JPH11294222A - Control device for gas fuel engine - Google Patents

Control device for gas fuel engine

Info

Publication number
JPH11294222A
JPH11294222A JP10104337A JP10433798A JPH11294222A JP H11294222 A JPH11294222 A JP H11294222A JP 10104337 A JP10104337 A JP 10104337A JP 10433798 A JP10433798 A JP 10433798A JP H11294222 A JPH11294222 A JP H11294222A
Authority
JP
Japan
Prior art keywords
fuel
injection
intake
air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10104337A
Other languages
Japanese (ja)
Inventor
Jun Yamada
潤 山田
Takashi Mizobuchi
剛史 溝渕
Kenji Kanehara
賢治 金原
Motomasa Iizuka
基正 飯塚
Chikahiko Kuroda
京彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP10104337A priority Critical patent/JPH11294222A/en
Publication of JPH11294222A publication Critical patent/JPH11294222A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce exhaust emission and improve a converging characteristic of air-fuel ratio at acceleration in a gas fuel engine using natural gas. SOLUTION: An ECU 33 controls the closing time of a fuel injection valve 19 (injection termination time) to be that within intake TDC±100 CA, and preferably in the vicinity of intake TDC. Thereby, gas fuel is injected at the time when intake flow in a combustion chamber is at a certain large degree to prevent at upper layer part in the combustion chamber from becoming overrich, and injected fuel is taken in the combustion chamber before the injected fuel is diffused over a wide area in an intake pipe 20. In this case, injection pressure is controlled to be not more than 5 kgf/cm<2> , and preferably within 3.5-4.5 kgf/cm<2> . When the injection pressure becomes too high, the ratio of injected fuel that collides on an intake valve 15 and flies up increases and the ratio thereof that is taken in the chamber decreases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料として、天然
ガス等の気体燃料を用いる気体燃料エンジンの制御装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a gaseous fuel engine using a gaseous fuel such as natural gas as a fuel.

【0002】[0002]

【従来の技術】近年、例えば天然ガスを燃料とするエン
ジンにおいては、特開平7−71296号公報に示すよ
うに、各気筒の吸気ポートにそれぞれ気体燃料を噴射す
る燃料噴射弁を設け、各気筒毎に吸気行程の終期に気体
燃料を噴射することで、燃焼室内で混合気を層状化して
点火プラグ近傍に濃い混合気を形成し、着火を安定させ
ることが提案されている。ここで、天然ガスの混合気を
層状化できる理由は、吸気行程の後期には燃焼室内の吸
気流動が少ないため、空気よりも軽い天然ガスは燃焼室
内の上層部に自然に上昇して滞留するためである。
2. Description of the Related Art In recent years, for example, in an engine using natural gas as a fuel, as shown in JP-A-7-71296, a fuel injection valve for injecting gaseous fuel into an intake port of each cylinder is provided. It has been proposed to inject gaseous fuel at the end of the intake stroke each time to stratify the air-fuel mixture in the combustion chamber to form a rich air-fuel mixture near the ignition plug, thereby stabilizing ignition. Here, the reason that the mixture of natural gas can be stratified is that natural gas lighter than air naturally rises and stays in the upper part of the combustion chamber because the intake air flow in the combustion chamber is small in the latter part of the intake stroke. That's why.

【0003】[0003]

【発明が解決しようとする課題】ところが、低回転、低
負荷域では、吸入空気量が少なく、燃焼室内の吸気流動
が極端に少なくなるため、燃焼室内の上層部に天然ガス
が集まり過ぎて、上層部がオーバーリッチとなり、失火
や未燃炭化水素(HC)の排出量増加を招くおそれがあ
る。
However, in the low rotation speed and low load range, the amount of intake air is small, and the flow of intake air in the combustion chamber becomes extremely small. There is a possibility that the upper layer becomes over-rich, causing misfire and an increase in unburned hydrocarbon (HC) emission.

【0004】このような不具合は、噴射圧力を増加して
燃焼室内の吸気流動を促進することで、ある程度改善で
きるが、噴射圧力を増加させるほど、噴射燃料が吸気バ
ルブに衝突して舞い上がる割合が増加し、燃焼室内に吸
入される噴射燃料の割合が減少する。その結果、加減速
時に、燃料供給の応答遅れが生じてリーンスパイク(一
時的に空燃比がリーンになる現象)やリッチスパイク
(一時的に空燃比がリッチになる現象)が発生し、これ
が排気エミッション増加やドライバビリティ低下を招く
原因となる。
Such a problem can be improved to some extent by increasing the injection pressure to promote the flow of the intake air in the combustion chamber. However, as the injection pressure is increased, the rate at which the injected fuel collides with the intake valve and flies is increased. And the proportion of injected fuel drawn into the combustion chamber decreases. As a result, at the time of acceleration / deceleration, a response delay of the fuel supply occurs, and a lean spike (a phenomenon in which the air-fuel ratio temporarily becomes lean) and a rich spike (a phenomenon, in which the air-fuel ratio becomes rich temporarily) occur, and this is the exhaust gas. It causes emission increase and drivability decrease.

