JPH11293377A - Chromium-base alloy for hearth member of heating furnace - Google Patents

Chromium-base alloy for hearth member of heating furnace

Info

Publication number
JPH11293377A
JPH11293377A JP10246498A JP10246498A JPH11293377A JP H11293377 A JPH11293377 A JP H11293377A JP 10246498 A JP10246498 A JP 10246498A JP 10246498 A JP10246498 A JP 10246498A JP H11293377 A JPH11293377 A JP H11293377A
Authority
JP
Japan
Prior art keywords
group
heating furnace
test
alloy
creep resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10246498A
Other languages
Japanese (ja)
Inventor
Kazuhito Ichinose
一仁 一之瀬
Koichi Yamagishi
浩一 山岸
Yoshiaki Ito
嘉朗 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10246498A priority Critical patent/JPH11293377A/en
Publication of JPH11293377A publication Critical patent/JPH11293377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy excellent in castability, creep resistance at a high temperature, or the like, by providing a composition containing respectively specified percentages of Cr, at least one element selected from the group consisting of Ti, Mn, Mo, W, and Zr, and at least one element selected from the group consisting of C, N, and B and having the balance Ni with inevitable impurities. SOLUTION: An alloy, having a composition containing 50-80 wt.% Cr, 2-10 wt.% of at least one element selected from the group consisting of Ti, Mn, Mo, W, and Zr, and 0.2-2 wt.% of at least one element selected from the group consisting of C, N, and B and having excellent properties at >=1300 deg.C, is provided. Ni has a function of improving the castability and oxidation resistance of Cr. Ti, or the like, have a function of forming, together with C, or the like, at least one kind selected from the group consisting of carbides, nitrides, and borides. The resultant carbides, or the like, are finely and dispersedly precipitated in the α-phase to improve compressive strength and creep resistance. By this method, the inexpensive alloy for hearth, free from casting crack and having superior productivity, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加熱炉炉床部材用
に好適なCr基合金に関し、より詳しくは、鋳造性、並
びに1300℃以上における高温圧縮強度、耐クリープ
性および耐酸化性に優れた加熱炉炉床部材用Cr基合金
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cr-based alloy suitable for a hearth member of a heating furnace, and more particularly, to an excellent castability, high-temperature compressive strength at 1300 ° C. or higher, creep resistance and oxidation resistance. To a Cr-based alloy for heating furnace hearth members.

【0002】[0002]

【従来の技術】熱間圧延、熱間鍛造などの熱間塑性加工
を行うため、スラブやビレットのような鋼片などに大気
中で加熱処理を行う。加熱処理の際、被加熱材を加熱炉
の端から装入し、炉内移送中に所要温度で加熱して、他
端から抽出する。被加熱材は、駆動する水冷可動レール
に担持しながら移送される。水冷可動レールには、水冷
スキッドパイプの周面頂部に、スキッドパイプ軸方向に
一定間隔をおいて、スキッドボタンが取り付けてある。
そのため、スキッドボタンは、酸化性雰囲気で、被加熱
材から種々の荷重を受ける。
2. Description of the Related Art In order to perform hot plastic working such as hot rolling and hot forging, heat treatment is performed on steel pieces such as slabs and billets in the atmosphere. In the heat treatment, the material to be heated is charged from the end of the heating furnace, heated at a required temperature during the transfer in the furnace, and extracted from the other end. The material to be heated is transferred while being carried on a driven water-cooled movable rail. A skid button is attached to the water-cooled movable rail at the top of the peripheral surface of the water-cooled skid pipe at regular intervals in the axial direction of the skid pipe.
Therefore, the skid button receives various loads from the material to be heated in an oxidizing atmosphere.

【0003】このようなわけでスキッドボタンなどの加
熱炉炉床部材には、耐久性および安定性、具体的には高
温圧縮強度、耐クリープ性および耐酸化性といった特性
の優れた材料が要求される。ここで、高温圧縮強度およ
び耐クリープ性は、高温において受ける荷重に対する変
形抵抗を意味し、高温圧縮強度は高温における一定の圧
縮力に対する変形速度を指標とし、耐クリープ性は高温
における一定の引張力による変形(伸び)のため破断に
至るまでの時間を指標とする。また、耐酸化性は高温の
酸化性雰囲気に対する酸化抵抗を意味し、高温大気中に
おける酸化速度を指標とする。
[0003] For this reason, furnace hearth members such as skid buttons are required to be made of a material having excellent properties such as durability and stability, specifically, high-temperature compressive strength, creep resistance and oxidation resistance. You. Here, the high-temperature compressive strength and the creep resistance mean the deformation resistance to a load received at a high temperature, the high-temperature compressive strength is an index of the deformation rate at a constant compressive force at a high temperature, and the creep resistance is a constant tensile force at a high temperature. The time taken to break due to deformation (elongation) due to the pressure is used as an index. The oxidation resistance means oxidation resistance to a high-temperature oxidizing atmosphere, and the oxidation rate in a high-temperature atmosphere is used as an index.

