JPH11292511A - Production of oxygen - Google Patents

Production of oxygen

Info

Publication number
JPH11292511A
JPH11292511A JP10749398A JP10749398A JPH11292511A JP H11292511 A JPH11292511 A JP H11292511A JP 10749398 A JP10749398 A JP 10749398A JP 10749398 A JP10749398 A JP 10749398A JP H11292511 A JPH11292511 A JP H11292511A
Authority
JP
Japan
Prior art keywords
oxygen
barium
tower
oxidation
barium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10749398A
Other languages
Japanese (ja)
Inventor
Ichiro Ueno
一郎 上野
Tsutomu Shikada
勉 鹿田
Tatsuro Ariyama
達郎 有山
Takashi Ioyashiki
孝思 庵屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10749398A priority Critical patent/JPH11292511A/en
Publication of JPH11292511A publication Critical patent/JPH11292511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of efficiently producing oxygen in which barium oxide is heated in air to form barium peroxide, which is reheated after deaeration to be decomposed to produce oxygen. SOLUTION: In the method in which the barium oxide is oxidized under air circulation to produce the barium peroxide, then the barium peroxide is decomposed to produce oxygen, an oxidation column 5 in which the oxidation is executed and an oxygen generating column 6 in which the decomposition is executed are provided, and the barium oxide is supported on a porous metal oxide particle carrier and the carrier is circulated between the oxidation column and the oxygen generating column.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化バリウムを主
体とする金属酸化物を空気流通下で酸化し、ついで得ら
れた過酸化バリウムを主体とする金属酸化物を分解して
酸素を回収することによって、空気から酸素を製造する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for oxidizing a metal oxide mainly composed of barium oxide in a flow of air and then decomposing the obtained metal oxide mainly composed of barium peroxide to recover oxygen. Thereby producing oxygen from air.

【0002】[0002]

【従来の技術】従来、酸化バリウムを使用して酸素を製
造する方法および装置はいくつか知られている。
2. Description of the Related Art Hitherto, several methods and apparatuses for producing oxygen using barium oxide are known.

【0003】例えば、19世紀末にBrin Proc
essとして実施されていた方法がある。この方法は、
鋳鉄製のレトルト内に塊状の酸化バリウムを充填し、こ
れに550〜650℃の温度および1.5〜2気圧の圧
力条件下で空気を流通させ、酸化バリウムを過酸化バリ
ウムに酸化し、ついで800〜900℃の温度および
0.05〜0.15気圧の圧力条件で排気して、過酸化
バリウムを分解し、酸素を回収するものである。
For example, at the end of the 19th century, Brin Proc
There is a method implemented as ess. This method
A lump of barium oxide is filled in a cast iron retort, and air is flowed through the retort at a temperature of 550 to 650 ° C. and a pressure of 1.5 to 2 atm to oxidize barium oxide to barium peroxide. It exhausts at a temperature of 800 to 900 ° C. and a pressure of 0.05 to 0.15 atm to decompose barium peroxide and recover oxygen.

【0004】また、特開昭47−4962号公報には、
矩形の反応器内に水平の金網を張り、この金網上に粒状
の酸化バリウムを配置して、これに650〜760℃の
温度で圧縮空気を流通させて酸化バリウムを酸化し、つ
いで圧力を大気圧に戻して真空ポンプで脱気し、酸素を
回収する、空気から酸素を製造する装置が開示されてい
る。
Further, Japanese Patent Application Laid-Open No. 47-4962 discloses that
A horizontal wire mesh is placed in a rectangular reactor, and granular barium oxide is arranged on the wire mesh. Compressed air is passed through the barium oxide at a temperature of 650 to 760 ° C to oxidize the barium oxide, and then the pressure is increased. An apparatus for producing oxygen from air is disclosed which recovers oxygen by returning to atmospheric pressure and degassing with a vacuum pump.