【0005】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、失火を防止できると
共に、排気エミッション低減とドライバビリティ向上を
実現できる気体燃料エンジンの制御装置を提供すること
にある。
The present invention has been made in view of such circumstances, and accordingly, has as its object to provide a control device for a gaseous fuel engine that can prevent misfires and reduce exhaust emissions and improve drivability. It is in.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の気体燃料エンジンの制御装置
は、噴射制御手段によって各気筒の燃料噴射弁の噴射終
了時期を各気筒の吸気行程のピストンの上死点(以下
「吸気TDC」と表記する)の±100℃A以内に制御
するものである。噴射終了時期が吸気TDC後(ATD
C)100℃Aより遅くなると、吸気行程の後期にな
り、燃焼室内の吸気流動が少なくなるため、燃焼室内の
上層部に軽い気体燃料が集まり過ぎて、上層部がオーバ
ーリッチとなり、HC排出量が増加したり、失火が発生
する。また、噴射終了時期が吸気TDCより前の場合、
噴射終了時期から吸気TDCまでの期間が長くなるほ
ど、吸気バルブの開弁前に吸気管内に拡散する噴射燃料
の範囲が広がるため、燃焼室内に吸入されない噴射燃料
の割合が増えて、空燃比の変動が大きくなり、加減速時
の空燃比の収束性が低下する傾向がある。このような特
性を考慮して、噴射終了時期を吸気TDC±100℃A
以内に設定すれば、燃焼室内の吸気流動がある程度大き
い時期に気体燃料を噴射することができて、燃焼室内の
上層部がオーバーリッチになることを防止できると共
に、吸気管内で噴射燃料が広い範囲に拡散する前に噴射
燃料を燃焼室内に吸入することができ、失火防止、排気
エミッション低減及びドライバビリティ向上を実現する
ことができる。
In order to achieve the above object, a control apparatus for a gaseous fuel engine according to a first aspect of the present invention is characterized in that an injection control means determines the injection end timing of a fuel injection valve of each cylinder. The control is performed within ± 100 ° C. of the top dead center of the piston during the intake stroke (hereinafter referred to as “intake TDC”). The injection end timing is after the intake TDC (ATD
C) If the temperature is lower than 100 ° C., the latter stage of the intake stroke occurs, and the flow of intake air in the combustion chamber is reduced. Therefore, light gaseous fuel is excessively collected in the upper layer of the combustion chamber, and the upper layer becomes over-rich, resulting in an increase in HC emission. Increases or a misfire occurs. If the injection end time is before the intake TDC,
As the period from the injection end timing to the intake TDC becomes longer, the range of the injected fuel that diffuses into the intake pipe before the intake valve is opened increases, so that the proportion of the injected fuel not taken into the combustion chamber increases, and the air-fuel ratio varies. And the convergence of the air-fuel ratio during acceleration / deceleration tends to decrease. In consideration of such characteristics, the injection end timing is set at the intake TDC ± 100 ° C.
If it is set within this range, gaseous fuel can be injected at a time when the intake air flow in the combustion chamber is large to some extent, so that the upper part of the combustion chamber can be prevented from becoming over-rich and the injected fuel can be spread over a wide range in the intake pipe. Before the fuel is diffused into the combustion chamber, the injected fuel can be sucked into the combustion chamber, thereby preventing misfire, reducing exhaust emissions and improving drivability.

【0007】この場合、請求項2のように、各気筒の燃
料噴射弁の噴射終了時期を各気筒の吸気TDCの近傍、
つまり吸気バルブの開弁タイミングの近傍に制御するこ
とが好ましい。このようにすれば、吸気管内で噴射燃料
が拡散する前に速やかに噴射燃料を燃焼室内に吸入する
ことができるため、吸気管内での噴射燃料の拡散を最小
限に抑えることができて、噴射燃料を効率良く燃焼室内
に吸入することができ、空燃比の変動を最小にできて、
加減速時の空燃比変動後の収束時間を最小にできる。
[0007] In this case, the injection end timing of the fuel injection valve of each cylinder is set near the intake TDC of each cylinder.
That is, it is preferable that the control be performed near the opening timing of the intake valve. With this configuration, the injected fuel can be quickly taken into the combustion chamber before the injected fuel is diffused in the intake pipe, so that the diffusion of the injected fuel in the intake pipe can be minimized, and Fuel can be efficiently sucked into the combustion chamber, and fluctuations in the air-fuel ratio can be minimized.
The convergence time after air-fuel ratio fluctuation during acceleration / deceleration can be minimized.

【0008】また、請求項3のように、噴射圧力調整手
段によって燃料噴射弁の噴射圧力を5kgf/cm2
下に調整すると良く、より好ましくは、請求項4のよう
に、3.5〜4.5kgf/cm2 の範囲内に調整する
と良い。後述する本発明者の実験結果(図7参照)から
明らかなように、噴射圧力を増加させるほど、空燃比の
変動が大きくなる傾向がある。この原因は、噴射圧力を
増加させるほど、噴射燃料が吸気バルブに衝突して舞い
上がる割合が増加し、燃焼室内に吸入される噴射燃料の
割合が減少するためと考えられる。一般的には、噴射圧
力が5kgf/cm2 よりも高くなると、空燃比の変動
が大きくなり過ぎ、加減速時の燃料供給応答遅れによる
リーンスパイク、リッチスパイクが大きくなり過ぎる。
従って、噴射圧力を5kgf/cm2 以下に調整すれ
ば、空燃比の変動を適度に抑えて、加減速時の燃料供給
応答遅れによるリーンスパイク、リッチスパイクの影響
を少なくすることができる。特に、噴射圧力を3.5〜
4.5kgf/cm2 の範囲内に調整すれば、噴射燃料
の流速と吸気の流速との差が少なくなって、噴射燃料が
より燃焼室内に流入しやすくなり、空燃比の変動を最小
にできる。
It is preferable that the injection pressure of the fuel injection valve is adjusted to 5 kgf / cm 2 or less by the injection pressure adjusting means, more preferably, 3.5 to 4 kg. It may be adjusted within the range of 0.5 kgf / cm 2 . As is clear from the experimental results of the inventor described later (see FIG. 7), the fluctuation of the air-fuel ratio tends to increase as the injection pressure increases. It is considered that the reason for this is that as the injection pressure increases, the rate at which the injected fuel collides with the intake valve and flies increases, and the rate of the injected fuel drawn into the combustion chamber decreases. Generally, when the injection pressure is higher than 5 kgf / cm 2 , the fluctuation of the air-fuel ratio becomes too large, and the lean spike and the rich spike due to the delay of the fuel supply response during acceleration / deceleration become too large.
Therefore, if the injection pressure is adjusted to 5 kgf / cm 2 or less, the fluctuation of the air-fuel ratio can be suppressed moderately, and the effect of lean spikes and rich spikes due to a delay in fuel supply response during acceleration / deceleration can be reduced. In particular, when the injection pressure is 3.5 to
By adjusting the flow rate within the range of 4.5 kgf / cm 2 , the difference between the flow rate of the injected fuel and the flow rate of the intake air is reduced, so that the injected fuel is more likely to flow into the combustion chamber and the fluctuation of the air-fuel ratio can be minimized. .

