JPH11293430A - Production of high toughness aluminum alloy casting and high toughness aluminum alloy casting obtained thereby - Google Patents

Production of high toughness aluminum alloy casting and high toughness aluminum alloy casting obtained thereby

Info

Publication number
JPH11293430A
JPH11293430A JP9768498A JP9768498A JPH11293430A JP H11293430 A JPH11293430 A JP H11293430A JP 9768498 A JP9768498 A JP 9768498A JP 9768498 A JP9768498 A JP 9768498A JP H11293430 A JPH11293430 A JP H11293430A
Authority
JP
Japan
Prior art keywords
less
temperature
aluminum alloy
hours
alloy casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9768498A
Other languages
Japanese (ja)
Inventor
Sanetsugu Onishi
脩嗣 大西
Shigehiro Nakayama
栄浩 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9768498A priority Critical patent/JPH11293430A/en
Publication of JPH11293430A publication Critical patent/JPH11293430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high toughness aluminum alloy casting by short time heat treatment and to provide a high toughness aluminum alloy casting obtd. thereby. SOLUTION: In the method for producing a high toughness aluminum alloy casting, an aluminum alloy casting after casting having a compsn. contg., by mass, 3.5 to 5.0% Si, 0.15 to 0.4% Mg, <=1.0% Cu, an improving treating agent, and the balance substantially Al with inevitable impurities in which the content of Fe is regulated to <=0.2% in particular is subjected to solution treatment in which it is held at >823K (550 deg.C) to <848K (575 deg.C) for 2 to 4 hr and is thereafter rapidly cooled, and subsequently, aging treatment is executed at 433K (160 deg.C) to 453K (180 deg.C) for 1 to 3 hr. The obtd. high toughness aluminum alloy casting is the one in which the area of eutectic Si grains in an aluminum matrix is regulated to <=6 μm<2> , furthermore, the roundness thereof is regulated to >=0.55, elongation to >=23% and impact value to >=23×10<4> J/m<2> . Moreover, the casting has >=290 MPa tensile strength and >=200 MPa proof stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高靱性アルミニウ
ム合金鋳物(以下、「アルミ鋳物」という)の製造方法
およびアルミ鋳物に関し、より詳しくは、アルミ鋳物に
最適な熱処理を施すことで、鍛造法に匹敵する大きい伸
び、および高い衝撃性を付与して、自動車用足廻り部品
のホイールやクロスメンバー、冷凍機、圧縮機の高速回
転部品のインペラーなどに適用できるアルミ鋳物の製造
方法およびアルミ鋳物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-toughness aluminum alloy casting (hereinafter referred to as "aluminum casting") and an aluminum casting. The present invention relates to a method for producing an aluminum casting and an aluminum casting which can be applied to wheels and cross members of automobile suspension parts, impellers for high-speed rotating parts of compressors, etc., by imparting large elongation and high impact properties comparable to those of automobiles. .

【0002】[0002]

【従来の技術】自動車用足廻り部品のホイールは、鋼板
を加工して製作されるものもあるが、軽量化、意匠(デ
ザイン)性などから、アルミ鋳物(例えば(JIS)A
C4CH材)でも製作されてきている。また、クロスメ
ンバーも、軽量化を目的にアルミ鋳物で製作されようと
している。しかし、従来のアルミ鋳物は、まだまだ伸び
や衝撃値などの靱性や、強度が小さい。このため、アル
ミ鋳物は、ホイールやクロスメンバーでも比較的中型以
下の自動車に適用されているにすぎず、トラック用のホ
イールなど比較的大型の自動車にはアルミニウム合金鍛
造品(例えば(JIS)H400での合金番号6061
(化学成分は重量%で、Si:0.40〜0.8%、F
e:0.7%以下、Cu:0.15〜0.40%、M
n:0.15%以下、Mg:0.8〜1.2%、Cr:
0.04〜0.35%、Zn:0.25%以下、Ti:
0.15%以下、その他:0.15%以下、残部Al)
など)が用いられてきている。
2. Description of the Related Art Some wheel suspension parts for automobiles are manufactured by processing a steel plate. However, aluminum castings (for example, (JIS) A) are used in view of weight reduction and design (design) properties.
(C4CH material). The cross members are also being manufactured from aluminum castings for the purpose of weight reduction. However, conventional aluminum castings are still low in toughness such as elongation and impact value and strength. For this reason, aluminum castings are applied only to relatively small vehicles such as wheels and cross members, and are used for aluminum alloy forgings (for example, (JIS) H400) for relatively large vehicles such as truck wheels. Alloy number 6061
(Chemical components are% by weight, Si: 0.40 to 0.8%, F
e: 0.7% or less, Cu: 0.15 to 0.40%, M
n: 0.15% or less, Mg: 0.8 to 1.2%, Cr:
0.04 to 0.35%, Zn: 0.25% or less, Ti:
0.15% or less, other: 0.15% or less, balance Al)
Etc.) have been used.

【0003】アルミニウム合金鍛造品は、靱性および伸
びが大きく、また内部欠陥が少ないので強度に優れるな
ど、信頼性が高い。しかし製造コストが高く、更に好み
の意匠を得ることが難しいなどの課題がある。一方、ト
ラック用のホイールなど比較的大型の部品をアルミ鋳物
で製造しようとしてアルミ鍛造品と同等の靱性や強度を
与えるには、部品を厚肉に構成しなければならならず、
重量が増加してしまい、軽量化することが難しい。
[0003] Aluminum alloy forgings have high reliability, such as high toughness and elongation, and excellent strength since there are few internal defects. However, there are problems such as high manufacturing cost and difficulty in obtaining a desired design. On the other hand, in order to produce relatively large parts such as truck wheels with aluminum castings and to give the same toughness and strength as aluminum forged products, the parts must be thickened,
The weight increases, and it is difficult to reduce the weight.

【0004】アルミ鋳物で、アルミニウム合金鍛造品並
みの高強度、高靱性を出そうと、特開平5−5148号
公報には、重量%で、Si:2.5〜4.4%、Cu:
1.5〜2.5%、Mg:0.2〜0.5%、またはさ
らにSr:0.005〜0.2%を含み、残部Alとな
る溶湯を250〜1500kgf/mm2で加圧して金
型に鋳込み、得られた部材を溶体化処理する開示があ
る。
Japanese Patent Application Laid-Open No. H5-5148 discloses that an aluminum casting has a high strength and a high toughness comparable to that of an aluminum alloy forged product.
The melt containing 1.5 to 2.5%, Mg: 0.2 to 0.5%, or Sr: 0.005 to 0.2% and remaining Al is pressurized at 250 to 1500 kgf / mm2. There is a disclosure of casting into a mold and subjecting the obtained member to solution treatment.

【0005】一方、本発明者らは、先に特開平7−31
0150号公報および特開平7−310151号公報と
して、(JIS)AC4CHなどのAl−Si系で鋳造
したアルミ鋳物を、急速に昇温して共晶点近傍(例えば
570℃)に到達した後急冷、または離型後直ちに急冷
し、しかる後時効処理を行う、特に高温短時間の溶体化
処理により、通常行われる793K(520℃)〜82
3K(550℃)で4〜6時間の溶体化処理に匹敵する
引張強さ、衝撃値を経済的に得る提案をしている。
On the other hand, the present inventors have previously described Japanese Patent Application Laid-Open No. 7-31
As disclosed in Japanese Patent Application Laid-Open No. 0150 and Japanese Patent Application Laid-Open No. Hei 7-310151, an aluminum casting cast with an Al-Si system such as (JIS) AC4CH is rapidly heated to reach a vicinity of a eutectic point (for example, 570 ° C.) and then rapidly cooled. Or quenching immediately after release, followed by aging treatment, especially by a high-temperature, short-time solution treatment, which is usually performed at 793K (520 ° C) to 82 ° C.
It proposes to economically obtain a tensile strength and impact value comparable to solution treatment at 3K (550 ° C.) for 4 to 6 hours.