【0004】ところで、上記においてスキッドパイプを
水冷するのは、加熱炉内の熱影響を緩和して、変形抵抗
を保持させるとともに、表面の酸化損傷を防止するため
である。スキッドパイプを水冷するため、スキッドボタ
ンに担持される被加熱材は、スキッドボタンとの接触面
を介して局部冷却され、スキッドマークと呼ばれる低温
部がそこに発生する。このスキッドマークは、製品寸
法、表面性状、加熱炉燃料コスト、生産性などに悪影響
を及ぼすので、スキッドマークの低減は加熱炉の重要課
題の一つである。
[0004] The water cooling of the skid pipe in the above is intended to alleviate the heat effect in the heating furnace, maintain the deformation resistance, and prevent the surface from being oxidized and damaged. Since the skid pipe is water-cooled, the material to be heated carried by the skid button is locally cooled via a contact surface with the skid button, and a low-temperature portion called a skid mark is generated there. Since the skid mark has an adverse effect on product dimensions, surface properties, heating furnace fuel cost, productivity, and the like, reduction of the skid mark is one of the important tasks of the heating furnace.

【0005】しかるに、近年では、加熱炉操業効率の向
上などを目的として加熱炉内温度が1300℃以上の高
温操業が一般化し、そのために加熱炉炉床部材に対する
加熱炉内の熱影響がより厳しくなっている。これに対し
て上記スキッドパイプの水冷をさらに強化することは、
上記スキッドマーク低減という重要課題をさらに難しく
することになり、好ましくない。つまり、上記高温圧縮
強度、耐クリープ性および耐酸化性といった加熱炉炉床
部材の特性に対する要求がより厳しくなっている。
However, in recent years, high-temperature operation in which the temperature inside the heating furnace is 1300 ° C. or higher has become popular for the purpose of improving the heating furnace operation efficiency and the like. Has become. On the other hand, to further enhance the water cooling of the skid pipe,
The above-mentioned important problem of skid mark reduction is made more difficult, which is not preferable. In other words, the requirements for the characteristics of the heating furnace hearth member such as the high-temperature compressive strength, creep resistance and oxidation resistance are becoming more stringent.

【0006】従来、加熱炉炉床部材には、Cr、Coお
よびNiを含む合金鋼(例えば、27Cr−40Co−
17Ni−Fe、30Cr−10Co−25Ni−Fe
など)が使用されてきた。しかし、上記合金鋼は、上記
特性がよくない。なお、上記例示において、元素記号の
前の数は該元素の含有量(重量%)を示す。
Conventionally, a furnace hearth member has been made of an alloy steel containing Cr, Co and Ni (for example, 27Cr-40Co-
17Ni-Fe, 30Cr-10Co-25Ni-Fe
Etc.) have been used. However, the above-mentioned alloy steel has poor properties. In the above examples, the number before the element symbol indicates the content (% by weight) of the element.

【0007】そこで、セラミックスの使用も検討される
ようになっている。しかし、セラミックスは、高温圧縮
強度および耐酸化性は非常に優れているが、高価格とい
う問題を抱えているので、広く実用されるまでには至っ
ていない。
Therefore, the use of ceramics has been studied. However, although ceramics have excellent high-temperature compressive strength and oxidation resistance, they have a problem of high price, and thus have not yet been widely used.