【0009】[0009]

【発明の実施の形態】以下、本発明を天然ガスを燃料と
するガスエンジン(気体燃料エンジン)に適用した一実
施形態を図面に基づいて説明する。ガスエンジン11
は、基本的にガソリンエンジンと同じ構造であり、シリ
ンダ12内にピストン13が収納され、シリンダヘッド
14に吸気バルブ15、排気バルブ16、点火プラグ1
7が取り付けられている。各気筒の吸入ポート18の近
傍には燃料噴射弁19が取り付けられ、吸気ポート18
に接続された吸気管20には、スロットルバルブ(図示
せず)が設けられている。一方、排気ポート21に接続
された排気管22には、排ガスの空燃比を検出する空燃
比センサ23と、排ガス浄化用の三元触媒24が設けら
れている。尚、空燃比センサ23の代わりに、排ガスの
酸素濃度を検出する酸素センサを用いても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a gas engine using natural gas as a fuel (gas fuel engine) will be described below with reference to the drawings. Gas engine 11
Has basically the same structure as a gasoline engine, a piston 13 is housed in a cylinder 12, and an intake valve 15, an exhaust valve 16, a spark plug 1
7 is attached. A fuel injection valve 19 is attached near the intake port 18 of each cylinder.
The intake pipe 20 connected to is provided with a throttle valve (not shown). On the other hand, an exhaust pipe 22 connected to the exhaust port 21 is provided with an air-fuel ratio sensor 23 for detecting an air-fuel ratio of exhaust gas and a three-way catalyst 24 for purifying exhaust gas. Note that, instead of the air-fuel ratio sensor 23, an oxygen sensor that detects the oxygen concentration of the exhaust gas may be used.

【0010】また、ガスエンジン11のクランク軸34
に嵌着されたシグナルロータ25に対向してクランク角
センサ26が設けられ、このクランク角センサ26から
出力されるパルス信号の発生周波数によってエンジン回
転数が検出されると共に、このパルス信号のカウント値
とカムセンサ(図示せず)の出力パルスとに基づいてク
ランク角の判定や気筒判別が行われる。
Further, the crankshaft 34 of the gas engine 11
A crank angle sensor 26 is provided so as to face the signal rotor 25 fitted to the engine. The engine frequency is detected based on the frequency of the pulse signal output from the crank angle sensor 26, and the count value of the pulse signal is counted. The determination of the crank angle and the cylinder determination are performed based on the output pulse of the cam sensor (not shown).

【0011】次に、燃料供給系の構成を説明する。車両
には、1本又は複数本の燃料ボンベ27が搭載され、各
燃料ボンベ27内には、天然ガス(CNG)等の気体燃
料が高圧で充填されている。各燃料ボンベ27の燃料出
口にボンベ遮断弁28を介して接続された1本の高圧側
燃料配管29には、燃料遮断弁30を介して燃圧レギュ
レータ31(噴射圧力調整手段)が接続され、この燃圧
レギュレータ31で調圧された気体燃料が低圧側燃料配
管32を介して各気筒の燃料噴射弁19に供給される。
Next, the configuration of the fuel supply system will be described. One or more fuel cylinders 27 are mounted on the vehicle, and each fuel cylinder 27 is filled with a gaseous fuel such as natural gas (CNG) at a high pressure. A fuel pressure regulator 31 (injection pressure adjusting means) is connected via a fuel cutoff valve 30 to one high pressure side fuel pipe 29 connected to a fuel outlet of each fuel cylinder 27 via a cylinder cutoff valve 28. The gaseous fuel regulated by the fuel pressure regulator 31 is supplied to the fuel injection valve 19 of each cylinder via the low pressure side fuel pipe 32.

【0012】この場合、燃圧レギュレータ31は、燃料
噴射弁19に供給する気体燃料の圧力(噴射圧力)を5
kgf/cm2 以下、より好ましくは3.5〜4.5k
gf/cm2 の範囲内に調整するように設定されている
(この理由については後述する)。また、燃料噴射弁1
9は、上記噴射圧力で噴射した場合に、最高エンジン回
転数の180℃A(4気筒エンジンの場合)に相当する
期間以内に要求噴射量を噴射できるように設計され、且
つ、最高エンジン回転数からアイドル回転数までの全運
転領域で、燃料噴射弁19の開弁時間(噴射時間)と噴
射量との関係がリニアとなるように設計されている。
In this case, the fuel pressure regulator 31 sets the pressure (injection pressure) of the gaseous fuel supplied to the fuel injection valve 19 to 5
kgf / cm 2 or less, more preferably 3.5 to 4.5 k
It is set so as to be adjusted within the range of gf / cm 2 (the reason will be described later). Also, the fuel injection valve 1
Numeral 9 is designed so that the required injection amount can be injected within a period corresponding to the maximum engine speed of 180 ° C. A (in the case of a four-cylinder engine) when the injection is performed at the above-described injection pressure, and It is designed such that the relationship between the valve opening time (injection time) of the fuel injection valve 19 and the injection amount is linear in the entire operation range from to the idle speed.