【0005】さらにまた、米国特許3,310,381号
には、酸化器に500〜720℃、1〜4気圧の条件で
空気を流通して酸化バリウムを酸化し、得られた酸化バ
リウムと過酸化バリウムの混合物スラリーを酸素分離器
に送り、ついで酸素分離器で700〜800℃、0.1
〜1気圧の条件下で分解し、生成した酸化バリウムと過
酸化バリウムの混合物スラリーを再び酸化器に送ること
を、繰り返し行なう、酸素の製造方法が開示されてい
る。
Further, US Pat. No. 3,310,381 discloses that barium oxide is oxidized by flowing air through an oxidizer under the conditions of 500 to 720 ° C. and 1 to 4 atm. The mixture slurry of barium oxide is sent to an oxygen separator, and then the oxygen separator is used at 700-800 ° C. for 0.1 hour.
Disclosed is a method for producing oxygen, in which a mixture slurry of barium oxide and barium peroxide, which is decomposed under a pressure of 11 atm, is repeatedly sent to an oxidizer.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、Bri
n Processによる酸素の製造方法においては、
塊状の酸化バリウムおよび過酸化バリウム粒子の加熱方
法として、鋳鉄製のレトルトを外部より熱風で加熱する
方式を採用している。ところが、酸化バリウムおよび過
酸化バリウムは熱伝導性が悪いために、酸化バリウムお
よび過酸化バリウム粒子への熱伝達が良好に行われず、
特に吸熱反応である過酸化バリウムの分解反応において
反応に必要な温度が確保できない。したがって、過酸化
バリウムの分解率が低く、酸素の回収率が十分でないな
どの問題があった。
SUMMARY OF THE INVENTION However, Bri
In the process for producing oxygen by n Process,
As a method for heating the massive barium oxide and barium peroxide particles, a method of heating a cast iron retort from outside with hot air is employed. However, since barium oxide and barium peroxide have poor thermal conductivity, heat transfer to barium oxide and barium peroxide particles is not performed well,
In particular, the temperature required for the decomposition reaction of barium peroxide, which is an endothermic reaction, cannot be secured. Therefore, there are problems such as a low decomposition rate of barium peroxide and an insufficient oxygen recovery rate.

【0007】特開昭47−4962号公報に記載の酸素
の製造装置においては、粒状の酸化バリウムが金網より
落下しやすかった。また、粒状の酸化バリウムは、酸化
反応の進行に伴って過酸化バリウムの割合が増加し、徐
々に溶融するため、溶融物が金網に固着した。これが金
網を閉塞するなどして、空気の流通が困難になるなどの
問題があった。
[0007] In the oxygen production apparatus described in Japanese Patent Application Laid-Open No. 47-4962, granular barium oxide is liable to fall off the wire mesh. Further, the granular barium oxide increased in proportion to the barium peroxide with the progress of the oxidation reaction and gradually melted, so that the melt adhered to the wire mesh. This has caused problems such as obstruction of the wire net, making air circulation difficult.

【0008】米国特許3, 310, 381号に記載の酸
素の製造方法においては、酸素分離器から排出される酸
化バリウム−過酸化バリウム混合物スラリー中の酸化バ
リウムの濃度が14%であるのに対して、酸化器から排
出される酸化バリウム−過酸化バリウム混合物スラリー
中の酸化バリウムの濃度が7%である。すなわち、酸化
器と酸素分離器との間を循環する酸化バリウムと過酸化
バリウムの混合物スラリーのうち、実際に酸化反応、分
解反応に関与する割合がわずか7%しかなく、したがっ
て極めて効率が悪い方法であった。また、酸化バリウム
−過酸化バリウム混合物スラリーは粘度が高く、また8
00℃前後の温度で循環するには、極めて特殊でかつ高
価な循環ポンプが必要であるなどの問題があった。
In the method for producing oxygen described in US Pat. No. 3,310,381, the barium oxide concentration in the barium oxide-barium peroxide mixture slurry discharged from the oxygen separator is 14%. The barium oxide-barium peroxide mixture slurry discharged from the oxidizer has a barium oxide concentration of 7%. That is, only 7% of the mixture slurry of barium oxide and barium peroxide circulating between the oxidizer and the oxygen separator actually participates in the oxidation reaction and the decomposition reaction, and is therefore extremely inefficient. Met. Further, the slurry of the barium oxide-barium peroxide mixture has a high viscosity.
In order to circulate at a temperature of about 00 ° C., there is a problem that a very special and expensive circulation pump is required.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討の結果、あらかじめ酸化バリウム
を多孔質の金属酸化物粒子担体に担持して移動層媒体を
形成し、該移動媒体を酸化塔と酸素発生塔間を移動させ
ておのおのの反応塔で酸化バリウムの酸化、分解反応を
行うことによって前記課題を解決しうることを見出し
た。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, previously formed barium oxide on a porous metal oxide particle carrier to form a moving bed medium. The present inventors have found that the above problem can be solved by moving a moving medium between an oxidation tower and an oxygen generation tower and performing barium oxide oxidation and decomposition reactions in each reaction tower.