【0008】このようなわけで、最近では、高温圧縮強
度および耐クリープ性が最も優れているCrを非常に多
く含むCr基合金が開発されている。そしてこのCr基
合金の中には、セラミックスに匹敵する高温圧縮強度を
有するものもある。しかし、上記Cr基合金は、Crの
延性脆性遷移温度が高いために、溶解後鋳造した際に、
鋳造割れを起しやすい。つまり、鋳造性が悪い(生産性
が悪い)。また、耐酸化性が最も悪いCrを非常に多く
含むので、耐酸化性についても使用中酸化による消耗が
著しい。従って、上記Cr基合金には、コスト面および
特性面で改善すべき余地がまだ多く残っている。
[0008] For this reason, recently, a Cr-based alloy containing very large amount of Cr, which has the best high temperature compressive strength and creep resistance, has been developed. Some of these Cr-based alloys have high-temperature compressive strength comparable to ceramics. However, since the above Cr-based alloy has a high ductile brittle transition temperature of Cr, when it is cast after melting,
Casting cracks easily occur. That is, castability is poor (productivity is poor). Further, since it contains a very large amount of Cr, which has the worst oxidation resistance, the oxidation resistance during use is significantly reduced due to oxidation during use. Therefore, the Cr-based alloy has much room for improvement in cost and characteristics.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
事情に鑑み、鋳造性、並びに1300℃以上における高
温圧縮強度、耐クリープ性および耐酸化性に優れた加熱
炉炉床部材用Cr基合金を提供することにある。なお、
以下では、1300℃以上における高温圧縮強度、耐ク
リープ性および耐酸化性を、それぞれ圧縮強度、耐クリ
ープ性、耐酸化性と単にいう。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a Cr-based heating furnace hearth member excellent in castability, high-temperature compressive strength at 1300 ° C. or higher, creep resistance and oxidation resistance. To provide an alloy. In addition,
Hereinafter, the high-temperature compression strength, creep resistance, and oxidation resistance at 1300 ° C. or higher are simply referred to as compression strength, creep resistance, and oxidation resistance, respectively.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、Crを50〜80重量%、Ti、Mn、
Mo、WおよびZrからなる群から選ばれた少なくとも
1種(以下、単に「Ti等」という)を2〜10重量
%、並びにC、NおよびBからなる群から選ばれた少な
くとも1種(以下、単に「C等」という)を0.2〜2
重量%含み、残部がNiおよび不可避不純物からなる加
熱炉炉床部材用Cr基合金である。
In order to achieve the above-mentioned object, the present invention provides a method for producing a steel containing 50 to 80% by weight of Cr, Ti, Mn,
At least one member selected from the group consisting of Mo, W and Zr (hereinafter, simply referred to as "Ti etc.") is 2 to 10% by weight, and at least one member selected from the group consisting of C, N and B (hereinafter referred to as "Ti"). , Simply “C etc.”) is 0.2 to 2
It is a Cr-based alloy for a heating furnace hearth member, which contains wt% and the balance is Ni and unavoidable impurities.

【0011】[0011]

【発明の実施の形態】本発明において、Niは、Crの
鋳造性および耐酸化性を改善する。それは、Niが、
(1)Crの延性脆性遷移温度を下げる、(2)Coや
Feのような添加元素が脆いσ相(金属間化合物)を生
成させるのと違って、(α+γ)二相組織とし、σ相析
出に起因する脆化を防ぐ、(3)蒸気圧の高いCr酸化
物被膜の形成を抑制し、母材との密着性が非常に良好な
Ni酸化物被膜を形成するからである。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, Ni improves the castability and oxidation resistance of Cr. It is Ni,
(1) lowering the ductile-brittle transition temperature of Cr; (2) forming an (α + γ) two-phase structure, unlike an additive element such as Co or Fe, which forms a brittle σ phase (intermetallic compound). This is because (3) the formation of a Cr oxide film having a high vapor pressure is suppressed, and a Ni oxide film having extremely good adhesion to a base material is formed, which prevents embrittlement due to precipitation.

【0012】Cr含有量が50重量%未満では、Ni含
有量が多くなって耐酸化性は向上するものの、圧縮強度
および耐クリープ性の低下が著しく実用にならない。一
方、80重量%を超えると、Ni含有量が少なくなって
上記Niの作用が十分でない。特に鋳造性が低下し、ひ
いては生産性低下・コスト高を引き起す。
If the Cr content is less than 50% by weight, the Ni content is increased and the oxidation resistance is improved, but the compressive strength and creep resistance are remarkably reduced, making it impractical. On the other hand, if it exceeds 80% by weight, the Ni content is small, and the effect of Ni is not sufficient. In particular, the castability is reduced, which leads to a reduction in productivity and an increase in cost.

