用途によって従
来の二次電池との対比で、ECSにとって大幅に電圧が
変化するのは不都合な場合が生じる。
As described above, in the ECS, the voltage range of the capacitor to be used is widened to increase the amount of electric power that can be stored, so that a significant change in the terminal voltage of the capacitor is an essential phenomenon. However, depending on the application, it may be inconvenient for the ECS to significantly change the voltage as compared with the conventional secondary battery.

【0008】そこで、満充電状態からエネルギーを取り
出すに従って電圧が漸次低下する電圧変動の大きい電
池、例えば電気二重層コンデンサを用いた電源装置とし
て、電源側電圧の定電圧化を図るため電池の直並列切り
換えを行うようにした構成が既に提案(特開平8−16
8182号公報参照)されている。図6は直並列切換電
源装置の構成例を示す図であり、これは、複数個の電圧
変動の大きいコンデンサ電池C1、C2と、これらを並
列接続から直列に切り換える切り換えスイッチSp1、
Sp2、Ss1と、コンデンサ電池C1、C2から負荷
に供給する電圧又は電流をスイッチング制御する制御手
段(ECS)とを備え、切り換えスイッチSp1、Sp
2、Ss1により、コンデンサ電池C1、C2を電圧の
低下にしたがって並列接続から直列接続に切り換えるも
のである。そのために、切り換えスイッチSp1、Sp
2に対し切り換えスイッチSs1を相補的に動作させて
いる。
Therefore, as a battery having a large voltage fluctuation in which the voltage gradually decreases as energy is taken out from the fully charged state, for example, a power supply device using an electric double-layer capacitor, the batteries are connected in series and parallel in order to make the power supply side voltage constant. A configuration in which switching is performed has already been proposed (Japanese Unexamined Patent Application Publication No.
No. 8182). FIG. 6 is a diagram showing a configuration example of a series-parallel switching power supply device, which includes a plurality of capacitor batteries C1 and C2 having large voltage fluctuations and a changeover switch Sp1 for switching these from parallel connection to series.
Sp2, Ss1 and control means (ECS) for switching and controlling the voltage or current supplied from the capacitor batteries C1, C2 to the load.
2. By Ss1, the capacitor batteries C1 and C2 are switched from parallel connection to series connection as the voltage decreases. Therefore, the changeover switches Sp1, Sp
2, the changeover switch Ss1 is operated complementarily.

【0009】上記提案の従来の装置によれば、制御手段
として、降圧コンバータを用いても昇圧コンバータを用
いても、降圧比や昇圧比を小さくすることができるの
で、安全性のみならず、電源効率の向上を図ることがで
きる。さらには、使用半導体の選択の自由度や設計の自
由度を大きくとることができるので、装置の経済性を高
めることができる。
According to the conventional apparatus proposed above, the step-down ratio and the step-up ratio can be reduced by using a step-down converter or a step-up converter as the control means. Efficiency can be improved. Further, the degree of freedom in selecting a semiconductor to be used and the degree of freedom in designing can be increased, so that the economical efficiency of the device can be improved.

【0010】[0010]

【発明が解決しようとする課題】しかし、従来の直並列
切換電源装置では、切り換えスイッチSp1、Sp2、
Ss1として、リレーやパワーMOSFETで対応して
いるが、大容量になると次のような問題が生じる。その
1つは、リレーやパワーMOSFETで対応できないほ
ど大きな容量規模になると、スイッチとして採用する素
子が問題になり、もう1つは、コンデンサ電池C1、C
2を直列接続から並列接続に切り換えて充電する際に、
2つのコンデンサ電池C1、C2の電圧が同じでない
と、並列接続にした瞬間にクロス電流が流れることであ
る。このようなクロス電流は、特に大容量の装置になる
ほど無視できなくなる。
However, in the conventional series-parallel switching power supply, the changeover switches Sp1, Sp2,
Although a relay or a power MOSFET is used as Ss1, the following problem occurs when the capacity is increased. One is that if the capacity is too large to be handled by a relay or a power MOSFET, the element used as a switch becomes a problem, and the other is that the capacitor batteries C1, C2
When charging 2 by switching from series connection to parallel connection,
If the voltages of the two capacitor batteries C1 and C2 are not the same, a cross current flows at the moment of parallel connection. Such a cross current is not negligible especially in a large-capacity device.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するものであって、対の電池を並列接続充電から直列
接続充電に切り換えたときに電池間の電圧の差によりク
ロス電流が流れるのを防ぐようにするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a cross current flows due to a voltage difference between batteries when a pair of batteries is switched from parallel connection charging to series connection charging. It is to prevent that.

【0012】そのために本発明は、充放電量に応じて電
圧が大きく変化する対の電池と前記対の電池にそれぞれ
直列に接続すると共に前記直列接続点間に接続する3つ
の切り換え手段を備え、前記3つの切り換え手段により
前記対の電池を所定の電圧で並列接続または直列接続に
切り換えるように構成した直並列切換電源装置におい
て、少なくとも前記対の電池にそれぞれ直列に接続する
切り換え手段を単方向制御整流素子に逆方向の整流素子
を並列接続した並列回路により構成し、かつ、前記電池
から放電電流を流す方向に前記整流素子を接続し前記電
池に充電電流を流す方向に前記単方向制御整流素子を接
続して過大な充電電流が流れるのを制限するように構成
したことを特徴とするものである。
For this purpose, the present invention comprises a pair of batteries whose voltage varies greatly according to the charge / discharge amount, and three switching means connected in series to the pair of batteries and connected between the series connection points, respectively. In the series-parallel switching power supply device configured to switch the pair of batteries to a parallel connection or a series connection at a predetermined voltage by the three switching units, a unidirectional control is performed on at least the switching units respectively connected in series to the pair of batteries. A rectifying element is constituted by a parallel circuit in which a rectifying element in the opposite direction is connected in parallel to the rectifying element, and the one-way control rectifying element is connected in a direction in which a discharging current flows from the battery and in a direction in which a charging current flows in the battery. To limit the flow of an excessive charging current.