【0006】しかしながら、上記特開平5−5148号
公報では、Si:2.5〜4.4重量%として、金型へ
の加圧鋳造により伸びを10〜12%として引張強さを
向上させているが、反面、Cuをこのように多量に含有
させると耐食性が劣化するおそれがある。トラック用ホ
イールのように頻繁に雨水に曝される部品等の場合に
は、引張強さが損われない範囲でCu含有量は少ないほ
うがよい。また、特開平5−5148号公報では、加圧
鋳造法のうち溶湯鍛造により製造しているが、トラック
用ホイールなどの大型部品に対しては加圧鋳造装置が大
がかりとなってコストが上昇し、経済的に製造すること
が難しい。また、Cu:1.5〜2.5重量%含有させ
ると共晶Siの偏析が発生し易く、機械的性質がバラツ
クことがある。
[0006] However, in the above-mentioned Japanese Patent Application Laid-Open No. 5-5148, the tensile strength is improved by increasing the elongation to 10 to 12% by pressure casting into a mold with Si: 2.5 to 4.4% by weight. However, on the other hand, if Cu is contained in such a large amount, the corrosion resistance may be deteriorated. In the case of parts that are frequently exposed to rainwater, such as a truck wheel, the Cu content should be small as long as the tensile strength is not impaired. Further, in Japanese Patent Application Laid-Open No. 5-5148, a pressure casting method is used to produce a metal by forging. However, for a large component such as a truck wheel, a pressure casting apparatus becomes large-scale and the cost increases. Difficult to manufacture economically. Further, when Cu is contained in an amount of 1.5 to 2.5% by weight, segregation of eutectic Si is likely to occur, and mechanical properties may be varied.

【0007】自動車用足廻り部品のホイールやクロスメ
ンバー、冷凍機、圧縮機の高速回転部品のインペラーな
どの部品においては、特に、伸び、衝撃値、引張強さ、
耐力などの機械的性質が重要である。前記特開平5−5
148号公報、特開平7−310150号公報および特
開平7−310151号公報によっても、伸びは7〜1
2%程度、衝撃値は8〜13×104J/m2 程度であ
り、また、引張 強さは260〜330MPa程度であ
り、自動車用足廻り部品や高速回転部品などに適用する
には機械的性質を更に向上する必要がある。
For parts such as wheels and cross members of suspension parts for automobiles, impellers of high-speed rotating parts of refrigerators and compressors, in particular, elongation, impact value, tensile strength,
Mechanical properties such as proof stress are important. JP-A-5-5
148, JP-A-7-310150 and JP-A-7-310151, the elongation is 7-1.
About 2%, impact value is about 8-13 × 10 4 J / m 2 , and tensile strength is about 260-330 MPa. It is necessary to further improve the mechanical properties.

【0008】本発明者らは、前記特開平5−5148号
公報、特開平7−310150号公報および特開平7−
310151号公報に開示の特性をさらに向上させよう
と、特開平9−272942号公報として、重量比率
で、Si:1.65〜5.0%、Mg:0.2〜0.4
%、Fe:0.2%以下、残部実質的にAlおよび不可
避的不純物の組成を含有する鋳造後のアルミ鋳物を、8
23K(550℃)をこえ848K(575℃)の温度
に到達後急冷する溶体化処理を行い、しかる後に413
K(140℃)〜473K(200℃)の温度で8〜5
5時間の時効処理を行う熱処理を施すことで、Si含有
量の少ないアルミ鋳物で、伸び、衝撃値などの靱性に加
え、引張強さ、耐力を確保する技術を開示している。
The present inventors have disclosed the above-mentioned JP-A-5-5148, JP-A-7-310150 and JP-A-7-310150.
In order to further improve the characteristics disclosed in Japanese Patent Application Laid-Open No. 310151, Japanese Patent Application Laid-Open No. Hei 9-272942 discloses, as weight ratios, Si: 1.65 to 5.0%, and Mg: 0.2 to 0.4.
%, Fe: 0.2% or less, the balance being substantially the composition of Al and inevitable impurities,
After reaching a temperature of 848 K (575 ° C.) exceeding 23 K (550 ° C.), a solution treatment of rapid cooling is performed.
8 to 5 at a temperature of K (140 ° C) to 473K (200 ° C)
A technique is disclosed in which a heat treatment for aging treatment for 5 hours is performed to secure tensile strength and proof stress in addition to toughness such as elongation and impact value with an aluminum casting having a low Si content.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開平
9−272942号公報では、熱処理のうちの時効処理
に要する時間が8〜55時間と長時間になり、まだまだ
経済的ではない。このため、さらに経済的に、伸び、衝
撃値などの靱性に加え、引張強さ、耐力を確保できる製
造方法の開発が望まれていた。本発明の課題は、経済的
に、機械的性質すなわち伸び、衝撃値などの靱性に加
え、引張強さ、耐力を有するアルミ鋳物の製造方法およ
びアルミ鋳物を得ることにある。
However, in Japanese Patent Application Laid-Open No. 9-272942, the time required for the aging treatment in the heat treatment is as long as 8 to 55 hours, which is not economical. For this reason, there has been a demand for a more economical development of a manufacturing method capable of securing tensile strength and proof stress in addition to toughness such as elongation and impact value. An object of the present invention is to provide a method of manufacturing an aluminum casting and an aluminum casting having economical properties, that is, toughness such as elongation and impact value, as well as tensile strength and proof stress.

【0010】[0010]

【課題を解決するための手段】本発明者らは、経済的に
製造できて、かつ上記特性を得るために、Si量を低く
抑えて靱性を確保し、かつCu量を少なくして耐食性を
確保したアルミ合金組成とし、この組成に溶体化処理お
よび時効処理を組み合わせ、継続して鋭意研究を行っ
た。そして、Si:3.5〜4.5%と低く抑え、鋳造
後のアルミ鋳物を、823K(550℃)を超え848
K(575℃)未満の温度で2〜4時間保持した後急冷
する溶体化処理を行い、しかる後に433K(160
℃)〜453K(180℃)の温度で1〜3時間の時効
処理を施すことにより、時効処理時間を含む熱処理時間
が短縮され、しかも、伸び、衝撃値などの靱性が格段に
優れるアルミ鋳物が得られることを見出し本発明に想到
した。
Means for Solving the Problems The present inventors have found that in order to obtain the above-mentioned characteristics, to secure the toughness by suppressing the amount of Si, and to reduce the corrosion resistance by reducing the amount of Cu in order to obtain the above characteristics. The obtained aluminum alloy composition was used, and solution treatment and aging treatment were combined with this composition, and intensive research was continuously conducted. Then, the content of Si was kept low at 3.5 to 4.5%, and the aluminum casting after casting exceeded 823K (550 ° C.) and 848
A solution treatment in which the temperature is kept at a temperature lower than K (575 ° C.) for 2 to 4 hours and then quenched, and then 433 K (160 ° C.)
By performing aging treatment at a temperature of 180 to 453 K (180 ° C.) for 1 to 3 hours, the heat treatment time including the aging treatment time is shortened, and furthermore, an aluminum casting having significantly superior toughness such as elongation and impact value is obtained. The present inventors have found out that they can be obtained, and reached the present invention.

【0011】すなわち、第1発明の高靱性アルミ鋳物の
製造方法は、質量比率で、Si:3.5〜4.5%、M
g:0.15〜0.4%、Cu:1.0%以下、改良処
理剤、残部実質的にAlおよび不可避的不純物のうち特
にFe:0.2%以下の組成を含有する鋳造後のアルミ
鋳物を、823K(550℃)を超え848K(575
℃)未満の温度で2〜4時間保持した後急冷する溶体化
処理を行い、しかる後に433K(160℃)〜453
K(180℃)の温度で1〜3時間の時効処理を施すこ
とを特徴とする。
That is, the method for producing a high toughness aluminum casting of the first invention is as follows: Si: 3.5-4.5%, M
g: 0.15 to 0.4%, Cu: 1.0% or less, improving treatment agent, balance substantially after Al containing a composition of not more than 0.2% or less of Al and inevitable impurities. Over 823K (550 ° C) and 848K (575
C.) for 2 to 4 hours, followed by a solution treatment of quenching, followed by 433 K (160 ° C.) to 453 K.
The aging treatment is performed at a temperature of K (180 ° C.) for 1 to 3 hours.