【0010】すなわち、本発明は、酸化バリウムを空気
流通下で酸化して過酸化バリウムを生成させ、次いでこ
の過酸化バリウムを分解して、酸素を発生させる方法に
おいて、前記酸化を行わせる酸化塔と前記分解を行わせ
る酸素発生塔を設け、酸化バリウムを多孔質の金属酸化
物粒子担体に担持してこれを酸化塔と酸素発生塔の間を
循環させることを特徴とする、酸素の製造方法を提供す
るものである。
That is, the present invention provides a method for producing barium peroxide by oxidizing barium oxide under air flow, and then decomposing the barium peroxide to generate oxygen. And an oxygen generating tower for performing the decomposition, wherein barium oxide is supported on a porous metal oxide particle carrier, and this is circulated between the oxidizing tower and the oxygen generating tower. Is provided.

【0011】[0011]

【発明の実施の形態】本発明で使用される金属酸化物粒
子担体は耐熱性が必要であり、融点が少なくとも800
℃以上、好ましくは900℃以上、特に好ましくは10
00℃以上のものである。さらに物理強度が大きく耐摩
耗性を有するものが好ましい。これらの要求からセラミ
ックに属するものが好ましく、具体的には、アルミナ、
シリカ、シリカアルミナ、チタニア、ジルコニア、マグ
ネシアなどがあげられる。多孔質の金属酸化物粒子担体
のBET法で測定される比表面積は50m2/g以上、
特に100m2/g以上のものが好ましい。 これら金属
酸化物粒子の大きさは特に限定されないが、反応塔間を
移送するためには直径1〜10ミリ程度が好ましい。
DETAILED DESCRIPTION OF THE INVENTION The metal oxide particle carrier used in the present invention needs to have heat resistance and has a melting point of at least 800.
° C or higher, preferably 900 ° C or higher, particularly preferably 10 ° C or higher.
More than 00 ° C. Further, those having high physical strength and abrasion resistance are preferable. From these requirements, those belonging to ceramics are preferable, and specifically, alumina,
Examples include silica, silica alumina, titania, zirconia, and magnesia. The specific surface area of the porous metal oxide particle carrier measured by the BET method is 50 m 2 / g or more,
Particularly, those having 100 m 2 / g or more are preferable. The size of these metal oxide particles is not particularly limited, but is preferably about 1 to 10 mm in diameter for transferring between reaction towers.

【0012】また、酸化バリウムの金属酸化物粒子担体
への担持量は特に限定されるものではないが、反応塔の
コンパクト化、熱効率の向上の観点で酸化バリウムと金
属酸化物粒子担体のモル比で10:90から50:50
程度が好ましい。担持方法は一般的な触媒調製方法であ
る乾燥乾固法、吸着法、乾燥含浸法、スプレー法等によ
り行われる。
The amount of barium oxide supported on the metal oxide particle carrier is not particularly limited, but the molar ratio of barium oxide to the metal oxide particle carrier is reduced in view of making the reaction tower compact and improving thermal efficiency. From 10:90 to 50:50
The degree is preferred. The loading method is performed by a general catalyst preparation method such as a dry-dry method, an adsorption method, a dry impregnation method, and a spray method.