【0013】また、少なくとも前記対の電池にそれぞれ
直列に接続する切り換え手段を逆方向に接続した対の単
方向制御整流素子からなる並列回路により構成し、か
つ、前記並列回路の対の単方向制御整流素子のうち、前
記電池から放電電流を流す方向の単方向制御整流素子は
前記対の電池を直列接続から並列接続に切り換えて充電
する際に前記対の電池の電圧が不均一な間は非導通状態
に制御することを特徴とするものである。
[0013] Further, at least the switching means connected in series to the pair of batteries, respectively, is constituted by a parallel circuit comprising a pair of unidirectional control rectifiers connected in the reverse direction, and a unidirectional control of the pair of the parallel circuits. Among the rectifiers, the unidirectional control rectifier in the direction in which the discharge current flows from the battery is non-uniform while the voltage of the pair of batteries is not uniform when the pair of batteries is switched from series connection to parallel connection and charged. It is characterized in that the conductive state is controlled.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は本発明に係る直並列切換
電源装置の実施の形態を示す図であり、C1、C2は電
池、D1〜D3は整流素子、Q1〜Q3、Q11、Q2
2は単方向制御整流素子、L1、L2は電流制限回路を
示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a series-parallel switching power supply device according to the present invention, wherein C1 and C2 are batteries, D1 to D3 are rectifying elements, Q1 to Q3, Q11, and Q2.
Reference numeral 2 denotes a unidirectional control rectifier, and L1 and L2 denote current limiting circuits.

【0015】図1(A)において、電池C1、C2は、
例えばそれぞれ電気二重層コンデンサ、あるいは複数の
電気二重層コンデンサを直並列に接続したコンデンサバ
ンクからなり、整流素子D1、D2と単方向制御整流素
子Q1、Q2との並列回路をそれぞれに直列接続し、さ
らにそれらの直列接続点との間にも整流素子D3と単方
向制御整流素子Q3との並列回路を接続して、これらの
単方向制御整流素子のQ1〜Q3のオン、オフの制御に
より、電池C1、C2を直列接続と並列接続との切り換
えを行っている。そのために、整流素子D1と単方向制
御整流素子Q1との並列回路を電池C1の正極側に接続
すると、整流素子D2と単方向制御整流素子Q2との並
列回路は、反対に電池C2の負極側に接続する。そし
て、整流素子D1とD2は、それぞれ電池C1、C2か
ら放電電流を流す方向の極性に接続し、これらと反対に
単方向制御整流素子Q1、Q2は、それぞれ電池C1、
C2に充電電流を流す方向の極性に接続する。また、直
列接続点の間に接続する並列回路では、単方向制御整流
素子Q3を電池C1、C2から直列にして放電電流を流
す方向の極性に接続し、整流素子D3を電池C1、C2
に直列に充電電流を流す方向の極性に接続する。電流制
限回路L1、L2は、電池C1、C2に過大な充電電流
が流れるのを制限する回路である。
In FIG. 1A, batteries C1 and C2 are:
For example, each is composed of an electric double layer capacitor or a capacitor bank in which a plurality of electric double layer capacitors are connected in series and parallel, and a parallel circuit of rectifying elements D1 and D2 and unidirectional control rectifying elements Q1 and Q2 is connected in series to each of them. Further, a parallel circuit of a rectifying element D3 and a unidirectional control rectifier element Q3 is connected between these series connection points, and the on / off control of Q1 to Q3 of these unidirectional control rectifier elements controls the battery. C1 and C2 are switched between series connection and parallel connection. Therefore, when a parallel circuit of the rectifying element D1 and the unidirectional control rectifying element Q1 is connected to the positive electrode side of the battery C1, the parallel circuit of the rectifying element D2 and the unidirectional control rectifying element Q2 becomes opposite to the negative electrode side of the battery C2. Connect to The rectifiers D1 and D2 are connected to polarities in the direction in which a discharge current flows from the batteries C1 and C2, respectively. Conversely, the unidirectional control rectifiers Q1 and Q2 are connected to the batteries C1 and C2, respectively.
C2 is connected to the polarity in the direction in which the charging current flows. In the parallel circuit connected between the series connection points, the unidirectional control rectifier Q3 is connected in series from the batteries C1 and C2, and the polarity is set so that the discharge current flows, and the rectifier D3 is connected to the batteries C1 and C2.
To the polarity of the direction in which the charging current flows in series. The current limiting circuits L1 and L2 are circuits that limit the flow of excessive charging current to the batteries C1 and C2.

