JPH11293398A - Hot rolled steel plate suited to high density energy beam welding, and its production - Google Patents

Hot rolled steel plate suited to high density energy beam welding, and its production

Info

Publication number
JPH11293398A
JPH11293398A JP9357298A JP9357298A JPH11293398A JP H11293398 A JPH11293398 A JP H11293398A JP 9357298 A JP9357298 A JP 9357298A JP 9357298 A JP9357298 A JP 9357298A JP H11293398 A JPH11293398 A JP H11293398A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
hot
less
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9357298A
Other languages
Japanese (ja)
Inventor
Akio Tosaka
章男 登坂
Yasushi Kitani
靖 木谷
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9357298A priority Critical patent/JPH11293398A/en
Publication of JPH11293398A publication Critical patent/JPH11293398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide superior high density energy beam weldability and excellent formability after welding by controlling the chemical composition of a steel and providing a steel-plate structure containing a base phase having a specific grain size and a secondary phase having a specific area ratio. SOLUTION: The steel has a composition consisting of, by weight, 0.001-0.20% C, 0.005-1.5% Si, 0.05-3.5% Mn, 0.005-0.15% P, <=0.02% S, 0.005-0.2% Al, <=0.02% N, further one or more kinds selected from 0.005-0.20% Nb, 0.005-0.20% Ti, and 0.005-0.20% V, and the balance Fe. The structure of steel contains a base phase of <=15 μm average crystalline grain size and a secondary phase of <=20% in an area ratio. Hot rolling is applied to the steel stock of this composition at the finishing temperature of >=800 deg.C and coiling temperature of >=500 deg.C to form a hot rolled plate having >=10% uniform elongation and >=5% local elongation. If necessary, 0.0005-0.005% B and 0.005-0.20% of one or more kinds among Cu, Ni, Cr, and Mo are incorporated into the steel composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度エネルギー
ビーム溶接に好適な熱延鋼板に係り、とくに高密度エネ
ルギービーム溶接性に優れ、さらに溶接後のプレス成形
性に優れた熱延鋼板に関する。本発明における鋼板は、
鋼板、鋼帯を含むものとする。
The present invention relates to a hot-rolled steel sheet suitable for high-density energy beam welding, and more particularly to a hot-rolled steel sheet having excellent high-density energy beam weldability and excellent press formability after welding. The steel sheet in the present invention,
It shall include steel sheets and steel strips.

【0002】[0002]

【従来の技術】近年、地球環境保全の観点から、炭酸ガ
スの排出を規制する動きが活発となっており、自動車の
軽量化による燃費改善が注目されている。自動車の軽量
化を進めるうえでは、自動車車体で多くの割合を占める
鋼板を薄肉化するのが有効な手段であり、鋼板の薄肉化
のために、高強度化した自動車用鋼板の開発が進められ
ている。しかしながら、部品の高剛性が要求される部位
においては、単純に、薄肉化した高強度鋼板を適用する
ことはできない。また、高剛性が要求される部位の板厚
に他の部材の板厚を適合させると、成形部材の重量が不
必要に重くなる。
2. Description of the Related Art In recent years, from the viewpoint of preserving the global environment, there has been an active movement to regulate the emission of carbon dioxide gas, and attention has been focused on improving fuel efficiency by reducing the weight of automobiles. In order to reduce the weight of automobiles, it is effective to reduce the thickness of steel sheets, which account for a large proportion of the body of the automobile, and the development of high-strength automotive steel sheets has been promoted in order to reduce the thickness of steel sheets. ing. However, a thin high-strength steel sheet cannot be simply applied to a part where high rigidity of a part is required. In addition, if the thickness of another member is adapted to the thickness of a portion where high rigidity is required, the weight of the formed member becomes unnecessarily heavy.

【0003】このような問題に対し、従来は、個々にプ
レス成形された部材をスポット溶接により組み立てて構
成部材としていたが、最近、異なる板厚、異なる材質の
素材を平板の状態で部品形状に合わせてブランク(剪断
打抜きまたは剪断切出し)し、レーザビームなどの高密
度エネルギービーム溶接により接合したのち、プレス成
形を行う、いわゆるテーラードブランクと呼ばれる技術
が開発されている。技術内容としては、例えば(社)自
動車技術会 学術講演会前刷集901,1990-5,P245 などに
紹介されている。また、この改良技術として、例えば特
開昭63-168286号公報には、厚さの異なる金属板を溶加
材を付加しないレーザビーム突き合わせ溶接を用いて、
レーザビームの方向を板表面に対し傾斜し、かつレーザ
ビームの方向成分のひとつを厚い方の金属板の切断縁に
向けて溶接したのち、溶接された金属板をプレス成形、
深絞り成形する成形部材の製造方法が開示されている。
In order to solve such a problem, conventionally, individually press-formed members are assembled by spot welding to form constituent members. However, recently, materials having different thicknesses and different materials are formed into a flat shape in a part shape. A technique called so-called tailored blank has been developed in which blanks (shear punching or shearing out) are combined, joined by high-density energy beam welding such as a laser beam, and then press-formed. The technical contents are introduced, for example, in the Preprints of the Society of Automotive Engineers of Japan, Academic Lecture Meeting 901, 1990-5, P245. As an improved technique, for example, Japanese Patent Application Laid-Open No. 63-168286 discloses a metal plate having a different thickness using laser beam butt welding without adding a filler material.
After tilting the direction of the laser beam with respect to the plate surface and welding one of the directional components of the laser beam toward the cutting edge of the thicker metal plate, press-forming the welded metal plate
A method for manufacturing a molded member to be subjected to deep drawing is disclosed.

【0004】このテーラードブランクと呼ばれる技術を
適用すれば、余分な板厚増加を防止でき、大幅な軽量化
が達成できる。例えば、高剛性が要求される部位のみを
厚肉とし、他の高剛性を要求されていない部位では、高
張力鋼板を適用し薄肉とすることができる。しかしなが
ら、このテーラードブランク技術の適用に当たり、部材
の溶接部の溶接不良が、見栄えや成形性の点から問題と
なっていた。この見栄えの問題に対しては、例えば特開
平5-84585 号公報には、シャー切断された複数の薄鋼板
を切断面のばりの方向を同じにして突き合わせ、切断面
のダレ側にフィラーを供給し、ダレ側からレーザ光を照
射してレーザ溶接しレーザ光照射側の反対面をパネル外
板面とする自動車パネルの製造方法が開示されている。
また、成形性の問題に対しては、特開平5-50275 号公報
には、突き合わせ間隔、レーザ光の照射開始位置と鋼板
の溶接開始側端面との距離、レーザ光の照射終了位置と
鋼板の溶接終了側端面との距離、レーザ光照射開始時期
とフィラー供給開始時期のずれ、レーザ光照射終了時期
とフィラー供給終了時期のずれ、を所定の範囲としてレ
ーザ溶接を行うプレス成形用鋼板のレーザ溶接方法が開
示され、この方法により伸びフランジ成形性が高まると
している。
By applying this technique called a tailored blank, it is possible to prevent an extra increase in plate thickness and to achieve a significant reduction in weight. For example, only a portion where high rigidity is required can be made thick, and other portions where high rigidity is not required can be made thin by applying a high-tensile steel plate. However, in applying this tailored blank technique, poor welding at the welded portions of members has been a problem from the viewpoint of appearance and formability. To deal with this problem of appearance, for example, Japanese Patent Application Laid-Open No. 5-84585 discloses a method in which a plurality of sheared thin steel plates are butted with the same direction of burrs, and a filler is supplied to the sagged side of the cut surface. There is disclosed a method of manufacturing an automobile panel in which a laser beam is irradiated from the sagging side and laser-welded, and a surface opposite to the laser beam-irradiating side is used as a panel outer surface.
Regarding the problem of formability, Japanese Patent Application Laid-Open No. 5-50275 discloses an abutment interval, a distance between a laser light irradiation start position and a welding start side end face of a steel sheet, a laser light irradiation end position and a steel sheet irradiation time. Laser welding of steel plate for press forming, which performs laser welding with the distance between the end face on the welding end side, the difference between the laser light irradiation start time and the filler supply start time, and the difference between the laser light irradiation end time and the filler supply end time as predetermined ranges. A method is disclosed, which alleges that the stretch flangeability is enhanced.