【0012】また、第2発明の高靱性アルミ鋳物は、質
量比率で、Si:3.5〜4.5%、Mg:0.15〜
0.4%、Cu:1.0%以下、改良処理剤、残部実質
的にAlおよび不可避的不純物のうち特にFe:0.2
%以下の組成を含有する鋳造後のアルミニウム合金鋳物
を、823K(550℃)を超え848K(575℃)
未満の温度で2〜4時間保持した後急冷する溶体化処理
を行い、しかる後に433K(160℃)〜453K
(180℃)の温度で1〜3時間の時効処理を施すこと
により、アルミニウム基地中の共晶Si粒子の面積が6
μm2以下、かつ円形度が0.55以上を有し、伸びが
23%以上、かつ衝撃値が23×104J/m2以上有す
ることを特徴とする。
Further, the high toughness aluminum casting of the second invention has a mass ratio of Si: 3.5 to 4.5% and Mg: 0.15 to
0.4%, Cu: 1.0% or less, improving agent, balance substantially Al and in particular unavoidable impurities, Fe: 0.2
% Of the cast aluminum alloy casting having a composition of not more than 823K (550 ° C) and 848K (575 ° C).
After the solution is kept at a temperature of less than 2 to 4 hours, a solution treatment of quenching is performed, and then 433 K (160 ° C.) to 453 K
By performing the aging treatment at a temperature of (180 ° C.) for 1 to 3 hours, the area of the eutectic Si particles in the aluminum matrix becomes 6
μm 2 or less, circularity of 0.55 or more, elongation of 23% or more, and impact value of 23 × 10 4 J / m 2 or more.

【0013】また、第3発明の高靱性アルミ鋳物は、質
量比率で、Si:3.5〜4.5%、Mg:0.15〜
0.4%、Cu:1.0%以下、改良処理剤、残部実質
的にAlおよび不可避的不純物のうち特にFe:0.2
%以下の組成を含有する鋳造後のアルミニウム合金鋳物
を、823K(550℃)を超え848K(575℃)
未満の温度で2〜4時間保持した後急冷する溶体化処理
を行い、しかる後に433K(160℃)〜453K
(180℃)の温度で1〜3時間の時効処理を施すこと
により、アルミニウム基地中の共晶Si粒子の面積が6
μm2以下、かつ円形度が0.55以上 を有し、伸びが
23%以上、かつ衝撃値が23×104J/m2以上、引
張強さが290MPa以上、耐力が200MPa以上を
有することを特徴とする。なお、第1発明〜第3発明で
の改良処理剤としては、Sr:0.0004〜0.00
2%および/またはTi:0.25%以下である。
The high toughness aluminum casting according to the third invention has a mass ratio of Si: 3.5 to 4.5% and Mg: 0.15 to
0.4%, Cu: 1.0% or less, improving agent, balance substantially Al and in particular unavoidable impurities, Fe: 0.2
% Of the cast aluminum alloy casting having a composition of not more than 823K (550 ° C) and 848K (575 ° C).
After the solution is kept at a temperature of less than 2 to 4 hours, a solution treatment of quenching is performed, and then 433 K (160 ° C.) to 453 K
By performing the aging treatment at a temperature of (180 ° C.) for 1 to 3 hours, the area of the eutectic Si particles in the aluminum matrix becomes 6
μm 2 or less, circularity of 0.55 or more, elongation of 23% or more, impact value of 23 × 10 4 J / m 2 or more, tensile strength of 290 MPa or more, and proof stress of 200 MPa or more. It is characterized by. In addition, as an improvement processing agent in 1st invention-3rd invention, Sr: 0.0004-0.00
2% and / or Ti: 0.25% or less.

【0014】以下、本発明での化学組成(質量%)およ
び熱処理条件の限定理由を説明する。 (1)Si:3.5〜4.5% Siは、伸び、衝撃値などの靱性、および湯流れ性など
鋳造性等に影響を及ぼす。Siが3.5%未満では湯流
れ性が悪くなる。一方、Siが4.5%を超えると、ア
ルミニウム基地中の共晶Si粒子の面積が増加し、共晶
Siがネットワーク状になって、伸び、衝撃値などの靱
性を低下させる。従って、Si:3.5〜4.5%とす
る。最も好ましくは、Si:4.0〜4.5%とする。
The reasons for limiting the chemical composition (% by mass) and the heat treatment conditions in the present invention will be described below. (1) Si: 3.5 to 4.5% Si affects toughness such as elongation and impact value, and castability such as fluidity. If the content of Si is less than 3.5%, the flowability of the molten metal becomes poor. On the other hand, if Si exceeds 4.5%, the area of the eutectic Si particles in the aluminum matrix increases, and the eutectic Si becomes network-like, lowering toughness such as elongation and impact value. Therefore, Si is set to 3.5 to 4.5%. Most preferably, Si: 4.0-4.5%.

【0015】(2)Mg:0.15〜0.4% Mgは、溶体化処理および時効処理を施す熱処理によ
り、Mg2Siを析出して強度の向上に有効に寄与す
る。Mgが0.15%未満では強度の向上に効果が少な
い。一方、Mgが0.4%を超えると、Mg2Siの析
出が過多となるきらいがあり、靱性を低下させる。従っ
て、Mg:0.15〜0.4%とする。最も好ましく
は、Mg:0.15〜0.2%とする。
(2) Mg: 0.15 to 0.4% Mg is effectively contributed to the improvement of strength by precipitating Mg 2 Si by heat treatment for solution treatment and aging treatment. If Mg is less than 0.15%, the effect of improving strength is small. On the other hand, when Mg exceeds 0.4%, precipitation of Mg 2 Si tends to be excessive, and the toughness is reduced. Therefore, Mg: 0.15 to 0.4%. Most preferably, Mg: 0.15 to 0.2%.

【0016】(3)Cu:1.0%以下 Cuは、強度向上に有効であるが、耐食性を劣化させ
る。トラック用ホイールのように頻繁に雨水に曝される
部品等の場合には、強度が損われない限り、Cuは少な
いほうがよい。従ってCu:1.0%以下とする。好ま
しくはCu:0.3%以下とする。
(3) Cu: 1.0% or less Cu is effective for improving strength, but deteriorates corrosion resistance. In the case of parts that are frequently exposed to rainwater, such as truck wheels, it is better that Cu is small as long as the strength is not impaired. Therefore, Cu is set to 1.0% or less. Preferably, Cu: 0.3% or less.

【0017】(4)Fe:0.2%以下 不可避的不純物としてFeは、多量に存在すると針状晶
を形成し、0.2%を超えると靱性の低下を 招く。従
って、Fe:0.2%以下とする。
(4) Fe: 0.2% or less Fe as an inevitable impurity forms needle-like crystals when present in a large amount, and when it exceeds 0.2%, toughness is reduced. Therefore, Fe is set to 0.2% or less.

【0018】(5)Sr:0.0004〜0.002% Srは、共晶Siの微細化および球状化による改良処理
に有効な元素である。共晶Siの微細化により強度およ
び靱性ともに改善される。Srが0.0004%未満で
は、靱性、強度の改良効果が少ない。一方、Srが0.
002%を超えると、引けに及ぼす影響が大きく、また
ピンホールなどの鋳造欠陥の発生を助長する。従って、
Sr:0.0004〜0.002%とする。好ましく
は、Sr:0.0008〜0.010%とする。
(5) Sr: 0.0004% to 0.002% Sr is an element effective for improving the eutectic Si by refinement and spheroidization. Both strength and toughness are improved by the refinement of eutectic Si. If Sr is less than 0.0004%, the effect of improving toughness and strength is small. On the other hand, when Sr is 0.
If it exceeds 002%, the influence on shrinkage is large, and the occurrence of casting defects such as pinholes is promoted. Therefore,
Sr: 0.0004 to 0.002%. Preferably, Sr: 0.0008 to 0.010%.