【0016】本発明に係る直並列切換電源装置は、上記
のように電池C1、C2を電圧の変動に応じて並列接続
または直列接続に切り換える切り換え手段として、従来
のスイッチを使った構成に代え、整流素子D1〜D3と
単方向制御整流素子Q1〜Q3との並列回路による構成
を採用し、単方向制御整流素子Q1、Q2により電池C
1、C2が並列接続されたときの充電電流を制御するも
のである。すなわち、電池C1、C2に対してそれぞれ
充電電流を流す方向の極性に単方向制御整流素子Q1、
Q2を接続し、電流制限回路L1、L2によって単方向
制御整流素子Q1、Q2を制御して過大な充電電流が流
れるのを制限するので、電池C1、C2を直列接続から
並列接続に切り換えたときに過大な充電電流が流れるの
を防ぐことができ、結果として電池C1、C2の電圧の
差により大きなクロス電流が流れるのを防ぐことができ
る。
The series-parallel switching power supply according to the present invention, as described above, replaces the configuration using a conventional switch as the switching means for switching the batteries C1 and C2 to parallel connection or series connection in accordance with the voltage fluctuation. A parallel circuit configuration of rectifying elements D1 to D3 and unidirectional control rectifying elements Q1 to Q3 is adopted, and the battery C is controlled by the unidirectional control rectifying elements Q1 and Q2.
1, to control the charging current when C2 is connected in parallel. In other words, the unidirectional control rectifiers Q1, Q2 have the polarities in the direction in which the charging current flows to the batteries C1, C2, respectively.
When the batteries C1 and C2 are switched from series connection to parallel connection because the unidirectional control rectifiers Q1 and Q2 are controlled by the current limiting circuits L1 and L2 to limit the flow of excessive charging current. Can be prevented from flowing an excessively large charging current, and as a result, a large cross current can be prevented from flowing due to the voltage difference between the batteries C1 and C2.

【0017】次に、電池C1、C2をいずれも満充電の
状態から放電し、そこからまた充電する過程にしたがっ
て単方向制御整流素子Q1〜Q3による接続切換制御及
び充電電流制御について説明する。電池C1、C2がい
ずれも満充電の状態から放電を開始する際には、単方向
制御整流素子Q3がオフであれば、電池C1は整流素子
D1を介して、また電池C2は整流素子D2を介してそ
れぞれ出力に並列に接続され、その両方から出力に電力
を供給することができるので、単方向制御整流素子Q
1、Q2はオンでもオフでもよい。
Next, the connection switching control and the charging current control by the unidirectional control rectifiers Q1 to Q3 according to the process of discharging the batteries C1 and C2 from a fully charged state and then charging them again will be described. When the batteries C1 and C2 both start discharging from a fully charged state, if the unidirectional control rectifier Q3 is off, the battery C1 is connected to the rectifier D1 and the battery C2 is connected to the rectifier D2. Are connected in parallel to the outputs via the respective outputs, and power can be supplied to the outputs from both of them.
1, Q2 may be on or off.

【0018】まず、電池C1、C2から並列に放電が進
んで出力電圧が満充電時の1/2の電圧まで下がると、
単方向制御整流素子Q3にオンにし、単方向制御整流素
子Q1、Q2はオフにして、電池C1、C2を直列接続
の状態にする。この状態からさらに出力電圧が満充電時
の1/2の電圧に下がるまで放電が進むと、電池C1、
C2が満充電時の全合計電圧の1/4まで、電力にして
初期の全蓄電量の15/16を使用したことになる。
First, when the discharge proceeds in parallel from the batteries C1 and C2 and the output voltage drops to half the voltage at the time of full charge,
The unidirectional control rectifier Q3 is turned on, the unidirectional control rectifiers Q1 and Q2 are turned off, and the batteries C1 and C2 are connected in series. When the discharge proceeds from this state until the output voltage further decreases to half the voltage at the time of full charge, batteries C1 and
This means that 15% of the initial total charged amount was used as electric power until C2 reached 1/4 of the total total voltage at the time of full charge.

【0019】全放電から逆に充電するプロセスでは、単
方向制御整流素子Q3がオン、単方向制御整流素子Q
1、Q2がオフになり電池C1、C2が直列接続された
状態にある。この状態から充電が始まって、電池C1、
C2の直列接続した合計電圧が各電池C1、C2の満充
電時の電圧に等しくなると、単方向制御整流素子Q3を
オフにして、単方向制御整流素子Q1、Q2がオンに
し、電池C1、C2を並列接続した状態にする。
In the process of reverse charging from full discharge, the unidirectional control rectifier Q3 is turned on and the unidirectional control rectifier Q3 is turned on.
1, Q2 is turned off and batteries C1, C2 are connected in series. Charging starts from this state, and the battery C1,
When the total voltage of C2 connected in series becomes equal to the voltage of each of the batteries C1 and C2 when fully charged, the unidirectional control rectifier Q3 is turned off, the unidirectional control rectifiers Q1 and Q2 are turned on, and the batteries C1 and C2 are turned on. Are connected in parallel.

【0020】このとき、従来のスイッチと同様に、整流
素子D1と単方向制御整流素子Q1との並列回路からな
るスイッチ、及び整流素子D2と単方向制御整流素子Q
2との並列回路からなるスイッチが一斉にオンになる
と、つまり単方向制御整流素子Q1、Q2が一斉にオン
になると、このときの電池C1とC2の電圧は、実際に
同一にはならないので、それらの電圧の差によるクロス
電流が流れる。このようなクロス電流は、小型の装置で
あれば無視する、もしくは電流制限を行う程度の対応で
も問題はない。しかし、大型の装置では、部品や回路の
ストレスに大きな余裕がないのが通例である。
At this time, similarly to the conventional switch, a switch composed of a parallel circuit of a rectifier D1 and a unidirectional control rectifier Q1 and a rectifier D2 and a unidirectional control rectifier Q
When the switches composed of the parallel circuits of the two are turned on at the same time, that is, when the unidirectional control rectifiers Q1 and Q2 are turned on at the same time, the voltages of the batteries C1 and C2 at this time are not actually the same. A cross current flows due to the difference between the voltages. There is no problem in ignoring such a cross current in a small-sized device, or in a measure of limiting current. However, in a large-sized device, there is usually no large margin for the stress of components and circuits.