【0005】[0005]

【発明が解決しようとする課題】しかし、本発明者ら
は、上記した溶接方法でもなお、溶接時に突き合わせ面
となる鋼板の切断面の形状精度が低い場合には、安定し
て部材の溶接接合を行うことが困難な場合があることを
知見し、溶接施工性から高密度エネルギービーム溶接を
行う各部材の突き合わせ面の形状精度の向上が必要であ
ることに想到した。また、平板状態では問題なく接合さ
れていても、溶接部の健全性に問題がある時にはその後
のプレス成形時に接合部にプレス割れを生じる等の不具
合を生じる場合があった。さらに、溶接熱影響部の軟化
が著しい場合には、プレス成形時に割れ、ネッキングな
どの不具合を発生するなど、高密度エネルギービーム溶
接した部材の溶接部および熱影響部の特性や成形性が劣
るという問題が残されていた。
However, the present inventors have found that even in the above-mentioned welding method, when the shape accuracy of the cut surface of the steel plate to be the butt surface at the time of welding is low, it is possible to stably weld the members. It was found that there was a case where it was difficult to perform welding, and it was conceived that it was necessary to improve the shape accuracy of the butted surfaces of the members for performing high-density energy beam welding from the viewpoint of welding workability. In addition, even if they are joined without any problem in the flat plate state, when there is a problem in the soundness of the welded portion, there may be a problem such as the occurrence of press cracking in the joined portion during the subsequent press forming. Furthermore, if the heat affected zone is significantly softened, cracks and necking will occur during press forming. The problem remained.

【0006】本発明は、上記した従来技術の問題を有利
に解決し、高密度エネルギービーム溶接における優れた
溶接性を有し、かつ溶接後の成形性に優れた高密度エネ
ルギービーム溶接用熱延鋼板を提供することを目的とす
る。
The present invention advantageously solves the above-mentioned problems of the prior art, has excellent weldability in high-density energy beam welding, and has excellent formability after welding. The purpose is to provide steel sheets.

【0007】[0007]

【課題を解決するための手段】本発明者らは、高密度エ
ネルギービーム溶接を安定して施工するためには、まず
部材の突き合わせ面となる鋼板の切断面の形状精度が重
要であることを見いだした。とくに、剪断により所定の
寸法に切断された鋼板においては、切断面の破面形態が
重要であり、通常実施される板厚10%程度のクリアラン
ス設定で剪断した場合には、鋼板の全厚に対し、65%以
上、好ましくは75%以上の剪断面と、20%以下、好まし
くは15%以下の破断面と、15%以下、好ましくは10%以
下の「だれ」、10%以下の「かえり」とからなる破面形
態とするのがよいことを見いだした。剪断により鋼板を
切断した場合の破面形態は、一般に図1に示すように、
剪断面とそれに続く破断面と、剪断開始側のだれと、剪
断終了側のかえりから構成されている。
Means for Solving the Problems In order to stably perform high-density energy beam welding, the present inventors first find that the shape accuracy of the cut surface of a steel plate, which is the butted surface of members, is important. I found it. In particular, in the case of a steel sheet cut to a predetermined size by shearing, the form of the fracture surface of the cut surface is important. On the other hand, a shear surface of 65% or more, preferably 75% or more, a fracture surface of 20% or less, preferably 15% or less, a "whore" of 15% or less, preferably 10% or less, and a "burr" of 10% or less It was found that it would be better to use a fractured form consisting of In general, as shown in FIG. 1, the fracture surface when a steel sheet is cut by shearing is as follows.
It consists of a shear plane followed by a fracture plane, a droop on the shear start side, and a burr on the shear end side.

【0008】さらに、本発明者らは、種々の強化機構を
組み合わせて高強度化した熱延鋼板について、剪断条件
を変化した剪断を行い切断部の破面形態を観察し、通常
の剪断条件で、上記した高密度エネルギービーム溶接の
溶接施工に好適な破面形態とするための素材組織につい
て検討した。その結果、素材として、鋼の化学成分を規
制し、均一微細な組織とすることが必要で、具体的に
は、鋼板組織を平均結晶粒径が15μm 以下の母相と、面
積率で20%以下の第2相を含む組織とするのがよいとい
う知見を得た。
Further, the inventors of the present invention performed shearing with varying shearing conditions on a hot-rolled steel sheet which had been strengthened by combining various strengthening mechanisms, observed the fracture surface morphology of the cut portion, and under normal shearing conditions. The material structure for forming a fracture surface suitable for the welding operation of the high-density energy beam welding described above was studied. As a result, it is necessary to regulate the chemical composition of steel as a material and to have a uniform and fine structure. Specifically, the structure of the steel sheet is made up of a matrix with an average crystal grain size of 15 μm or less, and an area ratio of 20% It was found that it is better to use a tissue containing the following second phase.

【0009】また、本発明者らは、高エネルギービーム
溶接部の特性を改善するために、種々の強化機構を組み
合わせて高強度化した熱延鋼板について、高密度エネル
ギービーム溶接を実施し、溶接部特性について検討し
た。その結果、Nb、Ti、Vを単独または複合して添加
し、これらの炭窒化物による析出強化を用いて、あるい
はさらにCu、Ni、Cr、MoおよびBを用いて高強度化する
ことにより、高エネルギービーム溶接を行っても、溶接
部および溶接熱影響部の強度・延性の劣化はなく、また
溶接熱影響部の軟化もなく、プレス成形性が著しく向上
するという知見を得た。
In order to improve the characteristics of a high energy beam welded part, the present inventors conducted high-density energy beam welding on a hot-rolled steel sheet having a high strength by combining various strengthening mechanisms. Part characteristics were studied. As a result, by adding Nb, Ti, V alone or in combination, and using precipitation strengthening by these carbonitrides, or by further increasing the strength using Cu, Ni, Cr, Mo and B, It has been found that even when high energy beam welding is performed, there is no deterioration in the strength and ductility of the welded portion and the heat affected zone, and there is no softening of the heat affected zone, and the press formability is significantly improved.