【0013】本発明において、Ti等は、C等ととも
に、炭化物、窒化物および硼化物からなる群から選ばれ
た少なくとも1種(以下、単に「炭化物等」という)を
生成させる元素である。生成した炭化物等はα相中に微
細に分散析出する。
In the present invention, Ti or the like is an element that, together with C and the like, forms at least one selected from the group consisting of carbides, nitrides, and borides (hereinafter, simply referred to as “carbides”). The generated carbides and the like are finely dispersed and precipitated in the α phase.

【0014】微細に分散析出した炭化物等は、Ti等お
よびC等を添加しないCr−Ni二元系合金に比べて、
圧縮強度および耐クリープ性を向上させる。しかも、T
i等およびC等を添加しないCr−Ni二元系合金の耐
酸化性を同等程度に保持させる。つまり、微細に分散析
出した炭化物等は、耐酸化性に悪影響を及ぼさない。T
i等が2重量%未満、またはC等が0.2重量%未満で
は、圧縮強度および耐クリープ性を十分向上させること
ができない。Ti等が10重量%を超えると、圧縮強度
および耐クリープ性をより向上させることができないば
かりでなく、耐酸化性が著しく低下する。C等が2重量
%を超えると、分散析出する炭化物等が粗大になるばか
りでなく、α相中に固溶し脆化を招いてしまう。
[0014] The finely dispersed carbides and the like are compared with a Cr-Ni binary alloy to which Ti, C and the like are not added.
Improves compressive strength and creep resistance. And T
The oxidation resistance of a Cr-Ni binary alloy to which i and the like and C and the like are not added is maintained at the same level. In other words, finely dispersed carbides and the like do not adversely affect oxidation resistance. T
When i or the like is less than 2% by weight or C or the like is less than 0.2% by weight, the compressive strength and the creep resistance cannot be sufficiently improved. When the content of Ti or the like exceeds 10% by weight, not only the compressive strength and the creep resistance cannot be further improved, but also the oxidation resistance is significantly reduced. When C or the like exceeds 2% by weight, not only carbides and the like which are dispersed and precipitated become coarse, but also form a solid solution in the α phase, thereby causing embrittlement.

【0015】[0015]

【実施例】[実施例1〜15、比較例1〜6、従来例
1]高周波溶解炉で大気中で溶製した溶湯を砂型鋳型に
鋳造することにより、種々の組成を有するCr基合金
(実施例、比較例)および合金鋼(従来例)を調製し
た。これらのCr基合金および合金鋼を化学組成分析に
供するとともに、鋳造性試験、高温圧縮試験、耐クリー
プ性試験および耐酸化性試験に供した。各試験方法は次
の通りである。
Examples [Examples 1 to 15, Comparative Examples 1 to 6 and Conventional Example 1] Cr-based alloys having various compositions were prepared by casting molten metal produced in the air in a high-frequency melting furnace in a sand mold. Examples, Comparative Examples) and alloy steels (conventional examples) were prepared. These Cr-based alloys and alloy steels were subjected to chemical composition analysis, as well as to a castability test, a high-temperature compression test, a creep resistance test, and an oxidation resistance test. Each test method is as follows.

【0016】(1)鋳造性試験 面削した供試合金全表面の鋳造割れの有無を肉眼で観察
した。この際、全表面に鋳造割れが全く見られない場合
に「○」、少しでも見られる場合に「×」とした。
(1) Castability Test The presence or absence of casting cracks on the entire surface of the chamfered gold was visually observed. At this time, the symbol “に” indicates that no casting crack was observed on the entire surface, and the symbol “×” indicates that even a slight crack was observed.

【0017】(2)高温圧縮試験 機械加工により作製した試験片(30mm径、50mm
長さ)を試験天秤の固定台上に置き、1350℃に加熱
保持した状態で30MPaの垂直加重を試験天秤に加え
た。試験時間は50時間とした。試験後、試験片の試験
前長さ(L0 (=約50mm))と試験後長さ(L)と
を測定し、次式(数1)により圧縮変形速度(D)を求
めた。
(2) High-temperature compression test A test piece (30 mm diameter, 50 mm
Length) was placed on a fixed base of the test balance, and a vertical load of 30 MPa was applied to the test balance while being heated and maintained at 1350 ° C. The test time was 50 hours. After the test, the pre-test length (L 0 (= about 50 mm)) and the post-test length (L) of the test piece were measured, and the compressive deformation rate (D) was determined by the following equation (Equation 1).