【0013】前述したクランク角センサ26、空燃比セ
ンサ23等の各種のセンサの出力はエンジン制御回路
(以下「ECU」と表記する)33に取り込まれる。こ
のECU33は、マイクロコンピュータを主体として構
成され、内蔵するROM(図示せず)には、図2に示す
噴射制御プログラム等の各種のエンジン制御プログラム
が記憶されている。以下、本実施形態の特徴である噴射
制御について図2のフローチャートに従って説明する。
The outputs of various sensors such as the above-described crank angle sensor 26 and air-fuel ratio sensor 23 are taken into an engine control circuit (hereinafter referred to as "ECU") 33. The ECU 33 mainly includes a microcomputer, and a built-in ROM (not shown) stores various engine control programs such as an injection control program shown in FIG. Hereinafter, the injection control, which is a feature of the present embodiment, will be described with reference to the flowchart of FIG.

【0014】図2の噴射制御プログラムは、ECU33
にて、所定クランク角毎に繰り返し実行され、特許請求
の範囲でいう噴射制御手段としての役割を果たす。本プ
ログラムが起動されると、まずステップ101で、クラ
ンク角センサ26等の各種のセンサから出力されるエン
ジン運転条件の情報を読み込み、次のステップ102
で、エンジン運転条件に応じてマップ等から基本噴射時
間(基本噴射量)を演算する。この後、ステップ103
で、空燃比フィードバック条件が成立しているか否かを
判定する。ここで、空燃比フィードバック条件は、例え
ば、各種の燃料増量補正が行われていないこと、燃料カ
ット中でないこと、高負荷運転中でないこと、空燃比セ
ンサ23が活性化していること等であり、これらの条件
を全て満たした時に空燃比フィードバック条件が成立
し、1つでも満たさない条件があれば、空燃比フィード
バック条件が不成立となる。
The injection control program shown in FIG.
, And is repeatedly executed at every predetermined crank angle, and functions as an injection control means referred to in the claims. When this program is started, first, in step 101, information on engine operating conditions output from various sensors such as the crank angle sensor 26 is read, and in the next step 102
Then, the basic injection time (basic injection amount) is calculated from a map or the like according to the engine operating conditions. After this, step 103
It is determined whether the air-fuel ratio feedback condition is satisfied. Here, the air-fuel ratio feedback conditions include, for example, that various fuel increase corrections are not performed, that fuel is not being cut, that high-load operation is not being performed, that the air-fuel ratio sensor 23 is activated, and the like. When all of these conditions are satisfied, the air-fuel ratio feedback condition is satisfied. If at least one of the conditions is not satisfied, the air-fuel ratio feedback condition is not satisfied.

【0015】もし、空燃比フィードバック条件が不成立
であれば、ステップ104に進み、空燃比補正係数FA
Fを「1.0」に設定して、ステップ107に進む。こ
の場合は、空燃比のフィードバック補正は行われない。
If the air-fuel ratio feedback condition is not satisfied, the routine proceeds to step 104, where the air-fuel ratio correction coefficient FA
F is set to "1.0", and the routine proceeds to step 107. In this case, no feedback correction of the air-fuel ratio is performed.

【0016】一方、上記ステップ103で、空燃比フィ
ードバック条件成立と判定された場合には、ステップ1
05に進み、空燃比センサ23の出力を読み込み、次の
ステップ108で、目標空燃比と空燃比センサ23の出
力(実空燃比)との偏差に基づいて空燃比補正係数FA
Fを算出して、ステップ107に進む。
On the other hand, if it is determined in step 103 that the air-fuel ratio feedback condition is satisfied, step 1
In step 108, the output of the air-fuel ratio sensor 23 is read, and in the next step 108, the air-fuel ratio correction coefficient FA based on the deviation between the target air-fuel ratio and the output (actual air-fuel ratio) of the air-fuel ratio sensor 23.
After calculating F, the process proceeds to step 107.

【0017】このステップ107では、空燃比補正係数
FAF以外の各種の補正係数、例えばエンジン温度によ
る補正係数、加減速時の補正係数等を演算する。そし
て、次のステップ108で、上記基本噴射時間に空燃比
補正係数FAFと各種補正係数を乗算して、最終噴射時
間(最終噴射量)を演算する。 最終噴射時間=基本噴射時間×FAF×各種補正係数
In step 107, various correction coefficients other than the air-fuel ratio correction coefficient FAF, for example, a correction coefficient depending on the engine temperature, a correction coefficient during acceleration / deceleration, and the like are calculated. Then, in the next step 108, the final injection time (final injection amount) is calculated by multiplying the basic injection time by the air-fuel ratio correction coefficient FAF and various correction coefficients. Final injection time = basic injection time x FAF x various correction coefficients