【0013】酸化塔、酸素発生塔の大きさや形状は特に
限定されないが、大きさは酸素製造規模によって決定さ
れる。また、材質は800℃程度の温度に耐え得る材質
であれば特に限定されないが耐熱性、耐食性等からSU
Sが好ましい。また、反応塔への熱の供給方法は水蒸気
や炭酸塩等の熱媒による熱交換方式、燃料の燃焼熱によ
る直接加熱方式等の外部外熱による。
The size and shape of the oxidation tower and oxygen generating tower are not particularly limited, but the size is determined by the scale of oxygen production. The material is not particularly limited as long as it can withstand a temperature of about 800 ° C.
S is preferred. Heat is supplied to the reaction tower by external heat such as a heat exchange method using a heat medium such as steam or carbonate, or a direct heating method using fuel combustion heat.

【0014】酸化バリウムを担持した金属酸化物粒子の
酸化塔と酸素発生塔間の移送は特に限定されないが、空
気輸送装置による方法が一般的である。
The transport of the barium oxide-supported metal oxide particles between the oxidation tower and the oxygen generation tower is not particularly limited, but a method using an air transport device is generally used.

【0015】まず、酸化工程では、酸化源になる空気は
前もって標準的な空気浄化装置によって炭酸ガス、水蒸
気及びダストを除去されて酸化塔に供給される。一方、
酸化バリウムを担持した金属酸化物粒子群は酸素発生塔
から空気輸送装置により移送され、酸化塔へ供給され
る。酸化塔内では、該粒子群中の酸化バリウムが酸化さ
れて過酸化バリウムとなる。ついで、酸化塔より該粒子
群が排出されて空気輸送装置により酸素発生塔へ供給さ
れる。酸素発生塔内では、該粒子群中の過酸化バリウム
が分解し、酸素が回収される。
First, in the oxidation step, air serving as an oxidation source is supplied to an oxidation tower after removing carbon dioxide, water vapor and dust by a standard air purifier in advance. on the other hand,
The group of metal oxide particles carrying barium oxide is transported from the oxygen generation tower by a pneumatic transport device and supplied to the oxidation tower. In the oxidation tower, barium oxide in the particle group is oxidized to barium peroxide. Next, the particle group is discharged from the oxidation tower and supplied to the oxygen generation tower by the pneumatic transport device. In the oxygen generation tower, barium peroxide in the particle group is decomposed, and oxygen is recovered.

【0016】反応塔における酸化バリウムの酸化反応は
温度400〜700℃、圧力2〜10気圧の範囲、空気
の供給量は酸化バリウムと過酸化バリウムの合計量1k
g当たり、1時間当たり2〜10Nm3の範囲である。
The oxidation reaction of barium oxide in the reaction tower is performed at a temperature of 400 to 700 ° C. and a pressure of 2 to 10 atm. The supply amount of air is 1 k of barium oxide and barium peroxide in total.
The range is from 2 to 10 Nm 3 per hour per g.

【0017】また、酸素発生塔における過酸化バリウム
の分解反応においては、反応温度は500〜800℃の
範囲、反応圧力は0.1〜1.0気圧の範囲である。
In the decomposition reaction of barium peroxide in the oxygen generating tower, the reaction temperature is in the range of 500 to 800 ° C., and the reaction pressure is in the range of 0.1 to 1.0 atm.

【0018】[0018]

【実施例】次に、実施例により本発明を具体的に説明す
る。
Next, the present invention will be described specifically with reference to examples.

【0019】あらかじめ酸化バリウムを直径5ミリのア
ルミナペレットにペレットに対する重量比で20%を担
持し、移動層媒体を形成した。
Barium oxide was previously loaded on alumina pellets having a diameter of 5 mm at a weight ratio of 20% to the pellets to form a moving bed medium.