【0018】[0018]

【数1】D(%/hr)=2(L0 −L)/L0 D (% / hr) = 2 (L 0 −L) / L 0

【0019】(3)耐クリープ性試験 機械加工により作製した試験片(6mm径、80mm長
さ)を1200℃に加熱保持し、10MPaの引張応力
を加え、破断に至までの時間を測定した。
(3) Creep resistance test A test piece (6 mm diameter, 80 mm length) produced by machining was heated and held at 1200 ° C., a tensile stress of 10 MPa was applied, and the time until fracture was measured.

【0020】(4)耐酸化性試験 機械加工により作製した試験片(8mm径、50mm長
さ)を大気中で1350℃で100時間加熱保持した。
試験後、試験片表面の酸化スケールを除去して試験後の
試験片重量を測定し、試験前後の試験片重量の変化から
酸化減量(g/m2 /hr)を求めた。
(4) Oxidation resistance test A test piece (8 mm diameter, 50 mm length) produced by machining was heated and maintained at 1350 ° C. for 100 hours in the atmosphere.
After the test, the oxide scale on the surface of the test piece was removed, the weight of the test piece after the test was measured, and the weight loss (g / m 2 / hr) was determined from the change in the weight of the test piece before and after the test.

【0021】化学組成分析結果を表1に、その他の試験
結果(鋳造性試験結果を除く)を表2に示す。なお、鋳
造性試験結果は、すべての試験で「○」であった。
Table 1 shows the results of chemical composition analysis, and Table 2 shows other test results (excluding the castability test results). In addition, the castability test result was "O" in all the tests.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】実施例1〜15は、従来のスキッドボタン
材料である従来例1(高Co耐熱合金鋼)より格段に優
れた圧縮強度、耐クリープ性および耐酸化性をバランス
よく有しており、鋳造性も優れている。
Examples 1 to 15 have significantly better compressive strength, creep resistance and oxidation resistance than conventional example 1 (high Co heat resistant alloy steel), which is a conventional skid button material, in a well-balanced manner. Excellent castability.

【0025】比較例1〜3は、C等が少なすぎるため、
圧縮強度および耐クリープ性が低下している。また、比
較例4〜6は、C等が多すぎるため、分散析出する炭化
物等がα相中に固溶し脆化を招く。その結果、耐クリー
プ性が著しく低下している。 [実施例16〜72]Crの組成を50重量%とした以
外は実施例1〜15と同様にして試験を行った(実施例
16〜30)。また、Crの組成を80重量%とした以
外は実施例1〜15と同様にして試験を行った(実施例
31〜45)。そして、Ti、Mn、MoおよびWの組
成を各々10重量%から2重量%に変えた以外は実施例
1〜12と同様にして試験を行った(実施例46〜5
7)。さらに、C、NおよびBの組成を各々0.5重量
%から0.2重量%に変えた以外は実施例1〜15と同
様にして試験を行った(実施例58〜72)。
In Comparative Examples 1 to 3, C and the like were too small.
Compressive strength and creep resistance are reduced. In Comparative Examples 4 to 6, since C and the like are too large, carbides and the like that are dispersed and precipitated form a solid solution in the α phase, which causes embrittlement. As a result, the creep resistance is significantly reduced. Examples 16 to 72 Tests were performed in the same manner as in Examples 1 to 15 except that the composition of Cr was changed to 50% by weight (Examples 16 to 30). The tests were performed in the same manner as in Examples 1 to 15, except that the composition of Cr was changed to 80% by weight (Examples 31 to 45). A test was performed in the same manner as in Examples 1 to 12, except that the composition of Ti, Mn, Mo, and W was changed from 10% by weight to 2% by weight, respectively (Examples 46 to 5).
7). Further, tests were performed in the same manner as in Examples 1 to 15 except that the compositions of C, N and B were changed from 0.5% by weight to 0.2% by weight, respectively (Examples 58 to 72).

【0026】その結果、いずれの実施例においても鋳造
性が優れていた。また、これらの実施例において、圧縮
強度、耐クリープ性および耐酸化性は実施例1〜15
(表2)と同程度であった。
As a result, in all the examples, the castability was excellent. Further, in these examples, the compressive strength, creep resistance and oxidation resistance were determined in Examples 1 to 15.
(Table 2).