【0010】本発明は、上記した知見に基づいて完成さ
れたものである。すなわち、本発明は、重量%で、C:
0.001 〜0.20%、Si:0.005 〜1.5 %、Mn:0.05〜3.5
%、P:0.005 〜0.15%、S:0.02%以下、Al:0.005
〜0.2 %、N:0.02%以下を含み、Nb:0.005 〜0.20
%、Ti:0.005 〜0.20%、V:0.005 〜0.20%のうちか
ら選ばれた1種または2種以上を含有し、残部Feおよび
不可避的不純物からなる組成と、平均結晶粒径15μm 以
下の母相と、面積率で20%以下の第2相を含む組織とか
らなり、均一伸び10%以上、好ましくは20%以上、局部
伸び5%以上を有することを特徴とする高密度エネルギ
ービーム溶接に適した熱延鋼板であり、前記組成に加え
て、さらにB:0.0005〜0.005 %と、Cu、Ni、Cr、Moの
うちから選ばれた1種または2種以上を合計で0.005 〜
0.20%とのうち少なくとも一方を含有してもよい。
The present invention has been completed based on the above findings. That is, the present invention provides a method for preparing C:
0.001 to 0.20%, Si: 0.005 to 1.5%, Mn: 0.05 to 3.5
%, P: 0.005 to 0.15%, S: 0.02% or less, Al: 0.005%
0.20.2%, N: 0.02% or less, Nb: 0.005 00.20
%, Ti: 0.005 to 0.20%, V: 0.005 to 0.20%, one or two or more selected from the group consisting of a balance of Fe and unavoidable impurities, and a base having an average crystal grain size of 15 μm or less. High-density energy beam welding, comprising a phase and a structure containing a second phase having an area ratio of 20% or less, and having a uniform elongation of 10% or more, preferably 20% or more, and a local elongation of 5% or more. It is a suitable hot-rolled steel sheet. In addition to the above composition, B: 0.0005 to 0.005% and one or two or more kinds selected from Cu, Ni, Cr, and Mo in a total of 0.005 to 0.005%
It may contain at least one of 0.20%.

【0011】また、本発明は、重量%で、Nb:0.005 〜
0.20%、Ti:0.005 〜0.20%、V:0.005 〜0.20%のう
ちから選ばれた1種または2種以上を含有する組成の鋼
素材に、仕上げ圧延温度を800 ℃以上、巻取温度を500
℃以上とする熱間圧延を施し、均一伸び10%以上、好ま
しくは20%以上、局部伸び5%以上を有する熱延板とす
ることを特徴とする高密度エネルギービーム溶接に適し
た熱延鋼板の製造方法である。なお、本発明では、前記
熱間圧延の仕上げ圧延終了後、好ましくは2秒以内に急
冷を開始し、好ましくは30℃/s以上の冷却速度で 600
〜750 ℃まで急冷し、その後好ましくは3〜20s間、緩
冷したのち、好ましくは30℃/s以上の冷却速度で巻取
り温度まで急冷するのが好ましい。また、本発明では、
前記組成を、重量%で、C:0.001 〜0.20%、Si:0.00
5 〜1.5 %、Mn:0.05〜3.5 %、P:0.005 〜0.15%、
S:0.02%以下、Al:0.005 〜0.2 %、N:0.02%以下
を含み、Nb:0.005 〜0.20%、Ti:0.005 〜0.20%、
V:0.005 〜0.20%のうちから選ばれた1種または2種
以上を含有し、残部Feおよび不可避的不純物からなる組
成とするのが好ましく、また本発明では、前記組成に加
えて、さらにB:0.0005〜0.005 %と、Cu、Ni、Cr、Mo
のうちから選ばれた1種または2種以上を合計で0.005
〜0.20%とのうち少なくとも一方を含有してもよい。
Further, the present invention relates to a method for producing a composition, in which Nb: 0.005
0.20%, Ti: 0.005 to 0.20%, V: 0.005 to 0.20%. A steel material containing at least one selected from the group consisting of a finish rolling temperature of 800 ° C or more and a winding temperature of 500%.
Hot-rolled steel sheet suitable for high-density energy beam welding, characterized in that the hot-rolled steel sheet is hot-rolled to at least 100 ° C and has a uniform elongation of 10% or more, preferably 20% or more, and a local elongation of 5% or more. It is a manufacturing method of. In the present invention, rapid cooling is preferably started within 2 seconds after the finish rolling of the hot rolling, and preferably at a cooling rate of 30 ° C./s or more.
It is preferable to quench to 750 ° C., then slowly cool for preferably 3 to 20 seconds, and then quench to the winding temperature, preferably at a cooling rate of 30 ° C./s or more. In the present invention,
The above composition is expressed in terms of% by weight: C: 0.001 to 0.20%, Si: 0.00
5 to 1.5%, Mn: 0.05 to 3.5%, P: 0.005 to 0.15%,
S: 0.02% or less, Al: 0.005 to 0.2%, N: 0.02% or less, Nb: 0.005 to 0.20%, Ti: 0.005 to 0.20%,
V: It is preferable that the composition contains one or more selected from 0.005 to 0.20% and has a balance of Fe and unavoidable impurities. In the present invention, in addition to the above composition, B : 0.0005-0.005%, Cu, Ni, Cr, Mo
0.005 in total from one or more selected from
To 0.20%.

【0012】[0012]

【発明の実施の形態】本発明でいう高密度エネルギービ
ームとは、レーザビーム、電子ビーム、プラズマビーム
などを指す。本発明による熱延鋼板を各部材として使用
し、各部材間を高密度エネルギービーム溶接することに
より成形用部材を構成すると、その後の成形が容易とな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The high-density energy beam in the present invention refers to a laser beam, an electron beam, a plasma beam and the like. When the hot-rolled steel sheet according to the present invention is used as each member and the members are formed by high-density energy beam welding between the members, the subsequent forming is facilitated.

【0013】まず、本発明における化学組成の限定理由
について説明する。Nb:0.005 〜0.20%、Ti:0.005 〜
0.20%、V:0.005 〜0.20%のうちから選ばれた1種ま
たは2種以上Nb、Ti、Vは、鋼板組織を均一かつ微細化
する有効な元素であり、それぞれ0.005 %以上添加する
ことにより効果が認められる。これら元素は1種または
2種以上複合して添加できる。しかし、いずれの元素で
も、それぞれ0.20%を超えて添加すると効果が飽和し、
添加量に見合う効果が期待できない。そのため、Nb、T
i、Vはそれぞれ0.005 〜0.20%の範囲に限定した。な
お、複合して添加される場合には、Nb、Ti、Vの合計量
が0.20%を超えると効果が飽和する傾向を示し好ましく
ない。
First, the reasons for limiting the chemical composition in the present invention will be described. Nb: 0.005 to 0.20%, Ti: 0.005 to
0.20%, V: One or more selected from among 0.005 to 0.20% Nb, Ti, and V are effective elements for making the steel sheet structure uniform and fine, and each of them is added by 0.005% or more. The effect is recognized. These elements can be added alone or in combination of two or more. However, when any of the elements is added in excess of 0.20%, the effect saturates,
An effect commensurate with the amount added cannot be expected. Therefore, Nb, T
i and V are each limited to the range of 0.005 to 0.20%. In addition, when it is added in combination, if the total amount of Nb, Ti, and V exceeds 0.20%, the effect tends to be saturated, which is not preferable.

【0014】また、Nb、Ti、Vは、強化元素としての作
用に加え、鋼板を剪断した場合の切断面の破面形態およ
び切断面の精度を高密度エネルギービーム溶接に好適な
範囲とする効果を有している。Nb、Ti、Vにより析出強
化された鋼板では、高密度エネルギービーム溶接を行っ
てもその溶接部の硬さ分布は比較的平坦な分布となり、
極端な硬化部や軟化部がなく、溶接部の延性低下も少な
い。このため、溶接後のプレス成形に際しても、溶接線
を挟んでほぼ均一な歪分布となり、溶接部の成形性は著
しく向上する。
Further, Nb, Ti, and V not only act as strengthening elements, but also have the effect of setting the fracture surface shape of the cut surface and the accuracy of the cut surface when the steel sheet is sheared in a range suitable for high-density energy beam welding. have. For steel sheets precipitation-strengthened with Nb, Ti, and V, even when high-density energy beam welding is performed, the hardness distribution of the welds becomes a relatively flat distribution,
There is no extremely hardened or softened part, and there is little decrease in ductility of the welded part. Therefore, even during press forming after welding, the strain distribution becomes substantially uniform across the welding line, and the formability of the welded portion is significantly improved.