【0020】[酸素吸収剤の調製]混練機に水酸化バリ
ウム(Ba(OH)2・H2O)を入れ、これに徐々に水
を加えながら混練した。ついで粒径3mmのアルミナペ
レット15kgを投入して水酸化バリウム水溶液を含浸
した。次にこの成型品を窒素気流中、120℃の温度で
24時間乾燥し、さらに窒素気流中、600℃の温度で
3時間焼成して目的の酸素吸収剤を得た。得られた酸素
吸収剤の組成は、BaO:Al23=50:50(重量
比)であった。
[Preparation of Oxygen Absorbent] Barium hydroxide (Ba (OH) 2 .H 2 O) was charged into a kneader, and kneaded while gradually adding water thereto. Subsequently, 15 kg of alumina pellets having a particle size of 3 mm were charged and impregnated with an aqueous barium hydroxide solution. Next, this molded product was dried in a nitrogen stream at a temperature of 120 ° C. for 24 hours, and further fired in a nitrogen stream at a temperature of 600 ° C. for 3 hours to obtain a target oxygen absorbent. The composition of the obtained oxygen absorbent was BaO: Al 2 O 3 = 50: 50 (weight ratio).

【0021】図1に本発明を実施する装置の一態様を示
す。まず酸化工程では、空気用導管1により供給された
空気は空気圧縮機2で加圧され、空気浄化装置3に導入
される。空気浄化装置3で炭酸ガス、水蒸気およびダス
トが除去された空気は、熱交換器4で酸素発生塔6より
排出された製品酸素と熱交換されて予熱されて酸化塔5
に供給される。一方、移動層媒体は酸素発生塔6から移
送されて酸化塔5に供給される。酸化反応用熱媒加熱炉
10で加熱された熱媒は、熱媒ポンプ11により酸化塔
5に導入される。酸化塔5において移動層媒体は温度5
00〜650℃、圧力1〜5気圧の条件下で酸化されて
媒体中の酸化バリウムは過酸化バリウムとなる。酸化塔
5から排出された廃空気は、切り替えバルブ7を経て、
熱交換器4で原料用空気と熱交換され、さらに熱交換器
8で水蒸気と熱交換されて冷却され、廃空気用導管9よ
り排出される。過酸化バリウムとなった移動層媒体は酸
化塔下部から排出され、酸素発生塔6に供給される。
FIG. 1 shows an embodiment of an apparatus for implementing the present invention. First, in the oxidation step, the air supplied through the air conduit 1 is pressurized by the air compressor 2 and introduced into the air purification device 3. The air from which carbon dioxide gas, water vapor and dust have been removed by the air purification device 3 is heat-exchanged with the product oxygen discharged from the oxygen generation tower 6 by the heat exchanger 4 and is preheated to the oxidation tower 5.
Supplied to On the other hand, the moving bed medium is transferred from the oxygen generation tower 6 and supplied to the oxidation tower 5. The heating medium heated in the heating furnace 10 for the oxidation reaction is introduced into the oxidation tower 5 by the heating medium pump 11. In the oxidation tower 5, the moving bed medium has a temperature of 5 ° C.
The barium oxide in the medium is oxidized under conditions of 00 to 650 ° C. and a pressure of 1 to 5 atm to barium peroxide. The waste air discharged from the oxidation tower 5 passes through the switching valve 7,
The heat is exchanged with the air for the raw material in the heat exchanger 4, the heat is exchanged with the water vapor in the heat exchanger 8, the heat is cooled, and discharged from the waste air conduit 9. The moving bed medium that has become barium peroxide is discharged from the lower part of the oxidation tower and supplied to the oxygen generation tower 6.

【0022】次に分解工程では、熱媒ポンプ15によ
り、分解用熱媒加熱炉16で加熱された熱媒が、酸素発
生塔6に導入される。供給された移動層媒体は酸素発生
塔6において温度750〜900℃、圧力0.1〜1気
圧の条件下で分解されて移動層媒体中の過酸化バリウム
が酸化バリウムに還元されて酸素を発生する。酸素発生
塔6で発生した酸素は酸素ブロワー12により酸素発生
塔6より熱交換器13を経て酸素用導管14より回収さ
れ、一方移動層媒体は再び酸化塔5に移送、供給され
る。
Next, in the decomposition step, the heat medium heated in the heat medium heating furnace 16 for decomposition is introduced into the oxygen generation tower 6 by the heat medium pump 15. The supplied moving bed medium is decomposed in the oxygen generating tower 6 at a temperature of 750 to 900 ° C. and a pressure of 0.1 to 1 atm, and barium peroxide in the moving bed medium is reduced to barium oxide to generate oxygen. I do. Oxygen generated in the oxygen generating tower 6 is recovered by the oxygen blower 12 from the oxygen generating tower 6 via the heat exchanger 13 through the oxygen conduit 14, while the moving bed medium is transferred and supplied to the oxidation tower 5 again.