【0018】この後、ステップ109で、各気筒の燃料
噴射弁19の開弁時期(噴射開始時期)を演算する。こ
の際、燃料噴射弁19の閉弁時期(噴射終了時期)が予
め設定した吸気TDC±100℃A以内の時期、より好
ましくは吸気TDCの近傍となるように、最終噴射時間
に応じて各気筒の燃料噴射弁19の開弁時期を演算す
る。この後、ステップ110で、現在のクランク角が上
記ステップ109で演算した開弁時期になったか否かを
判定し、現在のクランク角がこの開弁時期になった時点
で、ステップ111に進み、該当する気筒の燃料噴射弁
19を開弁して、気体燃料の噴射を開始する。
Thereafter, at step 109, the valve opening timing (injection start timing) of the fuel injection valve 19 of each cylinder is calculated. At this time, each cylinder according to the final injection time is set so that the valve closing timing (injection end timing) of the fuel injection valve 19 becomes a timing within a preset intake TDC ± 100 ° C., more preferably near the intake TDC. Of the fuel injection valve 19 is calculated. Thereafter, in step 110, it is determined whether or not the current crank angle has reached the valve opening timing calculated in step 109, and when the current crank angle has reached this valve opening timing, the process proceeds to step 111, The fuel injection valve 19 of the corresponding cylinder is opened to start gaseous fuel injection.

【0019】噴射中は、ステップ112で、現在のクラ
ンク角が吸気TDC±100℃Aの範囲内で予め設定し
た閉弁時期(好ましくは吸気TDCの近傍)になったか
否かを判定し、現在のクランク角が上記閉弁時期になっ
た時点で、ステップ113に進み、該当する気筒の燃料
噴射弁19を閉弁して気体燃料の噴射を終了し、本プロ
グラムを終了する。
During injection, at step 112, it is determined whether or not the current crank angle has reached a preset valve closing timing (preferably near the intake TDC) within the range of intake TDC ± 100 ° C. When the crank angle reaches the valve closing timing, the routine proceeds to step 113, where the fuel injection valve 19 of the corresponding cylinder is closed to terminate the injection of gaseous fuel, and this program is terminated.

【0020】以上説明した本実施形態は、空気より軽い
天然ガス等の気体燃料を燃料とするガスエンジン11に
おいて、排気エミッション低減及び加減速時の空燃比の
収束性向上の観点から、燃料噴射弁19の閉弁時期(噴
射終了時期)を吸気TDC±100℃A以内の時期、よ
り好ましくは吸気TDCの近傍となるように制御すると
共に、噴射圧力を5kgf/cm2 以下、より好ましく
は、3.5〜4.5kgf/cm2 の範囲内に調整する
ところに特徴がある。以下、このように設定する理由に
ついて説明する。
The present embodiment described above provides a fuel injection valve for a gas engine 11 using gaseous fuel, such as natural gas, which is lighter than air, from the viewpoint of reducing exhaust emissions and improving the convergence of the air-fuel ratio during acceleration and deceleration. The valve closing timing (injection end timing) is controlled so as to be within the intake TDC ± 100 ° C., more preferably in the vicinity of the intake TDC, and the injection pressure is set to 5 kgf / cm 2 or less, more preferably 3 It is characterized in that it is adjusted within the range of 0.5 to 4.5 kgf / cm 2 . Hereinafter, the reason for such setting will be described.

【0021】本発明者は、噴射終了時期とHC排出量と
の関係を実験により測定したので、その測定結果を図3
に示す。この測定結果から、噴射終了時期が吸気TDC
後(ATDC)100℃Aを越えると、HC排出量が急
激に増加したり、失火が発生することが判明した。AT
DC100℃Aを越える時期は、吸気行程後期になり、
ピストン13の下降速度が遅くなるため、燃焼室内の吸
気流動が少なくなる。このため、空気と気体燃料との比
重差により燃焼室内の上層部に軽い気体燃料が集まり過
ぎて、上層部がオーバーリッチとなることから、HC排
出量が増加したり、失火が発生するものと考えられる。
The present inventor measured the relationship between the injection end timing and the HC emission amount by experiment, and the measured result is shown in FIG.
Shown in From this measurement result, the injection end timing is determined by the intake TDC
Later (ATDC), it was found that when the temperature exceeded 100 ° C., the amount of HC emission increased rapidly and a misfire occurred. AT
The time exceeding DC 100 ° A is the latter half of the intake stroke,
Since the lowering speed of the piston 13 is slowed down, the flow of intake air in the combustion chamber is reduced. For this reason, light gaseous fuel gathers too much in the upper part of the combustion chamber due to the difference in specific gravity between air and gaseous fuel, and the upper part becomes over-rich, so that HC emission increases and misfire occurs. Conceivable.

【0022】図3の測定結果から、噴射終了時期をAT
DC100℃A以前に設定すれば、HC排出量が極めて
少なくなることが確認された。ATDC100℃A以前
であれば、燃焼室内の吸気流動がある程度大きい時期に
噴射が終了するため、燃焼室内に吸入された混合気が吸
気流動により適度に攪拌されて、燃焼室内の上層部がオ
ーバーリッチになることが防止される。
Based on the measurement results shown in FIG.
It was confirmed that if the temperature was set before DC 100 ° C., the amount of HC emission was extremely reduced. If the temperature is before ATDC 100 ° C., the injection ends at a time when the intake air flow in the combustion chamber is large to some extent, so that the air-fuel mixture sucked into the combustion chamber is appropriately stirred by the intake air flow, and the upper layer of the combustion chamber is over-rich. Is prevented.

【0023】ところで、図4に示すように、加減速時の
吸気管圧力の急変により、リーンスパイクやリッチスパ
イクが発生し、空燃比が一時的に目標空燃比からずれ
る。リーン/リッチスパイク発生後に、空燃比が目標空
燃比付近に収束するまでの収束時間が長くなるほど、空
燃比が目標空燃比からずれた状態が長く続くため、排気
エミッションが増加したり、ドライバビリティが低下す
る。従って、加減速時の空燃比の収束時間が短い方が好
ましい。
As shown in FIG. 4, a lean spike or a rich spike occurs due to a sudden change in the intake pipe pressure during acceleration / deceleration, and the air-fuel ratio temporarily deviates from the target air-fuel ratio. As the convergence time until the air-fuel ratio converges to the vicinity of the target air-fuel ratio after the occurrence of the lean / rich spike becomes longer, the state in which the air-fuel ratio deviates from the target air-fuel ratio continues for a longer time. descend. Therefore, it is preferable that the convergence time of the air-fuel ratio during acceleration / deceleration is short.