【0015】C:0.001 〜0.20% Cは、鋼板の強度を確保するうえで重要な元素である。
C量が0.001 %未満では、溶接熱影響部の結晶粒が粗大
化し、溶接後のプレス成形時に割れ、ネッキングが発生
する。一方、C量が0.20%を超えると、溶接部の硬化が
著しく、延性が劣化するため、溶接後のプレス成形時に
割れが発生し、成形性が劣化する。このため、Cは0.00
1 〜0.20%に限定した。なお、さらなる成形性向上の観
点から好ましくは 0.002〜0.15%である。
C: 0.001 to 0.20% C is an important element for securing the strength of the steel sheet.
If the C content is less than 0.001%, the crystal grains in the heat affected zone become coarse, and cracking and necking occur during press forming after welding. On the other hand, if the C content exceeds 0.20%, the weld is hardened remarkably and ductility is deteriorated, so that cracks occur during press forming after welding, and the formability is deteriorated. Therefore, C is 0.00
Limited to 1-0.20%. The content is preferably 0.002 to 0.15% from the viewpoint of further improving moldability.

【0016】Si:0.005 〜1.5 % Siは、鋼板の延性低下を最小限に抑えて鋼板を強化する
ために有効な元素である。この効果は0.005 %以上の添
加で認められる。しかし、1.5 %を超える添加は、鋼板
の強度を著しく増加させるため、例えば熱間圧延等の鋼
板製造工程における負荷が大きく製造にあたり障害とな
る。このため、Siは0.005 〜1.5 %の範囲に限定した。
なお、溶接性の観点からは0.05〜1.0 %に限定するのが
好ましい。
Si: 0.005 to 1.5% Si is an element effective for strengthening the steel sheet while minimizing the decrease in ductility of the steel sheet. This effect is observed at 0.005% or more. However, if the addition exceeds 1.5%, the strength of the steel sheet is significantly increased, so that the load in a steel sheet manufacturing process such as hot rolling is large, which is an obstacle to the manufacture. For this reason, Si is limited to the range of 0.005 to 1.5%.
In addition, from the viewpoint of weldability, the content is preferably limited to 0.05 to 1.0%.

【0017】Mn:0.05〜3.5 % Mnは、鋼板組織の微細化および低温変態組織の形成に有
効な元素である。このような効果は0.05%以上の添加で
認められるが、3.5 %を超えて添加すると効果が飽和
し、さらに熱間圧延等の鋼板製造工程の負荷が増大す
る。このため、Mnは0.05〜3.5 %に限定した。
Mn: 0.05-3.5% Mn is an element effective for refining the structure of a steel sheet and forming a low-temperature transformation structure. Such an effect is observed when the addition is 0.05% or more, but when the addition exceeds 3.5%, the effect is saturated, and the load of a steel sheet manufacturing process such as hot rolling increases. For this reason, Mn was limited to 0.05 to 3.5%.

【0018】P:0.005 〜0.15% Pは、鋼板を固溶強化するために有効な元素であるが、
この効果が認められるためには0.005 %以上の添加が必
要である。一方、0.15%を超えて添加した場合には鋼板
の溶接性が低下する。このため、Pは0.005 〜0.15%の
範囲に限定した。なお、好ましくは0.01〜0.10%であ
る。
P: 0.005 to 0.15% P is an element effective for solid solution strengthening of a steel sheet.
To achieve this effect, 0.005% or more must be added. On the other hand, if added in excess of 0.15%, the weldability of the steel sheet decreases. Therefore, P is limited to the range of 0.005 to 0.15%. In addition, it is preferably 0.01 to 0.10%.

【0019】S:0.02%以下 Sは、鋼板の延性を低下させるため、できるだけ低減す
るのが好ましい。延性確保の観点からは、0.02%まで許
容できる。とくに高い延性が要求される場合には、0.01
0 %以下とするのが好ましい。 Al:0.005 〜0.2 % Alは、脱酸元素として作用し、0.005 %以上の添加で鋼
中の酸化物量を十分低減できる。0.2 %を超える添加
は、アルミナクラスターを形成し表面欠陥が多発すると
ともに、熱間延性が低下する。このため、Alは0.005 〜
0.2 %の範囲に限定した。なお、表面性状の観点からは
0.005 〜0.15%の範囲とするのが好ましい。
S: 0.02% or less S is preferably reduced as much as possible to reduce the ductility of the steel sheet. From the viewpoint of ensuring ductility, it is allowable up to 0.02%. If high ductility is required, 0.01
It is preferably set to 0% or less. Al: 0.005 to 0.2% Al acts as a deoxidizing element, and the addition of 0.005% or more can sufficiently reduce the amount of oxides in steel. When added in excess of 0.2%, alumina clusters are formed, surface defects are frequently generated, and hot ductility is reduced. Therefore, Al is 0.005 to
Limited to the range of 0.2%. In addition, from the viewpoint of surface properties
It is preferably in the range of 0.005 to 0.15%.

【0020】N:0.02%以下 Nは、鋼中に固溶して鋼板の強度を増加する元素である
が、耐時効性を劣化するため、耐時効性を劣化させない
範囲で添加し高強度化を図ることができる。しかも、過
剰な添加は、鋼板表面にブローホールを発生させるた
め、Nは0.02%以下に限定する。延性が要求される用途
の場合には、Nは0.007 %以下とするのが好ましい。
N: 0.02% or less N is an element that forms a solid solution in steel and increases the strength of the steel sheet. However, since N deteriorates aging resistance, it is added within a range that does not deteriorate aging resistance to increase the strength. Can be achieved. In addition, excessive addition causes blowholes on the steel sheet surface, so N is limited to 0.02% or less. For applications requiring ductility, N is preferably set to 0.007% or less.

【0021】B:0.0005〜0.005 % Bは、焼入れ性を増加する元素であり、第2相としてベ
イナイト組織を形成するうえで有用な元素であり、必要
に応じ添加できる。第2相として、ベイナイト組織を有
する組織は、高密度エネルギービーム溶接性や、高密度
エネルギービーム溶接後の成形性向上に有効である。B
が0.0005%未満では、上記した効果が期待できない。一
方、0.005 %を超える添加では、鋼板の表面性状が劣化
する。このため、Bは0.0005〜0.005 %の範囲とするの
が好ましい。なお、材質の安定化の観点からより好まし
くは0.0010〜0.0020%である。
B: 0.0005% to 0.005% B is an element that increases the hardenability and is a useful element for forming a bainite structure as the second phase, and can be added as necessary. As the second phase, a structure having a bainite structure is effective for improving high-density energy beam weldability and formability after high-density energy beam welding. B
If it is less than 0.0005%, the above effects cannot be expected. On the other hand, if it exceeds 0.005%, the surface properties of the steel sheet deteriorate. For this reason, B is preferably set in the range of 0.0005 to 0.005%. The content is more preferably 0.0010 to 0.0020% from the viewpoint of stabilizing the material.