【0027】[0027]

【発明の効果】以上から、本発明の加熱炉炉床用Cr基
合金は、次の効果を有することが分かる。すなわち、
(1)優れた圧縮強度、耐クリープ性および耐酸化性を
バランスよく兼ね備えているので、加熱炉高温操業に十
分対応することが可能である。(2)製造の際には、溶
製が容易であるばかりでなく、鋳造割れを起こすことな
く鋳造可能である(優れた鋳造性を有する)ので、本発
明のCr基合金を生産性よく安価に広く実用に供するこ
とができる。
From the above, it can be seen that the Cr-based alloy for a heating furnace hearth of the present invention has the following effects. That is,
(1) Since it has excellent balance of compressive strength, creep resistance and oxidation resistance, it can sufficiently cope with high-temperature operation of a heating furnace. (2) In production, the Cr-based alloy of the present invention can be produced with good productivity and at low cost because not only is it easy to melt, but it can be cast without causing casting cracks (has excellent castability). Can be widely used for practical use.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Crを50〜80重量%、Ti、Mn、
Mo、WおよびZrからなる群から選ばれた少なくとも
1種を2〜10重量%、並びにC、NおよびBからなる
群から選ばれた少なくとも1種を0.2〜2重量%含
み、残部がNiおよび不可避不純物からなる加熱炉炉床
部材用Cr基合金。
1. The method according to claim 1, wherein the content of Cr is 50 to 80% by weight, Ti, Mn,
2 to 10% by weight of at least one selected from the group consisting of Mo, W and Zr, and 0.2 to 2% by weight of at least one selected from the group consisting of C, N and B, with the balance being Cr-based alloy for heating furnace hearth members made of Ni and unavoidable impurities.
JP10246498A 1998-04-14 1998-04-14 Chromium-base alloy for hearth member of heating furnace Pending JPH11293377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10246498A JPH11293377A (en) 1998-04-14 1998-04-14 Chromium-base alloy for hearth member of heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10246498A JPH11293377A (en) 1998-04-14 1998-04-14 Chromium-base alloy for hearth member of heating furnace

Publications (1)

Publication Number Publication Date
JPH11293377A true JPH11293377A (en) 1999-10-26

Family

ID=14328189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10246498A Pending JPH11293377A (en) 1998-04-14 1998-04-14 Chromium-base alloy for hearth member of heating furnace

Country Status (1)

Country Link
JP (1) JPH11293377A (en)

Similar Documents

Publication Publication Date Title
US10941470B2 (en) Cr-Mn-N austenitic heat-resistant steel and a method for manufacturing the same
KR20190046729A (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
CN105543647A (en) High-strength special steel alloy and preparation process thereof
JP4768919B2 (en) Ring shape parts for gas turbine blade rings and seal ring retaining rings made of high strength low thermal expansion cast steel and high strength low thermal expansion cast steel
JP2000226635A (en) Hot tool steel excellent in high temperature strength and toughness
CN110819901A (en) High-strength brake disc bolt steel and heat treatment process thereof
JP6090905B2 (en) Spheroidal graphite cast iron excellent in high temperature ductility and high temperature creep rupture life and method for producing the same
EP1159463B1 (en) Mould steel
JPH11293377A (en) Chromium-base alloy for hearth member of heating furnace
JPH11293376A (en) Chromium-base alloy for hearth member of heating furnace
JPH1096038A (en) High cr austenitic heat resistant alloy
JPH11293378A (en) Chromium-base alloy for hearth member of heating furnace
JPS624849A (en) Die for hot working al and al alloy
JP5996403B2 (en) Heat resistant steel and method for producing the same
JPS6126739A (en) Heat resistant co alloy for metallic mold for molding
JPS609848A (en) Heat resistant co alloy
JP3750835B2 (en) High hardness corrosion resistant powder die steel excellent in mirror finish and method for producing the same
JP2010095747A (en) Method for producing low thermal-expansion cast iron material
JPS6214214B2 (en)
JP3752523B2 (en) Ferritic heat resistant steel
CN117737509A (en) GH5630C wear-resistant alloy and preparation method and application thereof
JPS6024344A (en) Heat-resistant fe-ni-cr alloy
JPH08291355A (en) Chromium-base heat resistant alloy
CN1106468A (en) Nickel-saving heat-resisting steel
JP2000248341A (en) Precipitation hardening type ferritic heat resistant steel

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040713