【0021】本発明に係る直並列切換電源装置は、この
充電過程において電池C1、C2を直列接続から並列接
続に切り換える時に、電流制限回路L1、L2により単
方向制御整流素子Q1、Q2を制御して過大な充電電流
が流れるのを制限し、また、充電電流を一時的に遮断し
て、結果的に電池C1、C2の充電電圧の差に基づきク
ロス電流が流れることにより部品や回路にストレスがか
かるのを防ぐものである。そのため、単方向制御整流素
子Q1、Q2として、例えばサイリスタやGTOを用い
る場合にはスイッチング方式によりオン/オフして実効
電流が制限値以下になるように制御し、IGBTを用い
る場合にはアナログ的にも制御することができるので、
一定電流になるように制御することもできる。電流制限
回路L1、L2は、例えば単方向制御整流素子Q1、Q
2に流れる電流を検出する手段を有し、その検出した電
流が最大充電電流以下になるように電流制限をかければ
よいし、また、電流を検出する手段に代えて、発熱を検
出する手段を採用してもよい。これらの過大電流の検出
は、単方向制御整流素子Q1、Q2ではなく電池C1、
C2で行っても同じであることはいうまでもない。
The series-parallel switching power supply according to the present invention controls the unidirectional control rectifiers Q1 and Q2 by the current limiting circuits L1 and L2 when the batteries C1 and C2 are switched from series connection to parallel connection in the charging process. To limit the flow of excessive charging current, and temporarily interrupt the charging current. As a result, a cross current flows based on the difference between the charging voltages of the batteries C1 and C2. This is to prevent this. Therefore, for example, when thyristors or GTOs are used as the unidirectional control rectifiers Q1 and Q2, they are turned on / off by a switching method to control the effective current to be equal to or less than the limit value, and when IGBTs are used, they are analog-like. Can also be controlled,
It can also be controlled so as to have a constant current. The current limiting circuits L1, L2 are, for example, unidirectional control rectifiers Q1, Q
2. A means for detecting the current flowing through the power supply 2 may be used, and the current may be limited so that the detected current is equal to or less than the maximum charging current. In place of the means for detecting the current, a means for detecting heat generation is provided. May be adopted. The detection of these excessive currents is determined not by the unidirectional control rectifiers Q1 and Q2 but by the batteries C1,
It goes without saying that the same is true even if the operation is performed in C2.

【0022】また、上記図1(A)に示すように電流制
限回路L1、L2により単方向制御整流素子Q1、Q2
(あるいは電池C1、C2)に流れる過大電流を検出し
て電流を制限するように単方向制御整流素子Q1、Q2
を制御するのに対し、直接クロス電流の流れる回路を遮
断するようにしてもよい。その構成例を示したのが図1
(B)であり、図1(A)に示す整流素子D1、D2に
代えて単方向制御整流素子Q11、Q21を接続してク
ロス電流が流れるのを阻止するものである。したがっ
て、単方向制御整流素子Q11、Q21は、少なくとも
充電時に電池C1、C2を並列接続に切り換えた後一定
時間、つまり電池C1、C2の電圧の不均一状態が解消
されるまでの間オフにする。したがって、電池C1、C
2を直列充電から並列充電に切り換えた時点から電圧の
不均一が解消される時間を含めば、充電モードの間を単
方向制御整流素子Q11、Q21がオフになるように制
御してもよいし、充電パターンに応じて充電電圧を検出
し所定の充電電圧に達するまで、あるいは電池C1、C
2の電圧を検出して電圧が不均一な間は単方向制御整流
素子Q11、Q21をオフにしておくように制御しても
よい。このようにすることにより、単方向制御整流素子
Q1、Q2は、電池C1、C2の電圧の不均一の程度を
全く意識することなく、直列接続から並列接続への切り
換えタイミングにしたがってオンにすればよい。
Further, as shown in FIG. 1A, the unidirectional control rectifiers Q1, Q2 are controlled by the current limiting circuits L1, L2.
(Or one of the unidirectional control rectifiers Q1 and Q2 so as to limit the current by detecting an excessive current flowing through the batteries C1 and C2).
, A circuit in which a cross current flows directly may be cut off. FIG. 1 shows an example of the configuration.
1B, a unidirectional control rectifier Q11, Q21 is connected in place of the rectifiers D1, D2 shown in FIG. 1A to prevent a cross current from flowing. Therefore, the unidirectional control rectifiers Q11 and Q21 are turned off at least for a certain period of time after the batteries C1 and C2 are switched to the parallel connection during charging, that is, until the non-uniform state of the voltages of the batteries C1 and C2 is eliminated. . Therefore, the batteries C1, C
Control may be performed so that the unidirectional control rectifiers Q11 and Q21 are turned off during the charging mode, including a time period during which the voltage non-uniformity is eliminated from the time point when the second charging is switched from the series charging to the parallel charging. , The charging voltage is detected according to the charging pattern until the charging voltage reaches a predetermined charging voltage, or the batteries C1 and C
The unidirectional control rectifiers Q11 and Q21 may be controlled so as to be turned off while the voltage of No. 2 is detected and the voltage is not uniform. By doing so, the unidirectional control rectifiers Q1 and Q2 can be turned on according to the switching timing from the series connection to the parallel connection without any consideration of the degree of non-uniformity of the voltage of the batteries C1 and C2. Good.