【0024】本発明者は、噴射終了時期と加減速時の空
燃比の収束時間との関係を実験により測定したので、そ
の測定結果を図5及び図6に示す。加速時、減速時のい
ずれの場合も、噴射終了時期が吸気TDC近傍の時に、
空燃比の収束時間が最も短くなり、噴射終了時期が吸気
TDCから離れるほど、収束時間が長くなる傾向があ
る。噴射終了時期が吸気TDCより前の場合、噴射終了
時期から吸気TDCまでの期間が長くなるほど、吸気バ
ルブ15の開弁前に吸気管20内に拡散する噴射燃料の
範囲が広がるため、燃焼室内に吸入されない噴射燃料の
割合が増加して、加減速時に燃料供給の応答遅れが生じ
る。その結果、加減速時の空燃比の変動(リーンスパイ
ク、リッチスパイク)が大きくなり、収束時間が長くな
る。
The inventor measured the relationship between the injection end timing and the convergence time of the air-fuel ratio at the time of acceleration / deceleration by experiments. The measurement results are shown in FIGS. 5 and 6. In both cases of acceleration and deceleration, when the injection end timing is near the intake TDC,
The convergence time of the air-fuel ratio becomes the shortest, and the convergence time tends to be longer as the injection end timing is farther from the intake TDC. When the injection end time is before the intake TDC, as the period from the injection end time to the intake TDC becomes longer, the range of the injected fuel that diffuses into the intake pipe 20 before the intake valve 15 is opened increases. The proportion of injected fuel that is not sucked increases, causing a delay in fuel supply response during acceleration and deceleration. As a result, fluctuations of the air-fuel ratio during acceleration / deceleration (lean spikes, rich spikes) increase, and the convergence time increases.

【0025】また、本実施形態のように、噴射終了時期
を吸気TDC前(BTDC)100℃A以後に設定すれ
ば、吸気管20内で噴射燃料が広い範囲に拡散する前に
噴射燃料が燃焼室内に吸入され、燃焼室内に吸入される
噴射燃料の割合が増加して、加減速時の燃料供給の応答
遅れが少なくなり、その分、加減速時の空燃比の収束時
間が短くなる。特に、噴射終了時期を吸気TDCの近
傍、つまり吸気バルブ15の開弁タイミングの近傍に設
定すれば、吸気管20内で噴射燃料が拡散する前に速や
かに噴射燃料が燃焼室内に吸入されるため、吸気管20
内での噴射燃料の拡散が最小限に抑えられて、加減速時
の燃料供給の応答遅れが最小となり、加減速時の空燃比
の収束時間が最小となる。従って、噴射終了時期を吸気
TDCの近傍に設定した時に、排気エミッション低減の
効果とドライバビリティ向上の効果が最大となる。
If the injection end timing is set to 100 ° C. or more before the intake TDC (BTDC) as in the present embodiment, the injected fuel burns before the injected fuel diffuses in a wide range in the intake pipe 20. The proportion of injected fuel that is drawn into the chamber and drawn into the combustion chamber increases, so that the response delay of fuel supply during acceleration / deceleration decreases, and the convergence time of the air-fuel ratio during acceleration / deceleration decreases accordingly. In particular, if the injection end timing is set near the intake TDC, that is, near the opening timing of the intake valve 15, the injected fuel is quickly drawn into the combustion chamber before the injected fuel is diffused in the intake pipe 20. , Intake pipe 20
The diffusion of the injected fuel in the air is minimized, the response delay of fuel supply during acceleration / deceleration is minimized, and the convergence time of the air-fuel ratio during acceleration / deceleration is minimized. Therefore, when the injection end timing is set near the intake TDC, the effect of reducing exhaust emission and the effect of improving drivability are maximized.

【0026】また、本実施形態では、噴射圧力を5kg
f/cm2 以下、より好ましくは、3.5〜4.5kg
f/cm2 の範囲内に設定している。図7に示す本発明
者の実験結果から明らかなように、噴射圧力を増加させ
るほど、空燃比の変動が大きくなる傾向がある。この原
因は、噴射圧力を増加させるほど、噴射燃料が吸気バル
ブ15に衝突して舞い上がって吸気管20内に残留する
割合が増加し、燃焼室内に吸入される噴射燃料の割合が
減少するためと考えられる。一般に、噴射圧力が5kg
f/cm2 よりも高くなると、空燃比の変動が大きくな
り過ぎ、加減速時の燃料供給応答遅れによるリーンスパ
イク、リッチスパイクが大きくなり過ぎる。従って、噴
射圧力を5kgf/cm2 以下に調整すれば、空燃比の
変動を適度に抑えて、加減速時の燃料供給応答遅れによ
るリーンスパイク、リッチスパイクの影響を少なくする
ことができる。
In this embodiment, the injection pressure is set at 5 kg.
f / cm 2 or less, more preferably 3.5 to 4.5 kg
f / cm 2 . As is clear from the inventor's experimental results shown in FIG. 7, as the injection pressure increases, the air-fuel ratio tends to fluctuate more. This is because, as the injection pressure is increased, the injected fuel collides with the intake valve 15 and soars, so that the ratio of the injected fuel remaining in the intake pipe 20 increases, and the ratio of the injected fuel sucked into the combustion chamber decreases. Conceivable. Generally, injection pressure is 5kg
If it is higher than f / cm 2 , the fluctuation of the air-fuel ratio becomes too large, and the lean spike and the rich spike due to the delay of the fuel supply response during acceleration / deceleration become too large. Therefore, if the injection pressure is adjusted to 5 kgf / cm 2 or less, the fluctuation of the air-fuel ratio can be suppressed moderately, and the effect of lean spikes and rich spikes due to a delay in fuel supply response during acceleration / deceleration can be reduced.