【0023】上述した酸化工程と分解工程は、一定時間
間隔で繰り返し行われる。
The above-described oxidation step and decomposition step are repeated at regular time intervals.

【0024】[反応及び結果]上記の酸素吸収剤25k
gを移動層媒体として使用した。あらかじめ炭酸ガスお
よび水蒸気を除去した空気10Nm3/hを酸化塔に導
入した。 ついで移動層媒体を酸化塔に移送して温度6
00℃、 圧力5kg/cm2−Gの条件下で移動層媒体
中の酸化バリウム成分の酸化反応を行った。廃空気を排
出後、移動層媒体を酸素発生塔に移送した。ついで酸素
発生塔において温度750℃、圧力380mmHgの条
件下で移動層媒体中の生成過酸化バリウム成分の分解反
応を行った。
[Reaction and Result] The above oxygen absorbent 25k
g was used as the moving bed medium. 10 Nm 3 / h of air from which carbon dioxide and water vapor had been removed in advance was introduced into the oxidation tower. Then, the moving bed medium was transferred to the oxidation tower,
The oxidation reaction of the barium oxide component in the moving bed medium was performed under the conditions of 00 ° C. and a pressure of 5 kg / cm 2 -G. After discharging the waste air, the moving bed medium was transferred to the oxygen generating tower. Next, a decomposition reaction of the produced barium peroxide component in the moving bed medium was performed in the oxygen generating tower under the conditions of a temperature of 750 ° C. and a pressure of 380 mmHg.

【0025】上記の酸化反応及び分解反応を繰り返し行
った結果、発生した酸素量は約2Nm3/hであり、ま
た酸素の純度はほぼ100%であった。
As a result of repeating the above oxidation reaction and decomposition reaction, the amount of generated oxygen was about 2 Nm 3 / h, and the purity of oxygen was almost 100%.

【0026】[0026]

【発明の効果】以上のように、本発明によれば、あらか
じめ酸化バリウムを多孔質の金属酸化物粒子担体に担持
して移動層媒体を形成し、該移動媒体を酸化塔と酸素発
生塔間を移動させておのおのの反応塔で酸化バリウムの
酸化、分解反応を行うように構成したので、反応媒体の
溶融、融着による反応表面積の低下、反応塔や配管への
固着による閉塞トラブルの低減が図られる。さらに、反
応塔を2塔にすることにより熱損失の低減化が図られ、
熱量原単位が低く抑えられるとともに、酸素の回収効率
が向上するなど顕著な効果を有するものである。
As described above, according to the present invention, a moving bed medium is formed by previously supporting barium oxide on a porous metal oxide particle carrier, and the moving medium is transferred between an oxidation tower and an oxygen generation tower. The barium oxide is oxidized and decomposed in each reaction tower, reducing the reaction surface area due to melting and fusing of the reaction medium and reducing blockage trouble due to sticking to the reaction tower and piping. It is planned. Furthermore, the heat loss can be reduced by using two reaction towers,
It has a remarkable effect such as a low calorific value per unit and an improvement in oxygen recovery efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の酸素の製造方法を示す概略説明図で
ある。
FIG. 1 is a schematic explanatory view showing a method for producing oxygen of the present invention.

【符号の説明】[Explanation of symbols]

1 空気用導管 2 空気圧縮機 3 空気精製装置 4 熱交換器 5 酸化塔 6 酸素発生塔 7 切り替えバルブ 8 熱交換器 9 廃空気用導管 10 酸化反応用熱媒加熱炉 11 熱媒ポンプ 12 酸素ブロワー 13 熱交換器 14 酸素用導管 15 熱媒加熱炉 16 分解反応用熱媒加熱炉 17 反応管 18 フィン 19 金属酸化物コート層 DESCRIPTION OF SYMBOLS 1 Air duct 2 Air compressor 3 Air purification device 4 Heat exchanger 5 Oxidation tower 6 Oxygen generation tower 7 Switching valve 8 Heat exchanger 9 Waste air duct 10 Heating medium heating furnace for oxidation reaction 11 Heat medium pump 12 Oxygen blower DESCRIPTION OF SYMBOLS 13 Heat exchanger 14 Oxygen conduit 15 Heat medium heating furnace 16 Heat medium heating furnace for decomposition reaction 17 Reaction tube 18 Fin 19 Metal oxide coating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 庵屋敷 孝思 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takashi Anyashiki 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化バリウムを空気流通下で酸化して過
酸化バリウムを生成させ、次いでこの過酸化バリウムを
分解して、酸素を発生させる方法において、前記酸化を
行わせる酸化塔と前記分解を行わせる酸素発生塔を設
け、酸化バリウムを多孔質の金属酸化物粒子担体に担持
してこれを酸化塔と酸素発生塔の間を循環させることを
特徴とする、酸素の製造方法
1. A method for oxidizing barium oxide in a stream of air to produce barium peroxide, and then decomposing the barium peroxide to generate oxygen, comprising: an oxidation tower for performing the oxidation; A method for producing oxygen, comprising: providing an oxygen generating tower to be performed, supporting barium oxide on a porous metal oxide particle carrier, and circulating this between the oxidation tower and the oxygen generating tower.
JP10749398A 1998-04-17 1998-04-17 Production of oxygen Pending JPH11292511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10749398A JPH11292511A (en) 1998-04-17 1998-04-17 Production of oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10749398A JPH11292511A (en) 1998-04-17 1998-04-17 Production of oxygen

Publications (1)

Publication Number Publication Date
JPH11292511A true JPH11292511A (en) 1999-10-26

Family

ID=14460618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10749398A Pending JPH11292511A (en) 1998-04-17 1998-04-17 Production of oxygen

Country Status (1)

Country Link
JP (1) JPH11292511A (en)

Similar Documents

Publication Publication Date Title
RU2433341C1 (en) Method to burn carbon-containing fuel using hard oxygen carrier
JP3930331B2 (en) Fuel reforming method and system
JP2533817B2 (en) Integrated processing method for glass manufacturing
JPS58194712A (en) Regeneration of oxygen from carbon oxide exhaust gas
CN112744792B (en) Method for preparing metal oxide powder and nitric acid by decomposing nitrate
CN110691638A (en) Gas capture process and system including a circulating absorbent
CN108946661A (en) A kind of gasification of biomass prepares the method and system of hydrogen
KR880003161A (en) Gas generation process with cascade heat recovery
CN112023923B (en) Copper-based catalyst activation method for hydrogen production by methanol pyrolysis
CN105170070A (en) Denitration and desulfurization ferric chloride solid particles and preparation method thereof
JPH11292511A (en) Production of oxygen
JP2004137149A (en) Apparatus and system for reforming steam of fuel and method for reforming fuel
JP3664860B2 (en) Chemical reactor and main gas recovery method
CN212687569U (en) Equipment for producing high-concentration sulfuric acid or fuming sulfuric acid by dry-wet combination technology
JPH11292510A (en) Production of oxygen
CN111747381A (en) Equipment and process for producing high-concentration sulfuric acid or fuming sulfuric acid by dry-wet combined technology
CN106276903A (en) A kind of system and method preparing hydrogen-rich gas and carbide
JPH11292508A (en) Production of oxygen and device therefor
JPH11292509A (en) Production of oxygen
US4351646A (en) Cyclic process for producing methane from carbon monoxide with heat removal
JP2002119848A (en) Oxygen absorbent and method of manufacturing oxygen
RU2255117C9 (en) Method of production of sponge iron in shaft furnaces
CN111268645B (en) CO-containing raw material gas conversion and heat recovery method
CN115259990B (en) Method and system for recycling waste heat and emissions in acetylene production by calcium carbide method
JP2000219508A (en) Production of co from off-gas in hydrogen pressure swing adsorption (psa)