【0023】次に、上記本発明に係る直並列切換電源装
置として、図1に示す対の電池からなる電池ユニットを
複数段に直列接続して電圧変動幅を小さくするように構
成した電源装置を説明する。これは、放電により電圧が
低下すると1段ずつ段階的に直並列切換電源装置を並列
接続から直列接続に切り換えるものである。図2は本発
明に係る直並列切換電源装置を4段に直列接続した直並
列切換電源装置の構成例を示す図、図3は従来のコンデ
ンサ電源装置との動作比較例を説明するための図であ
る。図2において、直並列切換電源装置は、段数nを4
として4つの直並列切換コンデンサユニット(電池ユニ
ット)1、11、21、31を直列に接続したものであ
り、直並列切換コンデンサユニット1、11、21、3
1を満充電状態ではそれぞれ並列接続し、電圧が1/
(n+1)ずつ低下するごとに、まず、直並列切換コン
デンサユニット1、次に直並列切換コンデンサユニット
11、というように1段ずつ並列接続から直列接続に切
り換える。したがって、直並列切換コンデンサユニット
の各コンデンサバンクの満充電電圧VCFが30Vである
とすると、変動する電圧の上限値VU は30V×4段で
120Vとなり、変動する電圧の下限値VL はその1/
(n+1)、つまり1/5に相当する電圧だけ低い96
Vにすることができる。したがって、コンデンサバンク
の電圧が満充電電圧の1/2まで低下すると並列接続か
ら直列接続に切り換えるという従来の装置では、120
Vとその1/2の60Vとの範囲、つまり50%で変動
したものが、上記のような多段切り換えでは、120V
と96Vとの変動の範囲、つまり20%に抑えることが
できる。
Next, as the series-parallel switching power supply according to the present invention, there is provided a power supply configured so as to reduce the voltage fluctuation width by connecting the battery units composed of a pair of batteries shown in FIG. explain. This is to switch the serial / parallel switching power supply from parallel connection to series connection step by step when the voltage is reduced by discharge. FIG. 2 is a diagram showing a configuration example of a series-parallel switching power supply device in which the series-parallel switching power supply device according to the present invention is connected in series in four stages, and FIG. 3 is a diagram for explaining an operation comparison example with a conventional capacitor power supply device. It is. In FIG. 2, the series-parallel switching power supply has a stage number n of 4
And four series-parallel switching capacitor units (battery units) 1, 11, 21, 31 connected in series.
1 in the fully charged state are connected in parallel, and the voltage is 1 /
Each time the value decreases by (n + 1), the serial connection is switched from the parallel connection to the serial connection one by one, such as the series-parallel switching capacitor unit 1 and then the series-parallel switching capacitor unit 11. Therefore, assuming that the full charge voltage V CF of each capacitor bank of the series-parallel switching capacitor unit is 30 V, the upper limit value V U of the fluctuating voltage is 120 V in 30 V × 4 stages, and the lower limit value V L of the fluctuating voltage is 1 /
(N + 1), that is, 96 lower by a voltage corresponding to 1/5
V. Therefore, in the conventional device that switches from parallel connection to series connection when the voltage of the capacitor bank decreases to half of the full charge voltage, 120
In the range between V and 1/2 V of 60 V, that is, 50%, in the above-described multi-stage switching, 120 V is applied.
And 96V, that is, 20%.

【0024】実際には、第1の直並列切換コンデンサユ
ニット1の直並列切り換えでは、24Vの変動がある
が、第2の直並列切換コンデンサユニット11、それ以
降は、さらに各コンデンサバンクが放電されるので、図
3に示すように徐々に変動幅が小さくなってゆく。な
お、図3において、0が直並列切り換えのない装置、1
が従来の直並列切り換えを行う装置、4が本発明に係る
直並列切換コンデンサユニットの4段切り換えを行う装
置の電圧変動の比較例を示している。
Actually, in the series-parallel switching of the first series-parallel switching capacitor unit 1, there is a fluctuation of 24 V. However, after the second series-parallel switching capacitor unit 11, each capacitor bank is further discharged. Therefore, the fluctuation width gradually decreases as shown in FIG. In FIG. 3, 0 is a device without serial / parallel switching, 1
Shows a comparative example of voltage fluctuations of a conventional device for performing serial-parallel switching and a device 4 for performing four-stage switching of the serial-parallel switching capacitor unit according to the present invention.