【0027】特に、噴射圧力を3.5〜4.5kgf/
cm2 の範囲内に調整すれば、噴射燃料の流速と吸気の
流速との差が少なくなって、噴射燃料がより燃焼室内に
流入しやすくなり、空燃比の変動を最小にできる。ま
た、噴射圧力が低くなるほど、燃料噴射弁19のバルブ
摺動部が大きくなり、その分、バルブ摺動部の摩耗が増
大して燃料噴射弁19の耐久性が低下する。従って、噴
射圧力が低すぎるのも耐久性の観点から好ましくない。
本実施形態のように、噴射圧力を3.5kgf/cm2
以上とすれば、燃料噴射弁19のバルブ摺動部が小さく
なり、その分、バルブ摺動部の摩耗が減少して、燃料噴
射弁19の耐久性が向上する。
In particular, the injection pressure is set to 3.5 to 4.5 kgf /
When the flow rate is adjusted within the range of cm 2 , the difference between the flow rate of the injected fuel and the flow rate of the intake air is reduced, so that the injected fuel is more likely to flow into the combustion chamber, and the fluctuation of the air-fuel ratio can be minimized. Further, as the injection pressure decreases, the valve sliding portion of the fuel injection valve 19 increases, and accordingly, the wear of the valve sliding portion increases and the durability of the fuel injection valve 19 decreases. Therefore, it is not preferable that the injection pressure is too low from the viewpoint of durability.
As in the present embodiment, the injection pressure is set to 3.5 kgf / cm 2.
By doing so, the valve sliding portion of the fuel injection valve 19 becomes smaller, and accordingly, the wear of the valve sliding portion is reduced, and the durability of the fuel injection valve 19 is improved.

【0028】尚、本実施形態では、全運転領域で、噴射
終了時期を吸気TDCの±100℃A以内に制御するよ
うにしたが、例えば、低回転、低負荷域等、特定の運転
領域でのみ、噴射終了時期を吸気TDCの±100℃A
以内に制御するようにしても良い。
In the present embodiment, the injection end timing is controlled within ± 100 ° A of the intake TDC in the entire operation range. However, for example, the injection end timing is controlled in a specific operation range such as a low rotation speed and a low load range. Only, the injection end timing is ± 100 ° C of intake TDC
The control may be performed within the range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態におけるガスエンジンの制
御系、燃料供給系の構成を示す図
FIG. 1 is a diagram showing a configuration of a control system and a fuel supply system of a gas engine according to an embodiment of the present invention.

【図2】噴射制御プログラムの処理の流れを示すフロー
チャート
FIG. 2 is a flowchart showing a flow of processing of an injection control program;

【図3】噴射終了時期とHC排出量との関係を測定した
データを示す図
FIG. 3 is a diagram showing data obtained by measuring a relationship between an injection end timing and an HC emission amount.

【図4】加減速時の吸気管圧力と空燃比の挙動を示すタ
イムチャート
FIG. 4 is a time chart showing the behavior of the intake pipe pressure and the air-fuel ratio during acceleration / deceleration.

【図5】噴射終了時期と加速時の空燃比の収束時間との
関係を測定したデータを示す図
FIG. 5 is a diagram showing data obtained by measuring a relationship between an injection end timing and an air-fuel ratio convergence time during acceleration.

【図6】噴射終了時期と減速時の空燃比の収束時間との
関係を測定したデータを示す図
FIG. 6 is a diagram showing data obtained by measuring the relationship between the injection end timing and the convergence time of the air-fuel ratio during deceleration.

【図7】噴射終了時期と噴射圧力と空燃比変動との関係
を測定したデータを示す図
FIG. 7 is a diagram showing data obtained by measuring the relationship between the injection end timing, the injection pressure, and the air-fuel ratio fluctuation.

【符号の説明】[Explanation of symbols]