【0019】(6)Ti:0.25%以下 Tiは、結晶粒を微細化させ、靱性の向上に有効な元素
であるが、0.25%を超えて含有させてもその効果の
向上は望めず、かえってAl−Ti系の化合物を晶出し
て靱性を低下させる。従って、Ti:0.25%以下と
する。好ましくは、Ti:0.2%以下とする。
(6) Ti: 0.25% or less Ti is an element effective for refining crystal grains and improving toughness. However, even if it is contained in excess of 0.25%, the effect is not improved. Undesirably, Al-Ti-based compounds are crystallized and the toughness is reduced. Therefore, Ti: 0.25% or less. Preferably, the content of Ti is set to 0.2% or less.

【0020】(7)溶体化処理:823K(550℃)
を超え848K(575℃)未満の温度で2〜4時間保
持した後、冷水による急冷 550℃を超え575℃未満の温度に到達したらただち
に水中焼入れ急冷する溶体化処理により、凝固過程で生
じた偏析の多くがアルミ基地中に固溶され均一分散され
る。またSiやMgも同様に固溶され均一分散される。
そして、その後に行う時効処理によってMg2Si析出
し、鋳造後のアルミ鋳物に靱性と引張強さなどの機械的
性質を向上させる。823K(550℃)以下の温度で
溶体化処理したのでは、共晶Si粒子の真円度の向上、
共晶Si粒子の微細化および分散化効果が少なく、これ
らの効果を付与するには長時間を必要とするが、823
K(550℃)を超える高温で短時間の溶体化処理によ
って、共晶Si粒子の真円度が向上し、共晶Si粒子の
微細化および分散化が起こる。一方、溶体化処理温度が
848K(575℃)以上では共晶地が溶融するので、
上限温度を848K(575℃)未満とする。従って溶
体化処理温度は、823K(550℃)を超え848K
(575℃)未満とする。また、823K(550℃)
を超え848K(575℃)未満の温度に2〜4時間保
持することにより、上記効果が得られる。
(7) Solution treatment: 823K (550 ° C.)
Quenching with cold water after holding at a temperature of over 848K (575 ° C) for more than 2 to 4 hours, and immediately after reaching a temperature of over 550 ° C and less than 575 ° C, segregation generated in the solidification process by a solution treatment of quenching in water and quenching. Is dissolved in the aluminum matrix and uniformly dispersed. Similarly, Si and Mg are solid-dissolved and uniformly dispersed.
Then, Mg 2 Si is precipitated by aging treatment performed thereafter, and mechanical properties such as toughness and tensile strength are improved in the cast aluminum casting. By performing the solution treatment at a temperature of 823 K (550 ° C.) or less, the roundness of eutectic Si particles can be improved,
The effect of miniaturizing and dispersing eutectic Si particles is small, and it takes a long time to impart these effects.
The solution treatment at a high temperature exceeding K (550 ° C.) for a short time improves the roundness of the eutectic Si particles, and causes the eutectic Si particles to be refined and dispersed. On the other hand, when the solution treatment temperature is 848 K (575 ° C.) or more, the eutectic material is melted.
The upper limit temperature is less than 848K (575 ° C). Therefore, the solution treatment temperature exceeds 823 K (550 ° C.) and 848 K
(575 ° C.). 823K (550 ° C)
The above-mentioned effect can be obtained by maintaining the temperature at a temperature exceeding 850 K (575 ° C.) for more than 2 to 4 hours.

【0021】(8)時効処理:高温溶体化処理後、続い
て高温度で短時間の時効処理 前記高温溶体化処理に続いて、433K(160℃)〜
453K(180℃)の温度で1〜3時間保持する高温
で短時間の時効処理を行う。通常の時効処理は、418
K(145℃)×6時間で行われるが、本発明において
は、433K(160℃)以上の温度で1時間以上保持
することでMg2Siの析出量を増加促進させて強度の
向上を図る。一方、時効処理温度を453K(180
℃)を超えて高くしてもMg2Siの促進が飽和し、こ
れを超えて行うと過時効状態となりMg2Siが再固溶
して強度が低下する。
(8) Aging treatment: aging treatment at high temperature for a short time after high-temperature solution treatment, following the above-mentioned high-temperature solution treatment, from 433 K (160 ° C.)
A short-time aging treatment at a high temperature of 1 to 3 hours at a temperature of 453 K (180 ° C.) is performed. Normal aging is 418
K (145 ° C.) × 6 hours, but in the present invention, maintaining the temperature at 433 K (160 ° C.) or more for 1 hour or more promotes an increase in the amount of Mg 2 Si deposited to improve the strength. . On the other hand, the aging temperature is set to 453K (180
(° C.), the promotion of Mg 2 Si saturates. If the temperature is higher than this, overaging occurs and Mg 2 Si re-dissolves to lower the strength.

【0022】[0022]

【発明の実施の形態】以下、発明の実施の形態を説明す
る。 (実施の形態) Si:3〜4%、Mg:0.3〜0.4%、0.3%、
Fe:0.1%、Cu:0.5%、Sr:80〜100
ppm、Ti:0.15〜0.2%、残部実質的にAl
および不可避的不純物のアルミニウム合金となるように
溶湯を調整し、低圧鋳造装置により鋳造してトラック用
ホイールを作製した。低圧鋳造装置は、金型に形成され
たトラック用ホイールのキャビティと、キャビティと溶
湯の保持炉を接続するストークとを備えている。保持炉
では溶湯を温度が720℃となるよう保持および加熱を
行い、保持炉内を2MPaに加圧し、ストークを介して
上部の金型キャビティ内に注入した。このとき、金型温
度は350℃に制御しながら行った。キャビティ内でア
ルミ鋳物が凝固した後、低圧鋳造装置から取り出し、熱
処理(T6処理)を施した。
Embodiments of the present invention will be described below. (Embodiment) Si: 3 to 4%, Mg: 0.3 to 0.4%, 0.3%,
Fe: 0.1%, Cu: 0.5%, Sr: 80-100
ppm, Ti: 0.15 to 0.2%, balance substantially Al
Further, the molten metal was adjusted so as to become an aluminum alloy of inevitable impurities, and was cast by a low-pressure casting device to manufacture a truck wheel. The low-pressure casting apparatus includes a cavity of a truck wheel formed in a mold, and a stalk connecting the cavity to a furnace for holding a molten metal. In the holding furnace, the molten metal was held and heated so that the temperature became 720 ° C., the inside of the holding furnace was pressurized to 2 MPa, and injected into the upper mold cavity via stalk. At this time, the mold temperature was controlled at 350 ° C. After the aluminum casting was solidified in the cavity, it was taken out of the low-pressure casting device and subjected to a heat treatment (T6 treatment).

【0023】以下、(1)溶体化処理条件の共晶Si粒
子の形態に及ぼす影響、(2)溶体化処理条件と機械的
性質との関係、(3)時効処理条件と機械的性質との関
係について、順次説明する。 (1)溶体化処理条件の共晶Si粒子の形態に及ぼす影
響 溶体化処理条件を表1の〜の6条件で溶体化処理を
行い、共晶Si粒子の形態を調べた。そして、光学顕微
鏡で観察した金属組織写真を図1〜図6(図1〜図6と
も同倍率)に示す。
Hereinafter, (1) the effect of solution treatment conditions on the morphology of eutectic Si particles, (2) the relationship between solution treatment conditions and mechanical properties, and (3) the relationship between aging treatment conditions and mechanical properties. The relationship will be described sequentially. (1) Influence of Solution Treatment Conditions on Morphology of Eutectic Si Particles The solution treatment was performed under the following six conditions of Table 1 to Table 6 to examine the form of the eutectic Si particles. The photographs of the metal structure observed with an optical microscope are shown in FIGS. 1 to 6 (the same magnification in FIGS. 1 to 6).