【0025】また、図2に示すようにそれぞれの直並列
切換コンデンサユニットにコンパレータA1〜A31を
接続して切り換え電圧を検出する場合、各コンパレータ
A1〜A31の切り換え電圧の設定は、例えば第1段目
が24.2V、第2段目が21.3V、第3段目が1
9.5V、そして第4段目が13.2Vとなる。このよ
うに各コンデンサバンクが満充電に均等充電されていて
も、放電に伴って各段のコンデンサバンクの充電状態が
不均等になるので、充電の際に放電のときとまったく逆
に各段の直並列切り換えを行えばよい。つまり、充電と
放電で各段とも可逆的に動作させればよい。なお、可逆
充電を行う場合には、直列から並列に切り換える際に、
それらのコンデンサバンク間に電圧の差があると、その
差電圧に基づき大きなクロス電流が流れるので、本発明
は、先に説明したようにこのような過渡的に大電流が流
れるのを防ぐようにするものである。
As shown in FIG. 2, when the comparators A1 to A31 are connected to the respective series-parallel switching capacitor units to detect the switching voltage, the setting of the switching voltage of each of the comparators A1 to A31 is performed, for example, in the first stage. The eye is 24.2V, the second stage is 21.3V, and the third stage is 1
9.5V, and the fourth stage becomes 13.2V. In this way, even if each capacitor bank is fully charged evenly, the state of charge of each stage of the capacitor bank becomes uneven with the discharge. Serial-parallel switching may be performed. In other words, each stage may be operated reversibly by charging and discharging. When performing reversible charging, when switching from series to parallel,
If there is a voltage difference between the capacitor banks, a large cross current flows based on the voltage difference, and the present invention prevents such a transient large current from flowing as described above. Is what you do.

【0026】上記のようにn段の直並列切換コンデンサ
ユニットを直列接続した電源装置において、変動する電
圧の上限値VU は、コンデンサバンクC11〜Cn2の
満充電電圧VCFと直並列切換コンデンサユニット1〜n
の段数nから、その直列接続電圧としてVU =VCF×n
で求めることができる。また、変動する電圧の下限値V
L は、第1の直並列切換コンデンサユニット1のみがコ
ンデンサバンクC11とC12との直列接続回路となっ
たときの出力電圧がVL からVU になるので、VL =V
U −VU /(n+1)で求めることができる。つまり、
出力電圧VO の変動幅(VU −VL )は、1/(n+
1)に抑えることができる。したがって、上記のように
段数nが4であれば、変動幅は20%となる。
In the power supply device in which the n-stage series-parallel switching capacitor units are connected in series as described above, the upper limit value V U of the fluctuating voltage is determined by the full charge voltage V CF of the capacitor banks C11 to Cn2 and the series-parallel switching capacitor unit. 1 to n
From the number n of stages, V U = V CF × n
Can be obtained by Also, the lower limit value V of the fluctuating voltage
L is such that the output voltage when only the first series-parallel switching capacitor unit 1 becomes a series connection circuit of the capacitor banks C11 and C12 is changed from V L to V U , so that V L = V
U− V U / (n + 1). That is,
The variation width (V U -V L ) of the output voltage V O is 1 / (n +
1). Therefore, if the number of stages n is 4 as described above, the fluctuation width is 20%.

【0027】なお、本発明は、上記実施の形態に限定さ
れるものではなく、種々の変形が可能である。例えば上
記実施の形態では、従来の直並列切換スイッチを単方向
制御整流素子と整流素子との並列回路で構成したが、こ
のような並列回路は、電池に直列接続する直並列切換ス
イッチだけに用いるようにしてもよい。それは、電池ユ
ニットを直列接続から並列接続に切り換えて充電を続け
るときに、それぞれの電池に過渡的に過大な充電電流が
流れるのを防ぐことによって、電池の電圧の差に基づき
クロス電流が流れるのを防ぐようにしているからであ
る。したがって、電池と直並列切換スイッチとの直列接
続点の間に接続する直並列切換スイッチは、リレーや双
方向制御整流素子を用いてもよい。
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the conventional series-parallel changeover switch is configured by a parallel circuit of a unidirectional control rectifier and a rectifier, but such a parallel circuit is used only for a series-parallel changeover switch connected in series to a battery. You may do so. The reason is that when the battery unit is switched from series connection to parallel connection and charging is continued, a cross current flows based on a difference in battery voltage by preventing a transient excessive charging current from flowing in each battery. This is because we try to prevent Therefore, the series-parallel changeover switch connected between the series connection point of the battery and the series-parallel changeover switch may use a relay or a bidirectional control rectifier.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
によれば、充放電量に応じて電圧が大きく変化する対の
電池にそれぞれ直列に接続する切り換え手段として単方
向制御整流素子に逆方向の整流素子を並列接続した並列
回路により構成し、電池から放電電流を流す方向に整流
素子を接続し電池に充電電流を流す方向に単方向制御整
流素子を接続し過大な充電電流が流れるのを防ぐので、
直列接続から並列接続に切り換えて充電する際に、電圧
の差に基づきクロス電流が流れるのを防ぐことができ
る。また、対の電池にそれぞれ直列に接続する切り換え
手段として逆方向に接続した対の単方向制御整流素子か
らなる並列回路により構成し、放電電流を流す方向の単
方向制御整流素子は対の電池を直列接続から並列接続に
切り換えて充電する際に対の電池の電圧が不均一な間は
非導通状態に制御するので、クロス電流が流れるのを防
ぐことができる。
As is apparent from the above description, according to the present invention, as a switching means connected in series to a pair of batteries whose voltage greatly changes according to the charge / discharge amount, the switching means is connected to the unidirectional control rectifying element. The rectifiers are connected in parallel by connecting rectifiers in the same direction.The rectifiers are connected in the direction in which the discharge current flows from the battery, and the unidirectional control rectifiers are connected in the direction in which the charge current flows in the battery. To prevent
When charging by switching from series connection to parallel connection, it is possible to prevent a cross current from flowing based on a voltage difference. Further, as a switching means connected in series to the pair of batteries, a parallel circuit composed of a pair of unidirectional control rectifiers connected in the opposite direction is configured, and the unidirectional control rectifier in the direction of flowing the discharge current connects the batteries of the pair. When switching from series connection to parallel connection and charging, the battery is controlled to be in a non-conductive state while the voltage of the pair of batteries is not uniform, so that a cross current can be prevented from flowing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る直並列切換電源装置の実施の形
態を示す図である。
FIG. 1 is a diagram showing an embodiment of a series-parallel switching power supply device according to the present invention.