11…ガスエンジン(気体燃料エンジン)、13…ピス
トン、15…吸気バルブ、16…排気バルブ、18…吸
気ポート、19…燃料噴射弁、20…吸気管、21…排
気ポート、22…排気管、23…空燃比センサ、24…
三元触媒、26…クランク角センサ、27…燃料ボン
ベ、31…燃圧レギュレータ(噴射圧力調整手段)、3
3…ECU(噴射制御手段)。
11 gas engine (gas fuel engine), 13 piston, 15 intake valve, 16 exhaust valve, 18 intake port, 19 fuel injection valve, 20 intake pipe, 21 exhaust port, 22 exhaust pipe, 23 ... air-fuel ratio sensor, 24 ...
Three-way catalyst, 26 ... crank angle sensor, 27 ... fuel cylinder, 31 ... fuel pressure regulator (injection pressure adjusting means), 3
3. ECU (injection control means).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金原 賢治 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 飯塚 基正 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 黒田 京彦 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Kanehara 14 Iwatani, Shimowasumi-cho, Nishio-shi, Aichi Prefecture Inside the Japan Automotive Parts Research Institute (72) Inventor Motomasa Iizuka 14 Iwatani, Shimowasumi-cho, Nishio-shi, Aichi Prefecture Shares (72) Inventor Yoshihiko Kuroda 1-1-1, Showa-cho, Kariya-shi, Aichi Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 各気筒の吸気ポートにそれぞれ気体燃料
を噴射する燃料噴射弁を設け、各気筒の燃料噴射弁の噴
射量及び噴射時期を制御する噴射制御手段を備えた気体
燃料エンジンの制御装置において、 前記噴射制御手段は、各気筒の燃料噴射弁の噴射終了時
期を各気筒の吸気行程のピストンの上死点の±100℃
A以内に制御することを特徴とする気体燃料エンジンの
制御装置。
1. A control apparatus for a gaseous fuel engine, comprising: a fuel injection valve for injecting gaseous fuel into an intake port of each cylinder; and an injection control means for controlling an injection amount and an injection timing of the fuel injection valve of each cylinder. In the above, the injection control means sets the injection end timing of the fuel injection valve of each cylinder to ± 100 ° C. of the top dead center of the piston in the intake stroke of each cylinder.
A control device for a gaseous fuel engine, wherein the control is performed within A.
【請求項2】 前記噴射制御手段は、各気筒の燃料噴射
弁の噴射終了時期を各気筒の吸気行程のピストンの上死
点の近傍に制御することを特徴とする請求項1に記載の
気体燃料エンジンの制御装置。
2. The gas according to claim 1, wherein the injection control means controls the injection end timing of the fuel injection valve of each cylinder to be near a top dead center of a piston in an intake stroke of each cylinder. Control unit for fuel engine.
【請求項3】 前記燃料噴射弁の噴射圧力を5kgf/
cm2 以下に調整する噴射圧力調整手段を備えているこ
とを特徴とする請求項1又は2に記載の気体燃料エンジ
ンの制御装置。
3. An injection pressure of the fuel injection valve is set to 5 kgf /
3. The control device for a gaseous fuel engine according to claim 1, further comprising an injection pressure adjusting means for adjusting the pressure to not more than cm 2 .
【請求項4】 前記噴射圧力調整手段は前記燃料噴射弁
の噴射圧力を3.5〜4.5kgf/cm2 の範囲内に
調整することを特徴とする請求項3に記載の気体燃料エ
ンジンの制御装置。
4. The gaseous fuel engine according to claim 3, wherein said injection pressure adjusting means adjusts an injection pressure of said fuel injection valve within a range of 3.5 to 4.5 kgf / cm 2 . Control device.
JP10104337A 1998-04-15 1998-04-15 Control device for gas fuel engine Withdrawn JPH11294222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10104337A JPH11294222A (en) 1998-04-15 1998-04-15 Control device for gas fuel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10104337A JPH11294222A (en) 1998-04-15 1998-04-15 Control device for gas fuel engine

Publications (1)

Publication Number Publication Date
JPH11294222A true JPH11294222A (en) 1999-10-26

Family

ID=14378126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10104337A Withdrawn JPH11294222A (en) 1998-04-15 1998-04-15 Control device for gas fuel engine

Country Status (1)

Country Link
JP (1) JPH11294222A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000596B2 (en) 2003-10-03 2006-02-21 Cummins Westport Inc. Method and apparatus for controlling an internal combustion engine using combustion chamber pressure sensing
JP2014173523A (en) * 2013-03-11 2014-09-22 Denso Corp Gas fuel combustion control system and gas fuel combustion control method used for the same
JP2016075165A (en) * 2014-10-02 2016-05-12 Jfeエンジニアリング株式会社 Gas valve operation control method of gas engine, and gas engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000596B2 (en) 2003-10-03 2006-02-21 Cummins Westport Inc. Method and apparatus for controlling an internal combustion engine using combustion chamber pressure sensing
JP2014173523A (en) * 2013-03-11 2014-09-22 Denso Corp Gas fuel combustion control system and gas fuel combustion control method used for the same
JP2016075165A (en) * 2014-10-02 2016-05-12 Jfeエンジニアリング株式会社 Gas valve operation control method of gas engine, and gas engine

Similar Documents

Publication Publication Date Title
US8406984B2 (en) Method and system for pre-ignition control
US7591243B2 (en) Fuel injection control apparatus and method for direct injection internal combustion engine
EP2044313B1 (en) Fuel injection control apparatus and fuel injection control method for internal combustion engine
JP4063197B2 (en) Injection control device for internal combustion engine
EP0824188B1 (en) Control apparatus for an in-cylinder injection internal combustion engine
JP2006183548A (en) Control device for internal combustion engine
EP2047091B1 (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
US20160258345A1 (en) Internal combustion engine
US6003489A (en) Fuel injection control device of in-cylinder type internal combustion engine
JPH11287143A (en) Internal combustion engine controller
US6176217B1 (en) Fuel vapor processing apparatus and method of internal combustion engine
JPH0158334B2 (en)
JP2001098972A (en) Controller for spark-ignition direct injection engine
JPH11294222A (en) Control device for gas fuel engine
JP3973390B2 (en) Intake pressure detection method for internal combustion engine
JP4379670B2 (en) Fuel property determination device for internal combustion engine
JP2002276428A (en) Air/fuel ratio control device for internal combustion engine
JP3633283B2 (en) Evaporative fuel processing device for internal combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JP3562248B2 (en) Evaporative fuel treatment system for internal combustion engine
JP7023129B2 (en) Internal combustion engine control device
JPH11270381A (en) Air-fuel ratio control device of internal combustion engine
JP2004092513A (en) Combustion control device for internal combustion engine
JP4206624B2 (en) Lean combustion engine control system
JPH1162560A (en) Exhaust emission control device of engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705