【0024】[0024]

【表1】 溶体化処理 No. 温度(K)(℃) 保持時間 共晶Si粒子の形態 1 854K(581℃) なし 図1 2 848K(575℃) なし 図2 3 848K(575℃) 3時間 図3 4 838K(565℃) なし 図4 5 838K(565℃) 3時間 図5 6 838K(565℃) 8時間 図6Table 1 Solution treatment No. Temperature (K) (° C) Retention time Form of eutectic Si particles 1 854K (581 ° C) None Figure 1 2 848K (575 ° C) None Figure 2 3 848K (575 ° C) 3 hours 3 4 838K (565 ° C) None Fig. 4 5 838K (565 ° C) 3 hours Fig. 5 6 838K (565 ° C) 8 hours

【0025】No.1は、高温の854K(581℃)
で、保持時間なしの条件で溶体化処理したにもかかわら
ず、図1の金属組織顕微鏡写真に示すとおり一部に溶解
がみられる。No.2の、848K(575℃)で、保
持時間なしで溶体化処理したものは、図2に示すとお
り、共晶Si粒子が微細ではあるが、円形度が0.55
未満の約0.52と悪い。なお、円形度1が真円であ
る。No.3の、848K(575℃)で、3時間保持
して溶体化処理したものは、図3に示すとおり、共晶S
i粒子の凝集が生じて粗大化している。No.4の、8
38K(565℃)で、保持時間なしで溶体化処理した
ものは、図4に示すとおり、共晶Si粒子が微細ではあ
るが、円形度が0.55未満の約0.52と悪い。N
o.5の838K(565℃)で、3時間保持して溶体
化処理を施した場合には、共晶Si粒子が微細で、かつ
円形度も0.52以上の0.58と良好であった。N
o.6の、838K(565℃)で、8時間保持して溶
体化処理したものは、図6に示すとおり、共晶Si粒子
の凝集が生じて粗大化している。
No. 1 is high temperature 854K (581 ° C)
In spite of the solution treatment under the condition of no holding time, some dissolution was observed as shown in the metallographic micrograph of FIG. No. 2, the solution treatment at 848 K (575 ° C.) without holding time showed that the eutectic Si particles were fine, but the circularity was 0.55 as shown in FIG.
Less than about 0.52, which is bad. Note that the circularity 1 is a perfect circle. No. 3 was subjected to solution treatment by holding at 848 K (575 ° C.) for 3 hours. As shown in FIG.
The i-particles are agglomerated due to aggregation. No. 4, 8
As shown in FIG. 4, the eutectic Si particles subjected to the solution treatment at 38 K (565 ° C.) without the holding time are fine, but have a circularity of less than 0.55, that is, about 0.52, which is poor. N
o. When the solution treatment was performed at 838 K (565 ° C.) for 3 hours, the eutectic Si particles were fine, and the circularity was as good as 0.58, which was 0.52 or more. N
o. As shown in FIG. 6, eutectic Si particles were agglomerated due to aggregation of eutectic Si particles as shown in FIG.

【0026】そこで、図1〜図6について、共晶Si粒
子の面積、円形度を測定した。なお、円形度=(粒子面
積)/(計測した粒子と同じ周囲長さ(I)を持つ円の
面積)=4πS/I2で表す。画像解析でSi粒子を5
00〜1000ケぐらい測定し、その後統計処理にて求
める。共晶Si粒子の面積(μm2 )と溶体化処理時間
との関係を図7に、また共晶Si粒子の円形度と溶体化
処理時間との関係を図8に示す。なお、図7と図8にお
いて、黒四角印で示す「As Cast」は「鋳放し状
態のもの」、白三角印で示す「854K S.T.」は
「854K(581℃)の温度で溶体化処理(Solu
tion Treatment)を施したもの」、白丸
印で示す「848K S.T.」は「848K(575
℃)の温度で溶体化処理を施したもの」、および黒菱形
印で示す「838K S.T.」は「838K(565
℃)の温度で溶体化処理を施したもの」を意味する。
Therefore, the area and circularity of the eutectic Si particles were measured for FIGS. The degree of circularity = (particle area) / (area of circle having the same perimeter (I) as measured particles) = 4πS / I 2 . 5 Si particles by image analysis
It measures about 00 to 1000 pieces, and then calculates by statistical processing. FIG. 7 shows the relationship between the area (μm 2 ) of the eutectic Si particles and the solution treatment time, and FIG. 8 shows the relationship between the circularity of the eutectic Si particles and the solution treatment time. 7 and 8, “As Cast” indicated by a black square mark is “as cast”, and “854K ST” indicated by a white triangle mark is a solution at a temperature of 854K (581 ° C.). Conversion (Solu
and “848K ST” indicated by a white circle are “848K (575
C.), and “838K ST” indicated by a black diamond are “838K (565).
C) at a temperature of (° C).

【0027】図7と図8において、白丸印で示す溶体化
処理温度が848K(575℃)のものでは、溶体化処
理時間の増加に伴って共晶Si粒子の面積が増加し、溶
体化処理時間が5時間では面積が17.3μm2と大き
い。一方、共晶Si粒子の円形度は溶体化処理時間の増
加に伴って逆に低下し、溶体化処理時間が5時間では円
形度は0.52と低くなる。溶体化処理温度が最高の8
54K(581℃)では、図1に示すように、一部に溶
融が見られたので、854K(581℃)で所定時間保
持する加熱処理は省略している。
In FIGS. 7 and 8, when the solution treatment temperature indicated by a white circle is 848 K (575 ° C.), the area of the eutectic Si particles increases as the solution treatment time increases, and the solution treatment temperature increases. When the time is 5 hours, the area is as large as 17.3 μm 2 . On the other hand, the circularity of the eutectic Si particles decreases with an increase in the solution treatment time, and the circularity decreases to 0.52 when the solution treatment time is 5 hours. Solution treatment temperature is the highest 8
At 54 K (581 ° C.), as shown in FIG. 1, melting was observed in a part, so that the heat treatment for maintaining at 854 K (581 ° C.) for a predetermined time was omitted.

【0028】黒菱形印で示す溶体化処理温度838K
(565℃)では、溶体化処理時間の増加に伴って共晶
Si粒子の面積も増加し、溶体化処理時間3〜5時間で
ほぼその増加が飽和し、面積約6μm2と小さく、溶体
化処理時間の変化に対してもその変化は小さい。一方、
円形度は溶体化処理時間5時間で最大の約0.6に達
し、他の溶体化処理温度で処理したものよりも高い値を
示した。以上より、溶体化処理温度は838K(565
℃)が好ましい。
Solution treatment temperature 838K indicated by black diamonds
At (565 ° C.), the area of the eutectic Si particles also increases with the increase in the solution treatment time, and the increase is almost saturated in the solution treatment time of 3 to 5 hours, and the area is as small as about 6 μm 2 . The change is small even when the processing time changes. on the other hand,
The degree of circularity reached a maximum of about 0.6 at a solution treatment time of 5 hours, and showed a higher value than those treated at other solution treatment temperatures. From the above, the solution treatment temperature was 838K (565).
° C) is preferred.

【0029】(2)溶体化処理条件と機械的性質との関
係 次に、溶体化処理条件と機械的性質との関係について説
明する。図9〜図11に、溶体化処理条件と、0.2%
耐力、破断伸びおよび吸収エネルギー(衝撃値)の関係
を示す。白丸印で示す溶体化処理温度848K(575
℃)では、0.2%耐力は溶体化処理時間の増加に対し
て向上する(図9)が、破断伸びおよび吸収エネルギー
(衝撃値)は逆に著しい低下を示してる(図10および
図11)。黒菱形印で示す溶体化処理温度が838K
(565℃)では、溶体化処理時間の増加に対して0.
2%耐力は約140MPaと変わらないが、破断伸びお
よび吸収エネルギー(衝撃値)は、破断伸びが約25%
以上で、吸収エネルギー(衝撃値)は約34×104
/m2以上となり、本実施例においては溶体化処理を、
温度838K(565℃)で3時間保持したものが最も
良好な結果を得た。
(2) Relationship between Solution Treatment Conditions and Mechanical Properties Next, the relationship between solution treatment conditions and mechanical properties will be described. 9 to 11 show solution treatment conditions and 0.2%
The relationship among proof stress, elongation at break and absorbed energy (impact value) is shown. Solution treatment temperature 848K (575
C), the 0.2% proof stress increases with increasing solution treatment time (FIG. 9), but the elongation at break and the absorbed energy (impact value) show a marked decrease (FIGS. 10 and 11). ). Solution treatment temperature indicated by black diamond is 838K
(565 ° C.), the solution heat treatment time was increased by 0.3%.
Although the 2% proof stress is not changed to about 140 MPa, the elongation at break and the absorbed energy (impact value) are as follows.
Above, the absorbed energy (impact value) is about 34 × 10 4 J
/ M 2 or more, and in this embodiment, the solution treatment is
Those maintained at a temperature of 838 K (565 ° C.) for 3 hours gave the best results.

【0030】(3)時効処理条件と機械的性質との関係 次に、時効処理条件と機械的性質との関係について説明
する。時効処理を高温側の443K(170℃)と低温
側の418K(145℃)で行い、時効処理条件に対す
る、引張強さ、0.2%耐力、破断伸びなどの機械的性
質を調べた。その結果を、図12〜図15に示す。な
お、図12〜図15において横軸に示す時効処理時間は
ks(キロ秒)を対数目盛表示である。図12の時効処
理時間と引張強さとの関係を示す図から、時効処理時間
の増加に対して引張強さは向上(増加)している。白三
角印で示す高温側の443K(170℃)の場合、約1
4秒(約2.8時間)で引張強さは飽和し、最高値は
約320MPaである。一方、白丸印で示す低温側の4
18K(145℃)の場合、約7×102キロ秒(約1
90時間、即ち約8日)の長時間 で引張強さは飽和
し、高温側の443K(170℃)で約2.8時間の時
効処理で得られる引張強さ約320MPaと同等あるい
は若干高い値を示している。図13の時効処理時間と
0.2%耐力との関係を示す図から、図12の時効処理
時間と引張強さとの関係と同様に、時効処理時間の増加
に対して0.2%耐力が向上(増加)している。
(3) Relationship between Aging Condition and Mechanical Property Next, the relationship between the aging condition and mechanical property will be described. The aging treatment was performed at 443 K (170 ° C.) on the high temperature side and at 418 K (145 ° C.) on the low temperature side, and mechanical properties such as tensile strength, 0.2% proof stress, and elongation at break with respect to the aging treatment conditions were examined. The results are shown in FIGS. In FIGS. 12 to 15, the aging process time indicated on the horizontal axis is represented by logarithmic scale of ks (kilosecond). From the figure showing the relationship between the aging treatment time and the tensile strength in FIG. 12, the tensile strength is improved (increased) as the aging treatment time increases. In the case of 443K (170 ° C) on the high temperature side indicated by the white triangle mark, about 1
0 tensile strength 4 seconds (about 2.8 hours) is saturated and the maximum value is about 320 MPa. On the other hand, the low-temperature side 4
In the case of 18K (145 ° C.), about 7 × 10 2 kiloseconds (about 1
The tensile strength saturates for a long time of 90 hours (ie, about 8 days), and is equal to or slightly higher than the tensile strength of about 320 MPa obtained by aging at 443 K (170 ° C.) on the high temperature side for about 2.8 hours. Is shown. From the diagram showing the relationship between the aging treatment time and the 0.2% proof stress in FIG. 13, the 0.2% proof stress increases with the increase in the aging treatment time, similarly to the relationship between the aging treatment time and the tensile strength in FIG. It has improved (increased).

【0031】一般に、低温側での時効処理では、引張強
さおよび0.2%耐力が最高値に達して飽和するのに長
時間を要し、高温側での時効処理では、引張強さおよび
0.2%耐力が最高値に達して飽和するのに短時間で済
む。引張強さおよび0.2%耐力の最高値は、低温側で
長時間の時効処理するよりも、高温側で時効処理する方
が、低い値で飽和すると言われている。しかし、満足で
きる所望の強度が短時間の処理で得られることが作業効
率向上やエネルギー低減等の面から良いので、高温短時
間の時効処理を採用する方が好ましい。ここで、靱性に
主眼をおき、所望の引張強さを290MPa以上とする
と、時効処理時間は443K(170℃)で7200秒
(2時間)、同様に0.2%耐力を200MPa以上と
すると、時効処理時間は443K(170℃)で720
0秒(2時間)となる。
In general, in the aging treatment on the low temperature side, it takes a long time for the tensile strength and the 0.2% proof stress to reach the maximum value and saturate, and in the aging treatment on the high temperature side, the tensile strength and It takes a short time for the 0.2% proof stress to reach the maximum value and saturate. It is said that the maximum values of the tensile strength and the 0.2% proof stress are saturated at a lower value when the aging treatment is performed on the high temperature side than when the aging treatment is performed for a long time on the low temperature side. However, it is preferable to employ a high-temperature, short-time aging treatment because it is preferable that a satisfactory desired strength can be obtained in a short period of time in terms of improvement of work efficiency and energy reduction. Here, focusing on toughness and assuming that the desired tensile strength is 290 MPa or more, the aging time is 7200 seconds (2 hours) at 443 K (170 ° C.), and the 0.2% proof stress is 200 MPa or more. Aging time is 720 at 443K (170 ° C)
0 seconds (2 hours).

【0032】図14、図15は、時効処理温度および時
効処理時間と、破断伸びおよび吸収エネルギー(衝撃
値)の関係を示す図である。時効処理時間の増加に従っ
て破断伸びおよび吸収エネルギー(衝撃値)は低下し、
前述の引張強さおよび0.2%耐力の場合とは逆の傾向
を示している。これは、時効処理によってアルミ基地中
にMg2Siが析出して粘さが低下したことを示し、一
方、Mg2Siの析出量が多いほど引張強さおよ び耐力
が向上することを示している。図14、図15から、時
効処理時間が7200秒(2時間)で、伸びが23%
で、吸収エネルギー(衝撃値)が23×104J/m2
なり、高靱性アルミ鋳物を製造することができる。
FIGS. 14 and 15 are diagrams showing the relationship between the aging temperature and the aging time, the elongation at break, and the absorbed energy (impact value). As the aging time increases, the elongation at break and the absorbed energy (impact value) decrease,
The tendency is opposite to that of the above-mentioned tensile strength and 0.2% proof stress. This indicates that the aging treatment resulted in the precipitation of Mg 2 Si in the aluminum matrix and reduced the viscosity, while the greater the amount of Mg 2 Si deposited, the higher the tensile strength and proof stress. ing. 14 and 15, the aging treatment time is 7200 seconds (2 hours) and the elongation is 23%.
Thus, the absorbed energy (impact value) becomes 23 × 10 4 J / m 2 , and a high-toughness aluminum casting can be manufactured.

【0033】つまり、本発明での最も好ましい形態は、
Si:4〜4.5%、Mg:0.15〜0.20%、T
i:0.2%、Sr:80〜100ppm、Cu:0.
3%以下、残部実質的にAlおよび不可避的不純物のう
ち特にFe:0.2%以下の組成からなる靱性材のアル
ミ鋳物を溶体化処理条件が838K(565℃)で3時
間保持として、水焼入れ(急冷)後、時効処理条件は4
43K(170℃)で2時間保持の熱処理を行う。およ
びこれにより得られる高靱性アルミ鋳物である。本発明
の実施の形態での高温側の時効処理温度は443K(1
70℃)の場合について述べたが、その前後の温度であ
る433K(160℃)または453K(180℃)の
温度を採用しても本発明の高温短時間の時効処理の効果
は期待できる。例えば、433K(160℃)の時効処
理温度では時効処理時間を3時間程度とし、また453
K(180℃)の時効処理温度では時効処理時間を1〜
2時間程度とするのが好ましい。
That is, the most preferable form in the present invention is:
Si: 4 to 4.5%, Mg: 0.15 to 0.20%, T
i: 0.2%, Sr: 80 to 100 ppm, Cu: 0.
An aluminum casting of a tough material having a composition of 3% or less, the balance being substantially Al and inevitable impurities, particularly Fe: 0.2% or less, is kept at 838 K (565 ° C.) for 3 hours under a solution treatment condition, After quenching (quenching), the aging condition is 4
Heat treatment is performed at 43 K (170 ° C.) for 2 hours. And a high toughness aluminum casting obtained thereby. The aging treatment temperature on the high temperature side in the embodiment of the present invention is 443 K (1
Although the case of (70 ° C.) has been described, the effect of the high-temperature, short-time aging treatment of the present invention can be expected even when a temperature of 433 K (160 ° C.) or 453 K (180 ° C.), which is the temperature before and after that, is adopted. For example, at an aging temperature of 433 K (160 ° C.), the aging time is about 3 hours, and
At an aging temperature of K (180 ° C), the aging time is 1 to
Preferably, the time is about 2 hours.

【0034】(比較例)(JIS)AC4CH相当材の
アルミ鋳物について、793K(520℃)〜823K
(550℃)で6時間保持した後急冷する溶体化処理の
後、418K(145℃)の温度で4〜6時間保持の時
効処理を行った。その結果、破断伸びは7〜12%程
度、衝撃値が8〜10×104J/m2と本発明に比べて
低い値であった。
(Comparative Example) (JIS) For aluminum casting equivalent to AC4CH, 793K (520 ° C) to 823K
After holding for 6 hours at (550 ° C.) and then quenching, an aging treatment for 4 to 6 hours at 418 K (145 ° C.) was performed. As a result, the elongation at break was about 7 to 12%, and the impact value was 8 to 10 × 10 4 J / m 2 , which were lower values than those of the present invention.

【0035】[0035]

【発明の効果】以上詳細に説明のとおり、本発明の高靱
性アルミ鋳物の製造方法およびこの製造方法により得ら
れる高靱性アルミ鋳物は、Si含有量を低く抑えた組成
で鋳造後、823K(550℃)をこえ848K(57
5℃)未満の温度で2〜4時間保持した後急冷する高温
溶体化処理を施し、続いて433K(160℃)〜45
3K(180℃)の温度で1〜3時間保持する時効処理
を施すことで、靱性と強度に優れ、用途に応じた要求特
性の確保に対応できる。このため、例えばホイールやク
ロスメンバーなどの自動車用足廻り部品や、冷凍機、圧
縮機のインペラーなどの高速回転部品などを薄肉にして
軽量化でき、産業上きわめて有用である。特に従来の低
温側での長時間時効処理に比べ、高温側での短時間時効
処理により所要の特性を確保できる点で工業的にその効
果は極めて大きい。
As described above in detail, the method for manufacturing a high toughness aluminum casting of the present invention and the high toughness aluminum casting obtained by this manufacturing method, after casting with a composition in which the Si content is kept low, are 823K (550). ° C) and 848K (57
5 [deg.] C.) for 2 to 4 hours and then subjected to a high-temperature solution treatment of rapid cooling, followed by 433K (160 [deg.] C.) to 45 [deg.] C.
By performing the aging treatment at a temperature of 3 K (180 ° C.) for 1 to 3 hours, the toughness and the strength are excellent, and the required characteristics according to the application can be ensured. For this reason, for example, vehicle suspension parts such as wheels and cross members, and high-speed rotating parts such as refrigerators and compressor impellers can be made thinner and lighter, which is extremely useful in industry. In particular, the effect is extremely large industrially in that required characteristics can be ensured by a short-time aging treatment at a high temperature side, as compared with a conventional long-time aging treatment at a low temperature side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】854K(581℃)、保持時間なしの条件で
溶体化処理した金属組織顕微鏡写真を示す図である。
FIG. 1 is a view showing a metallographic micrograph of a solution treatment performed at 854K (581 ° C.) and no holding time.

【図2】848K(575℃)、保持時間なしで溶体化
処理した金属組織顕微鏡写真を示す図である。
FIG. 2 is a view showing a metallographic micrograph of a solution treatment performed at 848 K (575 ° C.) without a holding time.

【図3】848K(575℃)、3時間保持して溶体化
処理した金属組織顕微鏡写真を示す図である。
FIG. 3 is a view showing a metallographic micrograph of a solution treated by holding at 848 K (575 ° C.) for 3 hours.

【図4】838K(565℃)、保持時間なしで溶体化
処理した金属組織顕微鏡写真を示す図である。
FIG. 4 is a micrograph of a metallographic structure subjected to a solution treatment at 838 K (565 ° C.) without a holding time.

【図5】838K(565℃)、3時間保持して溶体化
処理を施した金属組織顕微鏡写真を示す図である。
FIG. 5 is a diagram showing a metallographic micrograph of a solution treatment performed at 838 K (565 ° C.) for 3 hours.

【図6】838K(565℃)、8時間保持して溶体化
処理した金属組織顕微鏡写真を示す図である。
FIG. 6 is a view showing a metallographic micrograph of a solution treatment performed by holding at 838 K (565 ° C.) for 8 hours.

【図7】溶体化処理時間と共晶Si粒子の面積との関係
を示す図である。
FIG. 7 is a diagram showing the relationship between solution treatment time and the area of eutectic Si particles.

【図8】溶体化処理時間と円形度との関係を示す図であ
る。
FIG. 8 is a diagram showing a relationship between solution treatment time and circularity.

【図9】溶体化処理時間と0.2%耐力との関係を示す
図である。
FIG. 9 is a diagram showing the relationship between solution treatment time and 0.2% proof stress.

【図10】溶体化処理時間と破断伸びとの関係を示す図
である。
FIG. 10 is a view showing the relationship between solution treatment time and elongation at break.

【図11】溶体化処理時間と吸収エネルギー(衝撃値)
との関係を示す図である。
FIG. 11: Solution heat treatment time and absorbed energy (impact value)
FIG.

【図12】時効処理時間と引張強さとの関係を示す図で
ある。
FIG. 12 is a diagram showing a relationship between aging treatment time and tensile strength.

【図13】時効処理時間と0.2%耐力との関係を示す
図である。
FIG. 13 is a diagram showing the relationship between aging treatment time and 0.2% proof stress.

【図14】時効処理時間と破断伸びとの関係を示す図で
ある。
FIG. 14 is a diagram showing a relationship between aging treatment time and elongation at break.

【図15】時効処理時間と吸収エネルギー(衝撃値)と
の関係を示す図である。
FIG. 15 is a diagram showing the relationship between aging treatment time and absorbed energy (impact value).

【符号の説明】[Explanation of symbols]

(なし)。 (None).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630B 691 691B 691C ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 630 C22F 1/00 630B 691 691B 691C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量比率で、Si:3.5〜4.5%、
Mg:0.15〜0.4%、Cu:1.0%以下、改良
処理剤、残部実質的にAlおよび不可避的不純物のうち
特にFe:0.2%以下の組成を含有する鋳造後のアル
ミニウム合金鋳物を、823Kを超え848K未満の温
度で2〜4時間保持した後急冷する溶体化処理を行い、
しかる後に433K〜453Kの温度で1〜3時間の時
効処理を施すことを特徴とする高靱性アルミニウム合金
鋳物の製造方法。
1. A mass ratio of Si: 3.5 to 4.5%,
Mg: 0.15 to 0.4%, Cu: 1.0% or less, improved treating agent, balance substantially after Al and, among the unavoidable impurities, particularly Fe: 0.2% or less. A solution treatment in which the aluminum alloy casting is kept at a temperature of more than 823K and less than 848K for 2 to 4 hours and then quenched,
A method for producing a high-toughness aluminum alloy casting, which comprises subjecting to an aging treatment at a temperature of 433 K to 453 K for 1 to 3 hours.
【請求項2】 質量比率で、Si:3.5〜4.5%、
Mg:0.15〜0.4%、Cu:1.0%以下、改良
処理剤、残部実質的にAlおよび不可避的不純物のうち
特にFe:0.2%以下の組成を含有する鋳造後のアル
ミニウム合金鋳物を、823Kを超え848K未満の温
度で2〜4時間保持した後急冷する溶体化処理を行い、
しかる後に433K〜453Kの温度で1〜3時間の時
効処理を施すことにより、アルミニウム基地中の共晶S
i粒子の面積が6μm2以下、かつ円形度が0.60以
上を有し、伸びが23%以上、かつ衝撃値が23×10
4J/m2以上有することを特徴とする高靱性アルミニウ
ム合金鋳物。
2. Si: 3.5 to 4.5% by mass ratio,
Mg: 0.15 to 0.4%, Cu: 1.0% or less, improved
Treatment agent, the balance substantially of Al and inevitable impurities
In particular, Al after casting containing a composition of Fe: 0.2% or less.
The minium alloy casting is heated to a temperature of more than 823K and less than 848K.
After the solution is kept for 2 to 4 hours and then quenched,
After that, at a temperature of 433K to 453K for 1 to 3 hours
Eutectic S in the aluminum matrix
i-particle area is 6 μmTwoLess than or equal to 0.60
Having an elongation of 23% or more and an impact value of 23 × 10
FourJ / mTwoHigh toughness aluminum characterized by having above
Alloy castings.
【請求項3】 質量比率で、Si:3.5〜4.5%、
Mg:0.15〜0.4%、Cu:1.0%以下、改良
処理剤、残部実質的にAlおよび不可避的不純物のうち
特にFe:0.2%以下の組成を含有する鋳造後のアル
ミニウム合金鋳物を、823Kを超え848K未満の温
度で2〜4時間保持した後急冷する溶体化処理を行い、
しかる後に433K〜453Kの温度で1〜3時間の時
効処理を施すことにより、アルミニウム基地中の共晶S
i粒子の面積が6μm2以下、かつ円形度が0.55以
上 を有し、伸びが23%以上、かつ衝撃値が23×1
4J/m2以上、引張強さが290MPa以上、耐力が
200MPa以上を有することを特徴とする高靱性アル
ミニウム合金鋳物。
3. Si: 3.5-4.5% by mass ratio,
Mg: 0.15 to 0.4%, Cu: 1.0% or less, improved treating agent, balance substantially after Al and, among the unavoidable impurities, particularly Fe: 0.2% or less. A solution treatment in which the aluminum alloy casting is kept at a temperature of more than 823K and less than 848K for 2 to 4 hours and then quenched,
Then, after aging treatment at a temperature of 433 K to 453 K for 1 to 3 hours, the eutectic S
i particles have an area of 6 μm 2 or less, a circularity of 0.55 or more, an elongation of 23% or more, and an impact value of 23 × 1
0 4 J / m 2 or more, a tensile strength of at least 290 MPa, high-toughness aluminum alloy castings proof stress and having a least 200 MPa.
【請求項4】 請求項1乃至請求項3の何れか1項に記
載の改良処理剤が、Sr:0.0004〜0.002%
および/またはTi:0.25%以下であることを特徴
とする高靱性アルミニウム合金鋳物。
4. The improvement treatment agent according to claim 1, wherein the Sr content is 0.0004 to 0.002%.
And / or Ti: 0.25% or less of a high toughness aluminum alloy casting.
JP9768498A 1998-04-09 1998-04-09 Production of high toughness aluminum alloy casting and high toughness aluminum alloy casting obtained thereby Pending JPH11293430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9768498A JPH11293430A (en) 1998-04-09 1998-04-09 Production of high toughness aluminum alloy casting and high toughness aluminum alloy casting obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9768498A JPH11293430A (en) 1998-04-09 1998-04-09 Production of high toughness aluminum alloy casting and high toughness aluminum alloy casting obtained thereby

Publications (1)

Publication Number Publication Date
JPH11293430A true JPH11293430A (en) 1999-10-26

Family

ID=14198814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9768498A Pending JPH11293430A (en) 1998-04-09 1998-04-09 Production of high toughness aluminum alloy casting and high toughness aluminum alloy casting obtained thereby

Country Status (1)

Country Link
JP (1) JPH11293430A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012582A1 (en) * 2000-08-08 2002-02-14 Asahi Tec Corporation Aluminum alloy formed by precipitation hardening and method for heat treatment thereof
EP3162460A1 (en) * 2015-11-02 2017-05-03 Mubea Performance Wheels GmbH Light metal casting part and method of its production
CN107868889A (en) * 2016-09-23 2018-04-03 比亚迪股份有限公司 Aluminium alloy and its preparation method and application and automobile body skeleton connector and electric automobile
CN115505799A (en) * 2022-09-23 2022-12-23 重庆慧鼎华创信息科技有限公司 High-strength and high-toughness gravity casting aluminum alloy and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012582A1 (en) * 2000-08-08 2002-02-14 Asahi Tec Corporation Aluminum alloy formed by precipitation hardening and method for heat treatment thereof
KR100533242B1 (en) * 2000-08-08 2005-12-05 아사히 테크 가부시키가이샤 Aluminum alloy formed by precipitation hardening and method for heat treatment thereof
EP3162460A1 (en) * 2015-11-02 2017-05-03 Mubea Performance Wheels GmbH Light metal casting part and method of its production
WO2017076801A1 (en) * 2015-11-02 2017-05-11 Mubea Performance Wheels Gmbh Method for producing a light metal cast component and light metal cast component
KR20180067565A (en) * 2015-11-02 2018-06-20 무베아 퍼포먼스 휠스 게엠베하 Light metal casting parts production method and light metal cast parts
CN108290210A (en) * 2015-11-02 2018-07-17 慕贝尔性能车轮有限公司 Method for manufacturing light metal casting component and light metal casting component
JP2019501777A (en) * 2015-11-02 2019-01-24 ムベア パフォーマンス ウィールズ ゲゼルシャフト ミット ベシュレンクテル ハフツングMubea Performance Wheels GmbH Light metal cast member manufacturing method and light metal cast member
US10801089B2 (en) 2015-11-02 2020-10-13 Mubea Performance Wheels Gmbh Light metal cast component
CN107868889A (en) * 2016-09-23 2018-04-03 比亚迪股份有限公司 Aluminium alloy and its preparation method and application and automobile body skeleton connector and electric automobile
CN115505799A (en) * 2022-09-23 2022-12-23 重庆慧鼎华创信息科技有限公司 High-strength and high-toughness gravity casting aluminum alloy and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US7087125B2 (en) Aluminum alloy for producing high performance shaped castings
CN109972003B (en) High-elongation heat-resistant aluminum alloy suitable for gravity casting and preparation method thereof
EP1882754B1 (en) Aluminium alloy
JP3891933B2 (en) High strength magnesium alloy and method for producing the same
EP1882753A1 (en) Aluminium alloy
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP2002206133A (en) Aluminum alloy for diecasting, aluminum diecast product and its production method
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP3921314B2 (en) Aluminum alloy cast material excellent in impact fracture strength and method for producing the same
JP2003213354A (en) Aluminum alloy for diecasting, method of producing diecast product and diecast product
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
KR100703130B1 (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
JPH11246925A (en) Aluminum alloy casting with high toughness, and its manufacture
JPH11293430A (en) Production of high toughness aluminum alloy casting and high toughness aluminum alloy casting obtained thereby
KR20060135990A (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
JPH0375329A (en) Aluminum alloy and method for its casting
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JP2001234269A (en) Aluminum alloy die-cast molding excellent in dynamic characteristic and its producing method
JP2003155535A (en) Aluminum alloy extruded material for automobile bracket, and production method therefor
JPH10259464A (en) Production of aluminum alloy sheet for forming
KR102012952B1 (en) Aluminium alloy and manufacturing method thereof
JP3929850B2 (en) Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050310

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061205

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A02