【図2】 本発明に係る直並列切換電源装置を4段に直
列接続した直並列切換電源装置の構成例を示す図であ
る。
FIG. 2 is a diagram showing a configuration example of a series-parallel switching power supply device in which series-parallel switching power supply devices according to the present invention are connected in series in four stages.

【図3】 従来のコンデンサ電源装置との動作比較例を
説明するための図である。
FIG. 3 is a diagram for explaining an operation comparison example with a conventional capacitor power supply device.

【図4】 ECSの標準的な構成例を示す図である。FIG. 4 is a diagram showing an example of a standard configuration of an ECS.

【図5】 ECS電流ポンプの昇圧、降圧動作領域を示
す図である。
FIG. 5 is a diagram showing a step-up / step-down operation region of the ECS current pump.

【図6】 直並列切換電源装置の構成例を示す図であ
る。
FIG. 6 is a diagram illustrating a configuration example of a series-parallel switching power supply device.

【符号の説明】[Explanation of symbols]

C1、C2…電池、D1〜D3…整流素子、Q1〜Q
3、Q11、Q22…単方向制御整流素子、L1、L2
…電流制限回路
C1, C2: battery, D1 to D3: rectifier, Q1 to Q
3, Q11, Q22 ... unidirectional control rectifier, L1, L2
… Current limiting circuit

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000004271 日本電子株式会社 東京都昭島市武蔵野3丁目1番2号 (72)発明者 岡村 廸夫 神奈川県横浜市南区南太田2丁目19番6号 (72)発明者 大島 正明 神奈川県横浜市鶴見区江ケ崎町4−1東京 電力株式会社電力技術研究所内 (72)発明者 山岸 政章 神奈川県横浜市金沢区福浦1丁目1番地1 号 株式会社パワーシステム内 (72)発明者 最上 明矩 東京都昭島市武蔵野三丁目1番2号 日本 電子株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (71) Applicant 000004271 3-1-2-2 Musashino, Akishima-shi, Tokyo (72) Inventor Dio Okamura 2--19-6 Minami-ota, Minami-ku, Yokohama-shi, Kanagawa ( 72) Inventor Masaaki Oshima 4-1 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Electric Power Research Laboratory, Tokyo Electric Power Company (72) Inventor Masaaki Yamagishi 1-1-1, Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa Power System Co., Ltd. (72) Inventor Akinori Mogami 3-1-2, Musashino, Akishima-shi, Tokyo Japan Electronics Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 充放電量に応じて電圧が大きく変化する
対の電池と該対の電池にそれぞれ直列に接続すると共に
前記直列接続点間に接続する3つの切り換え手段を備
え、前記3つの切り換え手段により前記対の電池を所定
の電圧で並列接続または直列接続に切り換えるように構
成した直並列切換電源装置において、少なくとも前記対
の電池にそれぞれ直列に接続する切り換え手段を単方向
制御整流素子に逆方向の整流素子を並列接続した並列回
路により構成し、かつ、前記電池から放電電流を流す方
向に前記整流素子を接続し前記電池に充電電流を流す方
向に前記単方向制御整流素子を接続して過大な充電電流
が流れるのを制限するように構成したことを特徴とする
直並列切換電源装置。
1. A battery comprising a pair of batteries whose voltage greatly changes in accordance with the amount of charge and discharge, and three switching means connected in series to the pair of batteries and connected between the series connection points, respectively. Means for switching the pair of batteries to a parallel connection or a series connection at a predetermined voltage, wherein at least the switching means connected in series to the pair of batteries is reversed to a unidirectional control rectifier. A rectifying element in parallel with a parallel circuit, and connecting the rectifying element in a direction in which a discharging current flows from the battery and connecting the unidirectional control rectifying element in a direction in which a charging current flows in the battery. A series-parallel switching power supply device configured to limit the flow of an excessive charging current.
【請求項2】 前記電池は、電気二重層コンデンサであ
ることを特徴とする請求項1記載の直並列切換電源装
置。
2. The series-parallel switching power supply according to claim 1, wherein the battery is an electric double layer capacitor.
【請求項3】 充放電量に応じて電圧が大きく変化する
対の電池と該対の電池にそれぞれ直列に接続すると共に
前記直列接続点間に接続する3つの切り換え手段を備
え、前記3つの切り換え手段により前記対の電池を所定
の電圧で並列接続または直列接続に切り換えるように構
成した直並列切換電源装置において、少なくとも前記対
の電池にそれぞれ直列に接続する切り換え手段を逆方向
に接続した対の単方向制御整流素子からなる並列回路に
より構成し、かつ、前記並列回路の対の単方向制御整流
素子のうち、前記電池から放電電流を流す方向の単方向
制御整流素子は前記対の電池を直列接続から並列接続に
切り換えて充電する際に前記対の電池の電圧が不均一な
間は非導通状態に制御することを特徴とする直並列切換
電源装置。
3. A battery comprising a pair of batteries whose voltage greatly changes in accordance with the amount of charge and discharge, and three switching means connected in series to the pair of batteries and connected between the series connection points, respectively. A series-parallel switching power supply device configured to switch the pair of batteries to a parallel connection or a series connection at a predetermined voltage by means of at least a pair of switching units connected in series to at least the pair of batteries in the reverse direction. A parallel circuit composed of a unidirectional control rectifier element, and a unidirectional control rectifier element in a direction in which a discharge current flows from the battery among the unidirectional control rectifier elements of the pair of the parallel circuit connects the batteries of the pair in series. A series-parallel switching power supply device, characterized in that when switching from connection to parallel connection and charging, the series-parallel switching power supply is controlled to be in a non-conducting state while the voltage of the pair of batteries is uneven.
【請求項4】 前記電池は、電気二重層コンデンサであ
ることを特徴とする請求項3記載の直並列切換電源装
置。
4. The series-parallel switching power supply according to claim 3, wherein the battery is an electric double layer capacitor.
JP09757598A 1998-04-09 1998-04-09 Series / parallel switching power supply Expired - Fee Related JP3311670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09757598A JP3311670B2 (en) 1998-04-09 1998-04-09 Series / parallel switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09757598A JP3311670B2 (en) 1998-04-09 1998-04-09 Series / parallel switching power supply