【0022】Cu、Ni、Cr、Moのうちから選ばれた1種ま
たは2種以上を合計で0.005 〜0.20% Cu、Ni、Cr、Moは、焼入れ性を増加させる元素であり、
鋼板の高強度化のために必要に応じこれら元素のうちか
ら1種または2種以上添加できる。Cu、Ni、Cr、Moはそ
れぞれ0.005 %以上の添加で効果が認められるが、0.20
%を超える添加は鋼板の硬質化が顕著になり、高密度エ
ネルギービーム溶接性や、高密度エネルギービーム溶接
後の成形性が劣化する。このため、Cu、Ni、Cr、Moはそ
れぞれ0.005 〜0.20%の範囲とするのが好ましい。ま
た、複合して添加する場合は、合計量で0.20%を超える
添加は、高密度エネルギービーム溶接性や、高密度エネ
ルギービーム溶接後の成形性が劣化する。このため各元
素の合計量を0.20%以下に限定するのが好ましい。
One or more selected from Cu, Ni, Cr and Mo in a total amount of 0.005 to 0.20% Cu, Ni, Cr and Mo are elements that increase the hardenability,
One or more of these elements can be added as necessary to increase the strength of the steel sheet. Cu, Ni, Cr, and Mo are effective when added at 0.005% or more, respectively.
%, Hardening of the steel sheet becomes remarkable, and high-density energy beam weldability and formability after high-density energy beam welding deteriorate. Therefore, Cu, Ni, Cr, and Mo are each preferably in the range of 0.005 to 0.20%. In addition, when adding in a combined manner, if the total amount exceeds 0.20%, the high-density energy beam weldability and the formability after high-density energy beam welding deteriorate. Therefore, the total amount of each element is preferably limited to 0.20% or less.

【0023】つぎに、組織の限定理由について説明す
る。 母相:平均結晶粒径15μm 以下 本発明の熱延鋼板は、フェライトを母相とする組織であ
り、母相の面積率は少なくとも80%以上とするのが成形
性を確保するために好ましい。母相の平均結晶粒径は15
μm 以下とする。母相の平均結晶粒径が15μm を超える
と、鋼板を剪断により切断した場合に破面にだれ、かえ
りの形成が顕著となり、また、破断面の面積率が増加し
て、切断面の精度が低下し高密度エネルギービーム溶接
が安定して施工できなくなる。なお、平均結晶粒径は、
圧延方向に平行な板厚断面における全厚平均(ただし、
最表面より 100μm までは除く)で求めた。
Next, the reasons for limiting the organization will be described. Mother phase: average crystal grain size of 15 μm or less The hot-rolled steel sheet of the present invention has a structure in which ferrite is a parent phase, and the area ratio of the parent phase is preferably at least 80% or more in order to ensure formability. The average crystal grain size of the parent phase is 15
μm or less. If the average crystal grain size of the parent phase exceeds 15 μm, when the steel sheet is cut by shearing, dripping on the fracture surface and formation of burrs become remarkable, and the area ratio of the fracture surface increases, and the accuracy of the cut surface increases. As a result, the high-density energy beam welding cannot be performed stably. The average crystal grain size is
Average of the total thickness in the thickness section parallel to the rolling direction (however,
Excluding from the outermost surface up to 100 μm).

【0024】第2相:面積率で20%以下 第2相は、実質的にベイナイト、あるいはマルテンサイ
トあるいはこれらの混合とするのが強度と延性を両立さ
せるうえで好ましい。なお、前記のいずれかを含んでい
れば残留オーステナイトもしくはパーライトの混在も許
容される。第2相の面積率が20%を超えると、延性が低
下し、また、特に高精度の剪断面形状を得るために小さ
なクリアランスでの剪断を行った場合に加工面の状態が
顕著に悪化するようになる。なお、第2相は強度の向上
の観点から面積率で5%以上形成するのが好ましい。
Second phase: not more than 20% in area ratio It is preferable that the second phase be substantially bainite, martensite, or a mixture thereof from the viewpoint of achieving both strength and ductility. In addition, if any of the above is included, the mixture of retained austenite or pearlite is also allowed. When the area ratio of the second phase is more than 20%, ductility is reduced, and the state of the processed surface is significantly deteriorated particularly when shearing is performed with a small clearance in order to obtain a high-precision shearing surface shape. Become like The second phase is preferably formed at an area ratio of 5% or more from the viewpoint of improving strength.

【0025】上記した組成と組織とすることにより、熱
延鋼板は、均一伸び10%以上、局部伸び5%以上を有
し、延性、成形性に優れた鋼板となり、高密度エネルギ
ービーム溶接に好適な剪断加工破面形態を示し、優れた
高密度エネルギービーム溶接部特性と高密度エネルギー
ビーム溶接後の成形性を示す。なお、各相の比率は板厚
1/4 〜1/2 深さにおける圧延方向に平行な板厚断面のS
EM像により測定した。
With the above composition and structure, the hot-rolled steel sheet has a uniform elongation of 10% or more and a local elongation of 5% or more, and is excellent in ductility and formability, and is suitable for high-density energy beam welding. It shows excellent shearing fracture surface morphology, excellent high density energy beam welding properties and formability after high density energy beam welding. The ratio of each phase is the thickness
S of thickness section parallel to rolling direction at 1/4 to 1/2 depth
It was measured by an EM image.

【0026】つぎに、本発明の熱延鋼板の製造条件につ
いて説明する。上記した組成の溶鋼を、転炉、電気炉等
の通常公知の溶製方法で溶製し、連続鋳造法等の凝固手
段を用いて鋼素材とする。鋼素材は、ついで加熱あるい
は加熱することなく、熱間圧延を施される。熱間圧延の
ための加熱温度は、とくに限定されないが、1000〜1300
℃とするのが好ましい。1000℃未満では、所定の仕上げ
圧延温度とすることが困難となり、1300℃を超えると、
結晶粒が顕著に粗大化する。
Next, the conditions for producing the hot-rolled steel sheet of the present invention will be described. The molten steel having the above-described composition is smelted by a commonly known smelting method such as a converter or an electric furnace, and is made into a steel material using a solidifying means such as a continuous casting method. The steel material is then subjected to hot rolling without or with heating. The heating temperature for hot rolling is not particularly limited, but may be 1000 to 1300
C. is preferred. If it is less than 1000 ° C., it is difficult to obtain a predetermined finish rolling temperature, and if it exceeds 1300 ° C.,
The crystal grains are remarkably coarsened.

【0027】熱間圧延の仕上げ圧延温度:800 ℃以上、 本発明では、母相の平均結晶粒径を15μm 以下とするた
めに、鋼組成に加え、熱間圧延条件のうち仕上げ圧延温
度を800 ℃以上とする。熱延の仕上げ圧延温度が800 ℃
未満では、均一かつ微細な組織を得ることが困難とな
り、剪断加工後の破面が不均一化するという問題が生じ
る。また、第2相や炭化物の量が安定して制御できなく
なる。なお、熱間圧延の圧下率は、最終製品組織の均一
かつ微細化の観点から1000℃〜 850℃の温度範囲でトー
タルで80%以上とするのが好ましい。
In the present invention, in order to make the average crystal grain size of the parent phase 15 μm or less, in addition to the steel composition, the finish rolling temperature of the hot rolling conditions is set to 800 ° C. or more. C or higher. Finish rolling temperature of hot rolling is 800 ℃
If it is less than 1, it becomes difficult to obtain a uniform and fine structure, and there is a problem that the fracture surface after shearing becomes non-uniform. Further, the amount of the second phase and the amount of carbide cannot be stably controlled. In addition, it is preferable that the rolling reduction of the hot rolling is 80% or more in total in the temperature range of 1000 ° C. to 850 ° C. from the viewpoint of uniformity and fineness of the final product structure.

【0028】巻取温度:500 ℃以上 熱間圧延を施し熱延板としたのち、500 ℃以上好ましく
は 700℃以下で巻取る。巻取温度が 700℃を超えると、
スケールの生成が著しく、酸洗効率が悪くなり、さらに
コイルの長手・幅方向で材質が変動するという問題が発
生する。また、巻取温度が 500℃未満では、鋼板形状が
悪くなる。
Winding temperature: 500 ° C. or more After hot rolling to give a hot rolled sheet, winding is performed at 500 ° C. or more, preferably 700 ° C. or less. When the winding temperature exceeds 700 ℃,
The generation of scale is remarkable, the pickling efficiency is deteriorated, and the material varies in the longitudinal and width directions of the coil. On the other hand, if the winding temperature is lower than 500 ° C., the shape of the steel sheet is deteriorated.

【0029】以上のように熱間圧延され巻取処理を施さ
れた熱延板は、調質圧延等を施されてもよい。調質圧延
は、5%以下の圧下率とするのが材質安定性の観点から
好ましい。圧下率が5%を超えると、降伏点が急激に増
加し、延性が急激に低下するという問題を生ずる。な
お、Ti、Nb、Vの炭化物を析出させ、かつ20%以下の第
2相(実質的にマルテンサイトまたはベーナイトまたは
その混合)を得るためには、熱間圧延後の冷却パターン
を制御するのが好ましい。具体的条件は鋼組成および目
的とする材質(強度・延性等)により異なるが、圧延後
速やかに 600〜 750℃まで急冷し(前段冷却)、その
後、好ましくは3〜20秒間緩冷(例えば空冷)したの
ち、巻取り温度まで急冷する(後段冷却)ことが通常好
適である。前段冷却、後段冷却とも30℃/s以上の冷却速
度が好ましく、また前段冷却は熱間圧延後2秒以内に開
始することが好ましい。
The hot-rolled sheet which has been hot-rolled and wound up as described above may be subjected to temper rolling or the like. The temper rolling is preferably performed at a rolling reduction of 5% or less from the viewpoint of material stability. When the rolling reduction exceeds 5%, the yield point rapidly increases, and the problem that the ductility rapidly decreases occurs. In order to precipitate carbides of Ti, Nb, and V and obtain a second phase (substantially martensite or bainite or a mixture thereof) of 20% or less, the cooling pattern after hot rolling is controlled. Is preferred. Specific conditions vary depending on the steel composition and the target material (strength, ductility, etc.), but after rolling, rapidly cool to 600 to 750 ° C (pre-cooling), and then slowly cool for preferably 3 to 20 seconds (for example, air cooling). ), And then rapidly cooled to the winding temperature (post-stage cooling). A cooling rate of 30 ° C./s or more is preferable for both the first stage cooling and the second stage cooling, and the first stage cooling is preferably started within 2 seconds after the hot rolling.

【0030】前段冷却もしくは後段冷却が不十分である
と、第2相の面積率が過剰となる可能性が高まる。ま
た、緩冷温度域が 600〜 750℃の範囲を外れると溶接性
を確保するのに十分な炭化物析出を得ることができない
可能性がある。また、熱延板表面のスケールを剥離する
場合には、酸洗を施してもよい。熱延板のスケール剥離
の目的で行う酸洗は、通常公知の条件でよい。例えば、
60℃−3〜15%塩酸を使用するのが好ましい。
If the pre-stage cooling or the post-stage cooling is insufficient, the possibility that the area ratio of the second phase becomes excessive increases. On the other hand, if the cooling temperature range is out of the range of 600 to 750 ° C., it may not be possible to obtain carbide precipitation sufficient to secure weldability. When the scale on the hot rolled sheet surface is peeled off, pickling may be performed. The pickling performed for the purpose of peeling the scale of the hot-rolled sheet may be performed under generally known conditions. For example,
It is preferred to use 60 DEG C.-3-15% hydrochloric acid.

【0031】これら熱延板は、そのまま使用するか、さ
らに必要に応じ熱延板焼鈍を施されて冷延板用母板とし
て使用してもよい。
These hot rolled sheets may be used as they are, or may be further subjected to hot rolled sheet annealing if necessary, and used as a base sheet for cold rolled sheets.

【0032】[0032]

【実施例】(実施例1)表1に示す化学組成の溶鋼を、
転炉で溶製し、連続鋳造法でスラブに鋳造した。これら
スラブを表2に示すスラブ加熱温度に加熱したのち、表
2に示す熱間圧延条件で板厚 1.8mmと 1.4mmの熱延鋼板
とした。いずれの板厚の鋼板についてもほぼ同様の組織
と機械的特性を確認した。また原板となるこれら鋼板に
ついて引張試験を行った際の応力−歪曲線から均一伸び
および局部伸びを測定した。これら熱延鋼板を、酸洗し
たのちナイフクリアランスを板厚の5%とする剪断によ
り所定の寸法の鋼板とし、切断破面形態を観察した。破
面形態の評価は、○:良好、△:やや劣る、×:劣る、
で行った。○(良好)は、全厚に対する剪断面比率75%
以上、破断面比率15%以下、だれ、かえりとも10%以
下、△(やや劣る)は、剪断面比率65%〜75%未満、破
断面比率15%超〜20%、だれ10%超〜15%のいずれかに
該当、×(劣る)は、剪断面比率65%未満、破断面比率
20%超、だれ15%超、かえり10%超のいずれかに該当す
る場合とした。
EXAMPLES (Example 1) Molten steel having the chemical composition shown in Table 1 was used.
It was melted in a converter and cast into a slab by a continuous casting method. After heating these slabs to the slab heating temperature shown in Table 2, hot rolled steel sheets having a thickness of 1.8 mm and 1.4 mm were obtained under the hot rolling conditions shown in Table 2. Almost the same structure and mechanical properties were confirmed for steel plates of any thickness. In addition, uniform elongation and local elongation were measured from a stress-strain curve when a tensile test was performed on these steel sheets as original sheets. After pickling, the hot-rolled steel sheets were sheared to have a knife clearance of 5% of the sheet thickness to form steel sheets of a predetermined size, and the cut fracture surfaces were observed. The evaluation of the fracture surface morphology was as follows: ○: good, Δ: slightly poor, ×: poor,
I went in. ○ (Good) indicates that the shear surface ratio is 75% of the total thickness
As mentioned above, the fracture surface ratio is 15% or less, and who and the burrs are 10% or less. %, X (poor) indicates less than 65% shear surface ratio, fracture surface ratio
It is considered to be one of the cases exceeding 20%, anyone exceeding 15%, and returning more than 10%.

【0033】これら熱延鋼板の剪断面を突き合わせ、炭
酸ガスレーザを用いて、突き合わせ溶接により成形用部
材とした。レーザ溶接条件はつぎのとおりである。 レーザ出力: 4.0kW 溶接速度 :5m/min 集光レンズの焦点距離: 250mm 焦点位置:− 0.5mm(板表面より板内部側を正とする) シールドガス:Ar シールドガス流量:20 l/min 上記した条件で突合せ溶接を行い、施工の安定性を調査
した。溶接施工の安定性の評価は、溶接長 500mmの全長
の外観を観察し、アンダーカット、穴あきがあったもの
を×(欠陥)とし、ないものを○(良好)とした。
The sheared surfaces of these hot-rolled steel sheets were butted and formed into a forming member by butt welding using a carbon dioxide gas laser. The laser welding conditions are as follows. Laser output: 4.0kW Welding speed: 5m / min Focal length of condenser lens: 250mm Focus position: -0.5mm (Positive inside the plate from the plate surface) Shield gas: Ar Shield gas flow: 20 l / min Butt welding was performed under the conditions described above, and the stability of the construction was investigated. The stability of the welding operation was evaluated by observing the external appearance of the entire welding length of 500 mm, and those with undercuts and holes were rated as x (defect), and those without were rated as good (good).

【0034】また、これら成形用部材溶接部から、硬さ
試験片を採取し、溶接部の硬さ試験を実施し、溶接部の
硬さ分布を調査した。また、液圧バルジ試験を実施し
て、溶接部の成形性を調査した。液圧バルジ試験は、つ
ぎの条件で実施した。 張出し径: 150mmの一定 溶接部 :張出し円の中心部におく この方法は、摩擦による変形の不均一がないため、溶接
継手部の変形特性を正しく評価することができる。溶接
部の成形性は破断寸前の塑性ひずみ、すなわち変形限界
ひずみで評価した。各10枚のサンプルに対してバルジ加
工を行い限界ひずみが比較値(溶接なしの原板( 1.4mm
厚)における変形限界ひずみ)より1枚でも大幅に下回
った(1/2 以下)場合を×とした。 これらの結果を表
2に示す。
Further, a hardness test piece was sampled from the welded portion of the forming member, and a hardness test of the welded portion was conducted to investigate a hardness distribution of the welded portion. In addition, a hydraulic bulge test was performed to investigate the formability of the weld. The hydraulic bulge test was performed under the following conditions. Overhang diameter: 150mm constant Welded part: Place in the center of overhang circle This method can evaluate deformation characteristics of welded joint correctly because there is no uneven deformation due to friction. The formability of the weld was evaluated by plastic strain just before breaking, that is, deformation limit strain. The bulge processing was performed on each of 10 samples, and the critical strain was compared with the comparative value (a plate without welding (1.4 mm
The case where even one sheet was significantly lower (less than 1/2) than the deformation limit strain) in the thickness) was evaluated as x. Table 2 shows the results.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】表2から、本発明例は、剪断加工の破面形
態も所望の形態となって、溶接施工の安定性が高い。ま
た、溶接熱影響部の軟化が鋼板No.15 を除いてなく、ま
た溶接部の硬度も過剰にならず適正で、高密度エネルギ
ービーム溶接性に優れ、さらに溶接部を張出し成形して
も割れ等の発生はみられず、成形性は良好であった。な
お、本発明例の鋼板No.15 は熱延後の冷却において、緩
冷部をなくし後段の冷却速度を低くした、いわゆる前段
急冷型の冷却パターンとした。前段、後段急冷型の方が
良好な特性を得やすいものの、前段急冷型の冷却条件で
も鋼組成に合わせて適正化したものであれば、高エネル
ギービーム溶接性を改善することができる。
From Table 2, it can be seen that the example of the present invention has a desired form of the fracture surface in the shearing process, and thus has high stability in welding. Also, the softening of the weld heat affected zone is not excluded except steel plate No.15, and the hardness of the welded portion is appropriate without excessive hardness.It has excellent high-density energy beam weldability. No occurrence was observed, and the moldability was good. Note that the steel sheet No. 15 of the present invention had a so-called pre-quenching type cooling pattern in which the cooling rate after cooling was reduced by eliminating the slow cooling part in cooling after hot rolling. Although the former and latter quenching types are more likely to obtain better characteristics, high-energy beam weldability can be improved if the cooling conditions of the former quenching type are optimized according to the steel composition.

【0038】(実施例2)表2に示す鋼板の中から表3
に示す鋼板組合せで原板1および原板2を選択し、実施
例1と同じ条件で炭酸ガスレーザを用いて突合せ溶接
し、成形用部材を作製した。これら部材について実施例
1と同様に、溶接施工性、溶接部硬さ、液圧バルジ試験
によるプレス成形性を調査し、高密度エネルギービーム
溶接性を評価した。その結果を表3に示す。なお、溶接
後のバルジ加工における限界ひずみの比較値としては、
溶接した2種の原板のうち低い方の値を採用した。ま
た、軟化部の有無も低い方の母材硬度を基準に評価し
た。本発明の鋼板同士の組み合わせは、いずれも良好な
結果を示した。なお、本発明の鋼板と比較鋼との組み合
わせでは、比較鋼同士の溶接よりは良好であった。すな
わち、試験したサンプル数(10枚)ではプレス成形に問
題はなかった。ただし、軟化部がわずかに見られたた
め、総合評価は△とした。
Example 2 From the steel sheets shown in Table 2, Table 3
The original sheet 1 and the original sheet 2 were selected from the combination of the steel sheets shown in (1) and (2) were butt-welded using a carbon dioxide laser under the same conditions as in Example 1 to produce a forming member. In the same manner as in Example 1, welding workability, weld hardness, and press formability by a hydraulic bulge test were investigated for these members, and high-density energy beam weldability was evaluated. Table 3 shows the results. In addition, as a comparative value of the critical strain in bulging after welding,
The lower value of the two types of welded original plates was adopted. The presence or absence of a softened portion was also evaluated based on the lower base material hardness. All combinations of the steel sheets of the present invention showed good results. In addition, the combination of the steel sheet of the present invention and the comparative steel was better than the welding of the comparative steels. That is, there was no problem in press molding with the number of samples tested (10). However, since the softened part was slightly observed, the overall evaluation was evaluated as “△”.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【発明の効果】本発明によれば、成形性を損なうことな
く、自動車車体の軽量化や部材の歩留り向上を図ること
ができ、産業上格段の効果を奏する。
According to the present invention, the weight of an automobile body can be reduced and the yield of members can be improved without impairing the formability, and the industrial effects are remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】剪断加工により形成された鋼板切断面の破面形
態を示す模式図である。
FIG. 1 is a schematic diagram showing a fracture surface of a steel sheet cut surface formed by shearing.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.001 〜0.20%、 Si:0.005 〜1.5 %、 Mn:0.05〜3.5 %、 P:0.005 〜0.15%、 S:0.02%以下、 Al:0.005 〜0.2 %、 N:0.02%以下を含み、 Nb:0.005 〜0.20%、Ti:0.005 〜0.20%、V:0.005
〜0.20%のうちから選ばれた1種または2種以上を含有
し、残部Feおよび不可避的不純物からなる組成と、平均
結晶粒径15μm 以下の母相と、面積率で20%以下の第2
相を含む組織とからなり、均一伸び10%以上、局部伸び
5%以上を有することを特徴とする高密度エネルギービ
ーム溶接に適した熱延鋼板。
C. 0.001 to 0.20%, Si: 0.005 to 1.5%, Mn: 0.05 to 3.5%, P: 0.005 to 0.15%, S: 0.02% or less, Al: 0.005 to 0.2%, by weight%. N: 0.02% or less, Nb: 0.005 to 0.20%, Ti: 0.005 to 0.20%, V: 0.005
Of at least one selected from the group consisting of Fe and unavoidable impurities, a mother phase having an average crystal grain size of 15 μm or less, and a second phase having an area ratio of 20% or less.
A hot-rolled steel sheet suitable for high-density energy beam welding, comprising a structure containing a phase and having a uniform elongation of 10% or more and a local elongation of 5% or more.
【請求項2】 前記組成に加えて、さらにB:0.0005〜
0.005 %と、Cu、Ni、Cr、Moのうちから選ばれた1種ま
たは2種以上を合計で0.005 〜0.20%とのうち少なくと
も一方を含有することを特徴とする請求項1に記載の熱
延鋼板。
2. In addition to the above composition, B: 0.0005 to
2. The heat according to claim 1, wherein the heat content is at least one of 0.005% and 0.005 to 0.20% in total of one or more selected from Cu, Ni, Cr and Mo. Rolled steel sheet.
【請求項3】 重量%で、Nb:0.005 〜0.20%、Ti:0.
005 〜0.20%、V:0.005 〜0.20%のうちから選ばれた
1種または2種以上を含有する組成の鋼素材に、仕上げ
圧延温度を800 ℃以上、巻取温度を500 ℃以上とする熱
間圧延を施し、均一伸び10%以上、局部伸び5%以上を
有する熱延板とすることを特徴とする高密度エネルギー
ビーム溶接に適した熱延鋼板の製造方法。
3. Nb: 0.005 to 0.20% by weight, Ti: 0.
005 to 0.20%, V: 0.005 to 0.20% steel material with a composition containing one or more selected from the group consisting of heat treatment with a finish rolling temperature of 800 ° C or more and a winding temperature of 500 ° C or more. A method for producing a hot-rolled steel sheet suitable for high-density energy beam welding, wherein hot-rolled steel sheet is subjected to cold rolling to have a uniform elongation of 10% or more and a local elongation of 5% or more.
【請求項4】 前記組成が、重量%で、 C:0.001 〜0.20%、 Si:0.005 〜1.5 %、 Mn:0.05〜3.5 %、 P:0.005 〜0.15%、 S:0.02%以下、 Al:0.005 〜0.2 %、 N:0.02%以下を含み、 Nb:0.005 〜0.20%、Ti:0.005 〜0.20%、V:0.005
〜0.20%のうちから選ばれた1種または2種以上を含有
し、残部Feおよび不可避的不純物からなる組成であるこ
とを特徴とする請求項3に記載の熱延鋼板の製造方法。
4. The composition has the following composition by weight: C: 0.001 to 0.20%, Si: 0.005 to 1.5%, Mn: 0.05 to 3.5%, P: 0.005 to 0.15%, S: 0.02% or less, Al: 0.005% 0.2%, N: 0.02% or less, Nb: 0.005 to 0.20%, Ti: 0.005 to 0.20%, V: 0.005
The method for producing a hot-rolled steel sheet according to claim 3, wherein the composition contains one or two or more kinds selected from the group consisting of -0.20% and a balance of Fe and unavoidable impurities.
【請求項5】 前記組成に加えて、さらにB:0.0005〜
0.005 %と、Cu、Ni、Cr、Moのうちから選ばれた1種ま
たは2種以上を合計で0.005 〜0.20%とのうち少なくと
も一方を含有することを特徴とする請求項3または4に
記載の熱延鋼板の製造方法。
5. In addition to the above composition, B: 0.0005 to
5. The method according to claim 3, wherein the composition contains at least one of 0.005% and at least one of at least one selected from Cu, Ni, Cr and Mo in an amount of 0.005 to 0.20%. Production method of hot rolled steel sheet.
JP9357298A 1998-04-06 1998-04-06 Hot rolled steel plate suited to high density energy beam welding, and its production Pending JPH11293398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9357298A JPH11293398A (en) 1998-04-06 1998-04-06 Hot rolled steel plate suited to high density energy beam welding, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9357298A JPH11293398A (en) 1998-04-06 1998-04-06 Hot rolled steel plate suited to high density energy beam welding, and its production

Publications (1)

Publication Number Publication Date
JPH11293398A true JPH11293398A (en) 1999-10-26

Family

ID=14085982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9357298A Pending JPH11293398A (en) 1998-04-06 1998-04-06 Hot rolled steel plate suited to high density energy beam welding, and its production

Country Status (1)

Country Link
JP (1) JPH11293398A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090311125A1 (en) * 2007-04-18 2009-12-17 Kei Miyanishi Hot-working steel excellent in machinability and impact value
JP2011143430A (en) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd Method of manufacturing tailored blank, and steel plate for tailored blank
CN103451535A (en) * 2013-09-18 2013-12-18 济钢集团有限公司 Hot continuous rolling plate strip steel for 510MPa automotive frame and production technology thereof
US20150028625A1 (en) * 2013-07-26 2015-01-29 GM Global Technology Operations LLC Body component and method for producing a body component
WO2016080488A1 (en) * 2014-11-19 2016-05-26 新日鐵住金株式会社 Laser welded joint, automotive part, method for producing laser welded joint, and method for manufacturing automotive part
JP2021053671A (en) * 2019-09-30 2021-04-08 古河電気工業株式会社 Method of manufacturing joined body and joined body
CN112962016A (en) * 2021-02-03 2021-06-15 建龙北满特殊钢有限责任公司 Grain size refining method for alloy structural steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090311125A1 (en) * 2007-04-18 2009-12-17 Kei Miyanishi Hot-working steel excellent in machinability and impact value
US9127336B2 (en) * 2007-04-18 2015-09-08 Nippon Steel & Sumitomo Metal Corporation Hot-working steel excellent in machinability and impact value
JP2011143430A (en) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd Method of manufacturing tailored blank, and steel plate for tailored blank
US20150028625A1 (en) * 2013-07-26 2015-01-29 GM Global Technology Operations LLC Body component and method for producing a body component
CN103451535A (en) * 2013-09-18 2013-12-18 济钢集团有限公司 Hot continuous rolling plate strip steel for 510MPa automotive frame and production technology thereof
WO2016080488A1 (en) * 2014-11-19 2016-05-26 新日鐵住金株式会社 Laser welded joint, automotive part, method for producing laser welded joint, and method for manufacturing automotive part
JPWO2016080488A1 (en) * 2014-11-19 2017-09-14 新日鐵住金株式会社 Laser welded joint, automobile part, method for producing laser welded joint, and process for producing automobile part
US10697486B2 (en) 2014-11-19 2020-06-30 Nippon Steel Corporation Laser welded joint, vehicle component, manufacturing method of laser welded joint, and manufacturing method of vehicle component
JP2021053671A (en) * 2019-09-30 2021-04-08 古河電気工業株式会社 Method of manufacturing joined body and joined body
CN112962016A (en) * 2021-02-03 2021-06-15 建龙北满特殊钢有限责任公司 Grain size refining method for alloy structural steel

Similar Documents

Publication Publication Date Title
EP1577412B2 (en) High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof
US11572603B2 (en) Hot-rolled steel strip and manufacturing method
JP5728547B2 (en) Low density steel with good stamping performance
JP7261822B2 (en) Al-Fe alloy plated steel sheet for hot forming with excellent TWB welding properties, and method for producing hot formed member
JP6885232B2 (en) Hot-press plated steel sheet and its manufacturing method, and hot-press molded member and its manufacturing method
JPH083679A (en) Hot rolled high strength steel plate excellent in formability and fatigue characteristic and having thermal softening resistance and its production
US20230129303A1 (en) Hot-rolled steel sheet having excellent expandability and method for manufacturing same
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JP2008189987A (en) Hot rolled steel sheet for tailored blank, and tailored blank
JP2783809B2 (en) High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more
JP6828622B2 (en) Hot-pressed steel sheet and its manufacturing method, and hot-press formed member and its manufacturing method
KR102440772B1 (en) High strength steel sheet having excellent workability and manufacturing method for the same
CA3144538C (en) A method for manufacturing a post-rolled and post-butt welded, hardened steel sheet product
JPH11343538A (en) Cold-rolled steel sheet suitable for high-density energy beam welding and its production
JPH11293398A (en) Hot rolled steel plate suited to high density energy beam welding, and its production
JP2019014937A (en) High strength steel sheet and manufacturing method therefor
KR102209555B1 (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
JP2000015353A (en) Welded joining metallic plate excellent in press formability and production thereof
KR102209556B1 (en) Steel sheet having excellent hole-expandability, formed member, and manufacturing method of therefor
JPH07118792A (en) High-strength hot rolled steel plate and its production
JP3348365B2 (en) Hot-rolled high-strength steel sheet for processing having excellent heat-softening property and excellent fatigue properties, and method for producing the same
JPH09201688A (en) Manufacture of welded steel tube excellent in strength in weld zone
JPS623214B2 (en)
JP4332066B2 (en) High-strength liquid phase diffusion bonding joint with excellent weld toughness, high-strength steel for liquid phase diffusion bonding, and liquid phase diffusion bonding method
JPH09227937A (en) Manufacture of thick steel plate with high tensile strength