Publications (2)

Publication Number Publication Date
JPH11299112A true JPH11299112A (en) 1999-10-29
JP3311670B2 JP3311670B2 (en) 2002-08-05

Family

ID=14196048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09757598A Expired - Fee Related JP3311670B2 (en) 1998-04-09 1998-04-09 Series / parallel switching power supply

Country Status (1)

Country Link
JP (1) JP3311670B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175363A (en) * 1998-12-08 2000-06-23 Ngk Insulators Ltd Power supply
CN102467210A (en) * 2010-11-10 2012-05-23 鸿富锦精密工业(深圳)有限公司 Battery control circuit
KR20160014510A (en) 2014-07-29 2016-02-11 삼성에스디아이 주식회사 Series-parallel converting power device
EP3128639A4 (en) * 2014-06-10 2017-04-12 Kagra Inc. Electricity storage element charging method and electricity storage device
EP3358701A3 (en) * 2017-02-01 2018-08-15 Robert Bosch GmbH Charging circuit with a dc converter and charging method for an electrical energy storage system
CN111106662A (en) * 2019-12-30 2020-05-05 重庆大学 Fractal structure switch capacitor transducer and friction generator power supply management system thereof
US11682914B2 (en) 2016-11-25 2023-06-20 Dyson Technology Limited Battery system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175363A (en) * 1998-12-08 2000-06-23 Ngk Insulators Ltd Power supply
CN102467210A (en) * 2010-11-10 2012-05-23 鸿富锦精密工业(深圳)有限公司 Battery control circuit
EP3128639A4 (en) * 2014-06-10 2017-04-12 Kagra Inc. Electricity storage element charging method and electricity storage device
US10833523B2 (en) 2014-06-10 2020-11-10 Kagra Inc. Electricity storage element charging method and electricity storage device
KR20160014510A (en) 2014-07-29 2016-02-11 삼성에스디아이 주식회사 Series-parallel converting power device
US11682914B2 (en) 2016-11-25 2023-06-20 Dyson Technology Limited Battery system
EP3358701A3 (en) * 2017-02-01 2018-08-15 Robert Bosch GmbH Charging circuit with a dc converter and charging method for an electrical energy storage system
CN111106662A (en) * 2019-12-30 2020-05-05 重庆大学 Fractal structure switch capacitor transducer and friction generator power supply management system thereof
CN111106662B (en) * 2019-12-30 2023-08-15 重庆大学 Fractal structure switch capacitance transducer and friction generator power management system thereof

Also Published As

Publication number Publication date
JP3311670B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
JP6937064B1 (en) Battery charging / discharging device and method
US6151234A (en) Apparatus for converting a direct current into an alternating current
JP3487780B2 (en) Connection switching control capacitor power supply
JP5028525B2 (en) Power converter
JPS62154122A (en) Charging control system in solar generating device
JPH0686536A (en) Carrying-over circuit for ac-dc converter
JP2000324710A (en) Series/parallel switching type capacitor apparatus
CN107223304B (en) Multilevel converter with energy storage
JP2017079590A (en) Battery system
JP7266703B2 (en) 3-level boost circuit, multi-output parallel system
JP3311670B2 (en) Series / parallel switching power supply
JP3563538B2 (en) Power storage device
WO2011132302A1 (en) Charging control method and discharging control method for electricity storage device
JPH11215695A (en) Series-parallel switching type power supply unit
JP3529623B2 (en) Apparatus and method for detecting remaining capacity of series-parallel switching storage power supply
JPH11299119A (en) Series-parallel switching power supply device
US6285570B1 (en) Power mains supply unit for directly and/or indirectly supplying consumers with power
JP2000209775A (en) Serial connected step number switching type capacitor power unit
JP4144009B2 (en) Variable voltage power storage device and hybrid power supply device
CN114696616A (en) Three-port high-gain boost DC/DC converter based on differential connection and control method thereof
JP4037031B2 (en) Series stage number switching power supply
US11431240B2 (en) Frequency converter with reduced pre-charging time
JP3351741B2 (en) Power supply unit with connection bank number control
JP2995142B2 (en) Series battery charger
JP2000152495A (en) Series switching system of capacitor power unit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020508

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees