JPH11291995A - Guidance control device - Google Patents

Guidance control device

Info

Publication number
JPH11291995A
JPH11291995A JP10101064A JP10106498A JPH11291995A JP H11291995 A JPH11291995 A JP H11291995A JP 10101064 A JP10101064 A JP 10101064A JP 10106498 A JP10106498 A JP 10106498A JP H11291995 A JPH11291995 A JP H11291995A
Authority
JP
Japan
Prior art keywords
tether
thether
mission function
tension
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10101064A
Other languages
Japanese (ja)
Inventor
Takaharu Hiroe
隆治 広江
Takeshi Kinoshita
毅 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10101064A priority Critical patent/JPH11291995A/en
Publication of JPH11291995A publication Critical patent/JPH11291995A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the time required for setting a thether artificial satellite to an intended orbit by regulating the tension of a thether on the basis of the time change rate of the length of the thether. SOLUTION: In a damping controller 6, a tension Tp is calculated according to a prescribed expression on the basis of the time change rate of length of a thether 3. The result of the addition of the tension Tp to the output T from a mission function controller 5 is outputted as a control input Tt . A reel mechanism 4 generates a tension according to the control input Tt and performs the winding or feeding of the thether 3. When the control input Tt is applied, the reducing speed dM/dτ of a mission function M is dM/dτ=-(kΛM+c)(Λ')<2> , wherein γ: dimensionless time, Λ: dimensionless thether length, k: regulation parameter for mission function control, and c: regulation parameter for damping control. Accordingly, dM/dτ is smaller than -c(Λ')<2> , and the lowest reducing speed determined by the value of the constant (c) is ensured regardless of M.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、テザー人工衛星を
誘導制御する誘導制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a guidance control device for guiding and controlling a tether artificial satellite.

【0002】[0002]

【従来の技術】図4は、従来のテザー人工衛星の誘導制
御を説明するための図である。テザー人工衛星1とは、
図4に示すように、宇宙ステーションのような大型の親
衛星2からテザー(ひも)3で曳引される子衛星であ
る。親衛星2から見たテザー人工衛星1の軌道は、整定
状態においてはテザー3の長さから一意に定まる。よっ
て、テザー人工衛星1の誘導制御は、整定状態のみを考
えるならば、リール機構4により、単にテザー3の長さ
を調節するだけでよい。
2. Description of the Related Art FIG. 4 is a view for explaining conventional guidance control of a tether artificial satellite. What is tether satellite 1?
As shown in FIG. 4, it is a child satellite pulled by a tether (string) 3 from a large parent satellite 2 such as a space station. The orbit of the tether artificial satellite 1 viewed from the parent satellite 2 is uniquely determined from the length of the tether 3 in the settling state. Therefore, the guidance control of the tether artificial satellite 1 only needs to adjust the length of the tether 3 by the reel mechanism 4 if only the settling state is considered.

【0003】しかし、テザー人工衛星1は親衛星2から
吊り下げられた振り子の如く運動するので、単にテザー
3を目的する軌道に相当する長さに保つだけでは、テザ
ー人工衛星1が振動してしまい、目的軌道には整定しな
い。宇宙空間では大気が希薄であるので、振り子運動の
減衰力となる大気との摩擦がないため、人為的に減衰を
与えない限り振り子運動を止めることはできない。よっ
て、テザー人工衛星1の誘導制御には、揺れ止めの機能
が必要である。
However, since the tether artificial satellite 1 moves like a pendulum suspended from the parent satellite 2, the tether artificial satellite 1 vibrates simply by keeping the tether 3 at a length corresponding to a desired orbit. It does not settle to the target trajectory. In outer space, the atmosphere is sparse, and there is no friction with the atmosphere, which is a damping force of the pendulum motion. Therefore, the pendulum motion cannot be stopped unless artificial damping is applied. Therefore, the guidance control of the tether artificial satellite 1 requires a function of preventing vibration.

【0004】テザー人工衛星の代表的な誘導制御方式に
は、ミッション関数法(HironoriFujii and Shinta
ro Ishijima, “Mission Function Control for
Deployment and Retrieval of a Subsatellit
e. ”Journal of guidance,vol.12,March-April 1
989.pp.243-247 に開示)による方式がある。
[0004] A typical guidance control method for a tether satellite includes a mission function method (Hironori Fujii and Shinta).
ro Ishijima, “Mission Function Control for
Deployment and Retrieval of a Subsatellit
e. ”Journal of guidance, vol.12, March-April 1
989.pp.243-247).

【0005】このミッション関数法は、テザー衛星が目
的軌道にあるときにのみ最小となり、しかもその値が0
となるようなミッション関数Mを定義し、ミッション関
数Mが時間の経過とともに減少するように制御入力を加
えるという方法である。以下、従来のミッション関数法
について数式を用いて簡単に説明する。
[0005] This mission function method is minimized only when the tether satellite is in the target orbit, and its value is 0.
A mission function M is defined as follows, and a control input is applied so that the mission function M decreases over time. Hereinafter, the conventional mission function method will be briefly described using mathematical expressions.

【0006】図5は、従来のミッション関数法によるテ
ザー人工衛星の誘導制御を説明するための図である。テ
ザー人工衛星1を図5に示すようにモデル化し、テザー
張力Tを制御入力とすると、親衛星2の周りでのテザー
人工衛星1の運動は次式(1)で記述される。
FIG. 5 is a diagram for explaining guidance control of a tether artificial satellite by a conventional mission function method. When the tether artificial satellite 1 is modeled as shown in FIG. 5 and the tether tension T is used as a control input, the motion of the tether artificial satellite 1 around the parent satellite 2 is described by the following equation (1).

【0007】[0007]

【数1】 (Equation 1)

【0008】ここで、( )′=d( )/dτ τ:無次元時間(=Ωt) t:実時間[sec] Ω:親衛星の地球周回の角速度[rad/sec] Λ:l/ls(無次元テザー長さ) ls:目的長さ[km]Here, () ′ = d () / dτ τ: dimensionless time (= Ωt) t: real time [sec] Ω: angular velocity of the parent satellite orbiting the earth [rad / sec] Λ: l / ls (Dimensionless tether length) ls: Target length [km]

【0009】[0009]

【数2】 (Equation 2)

【0010】m:テザー人工衛星質量[kg] T:テザー張力[N] l:テザー長 φ:テザーの垂線との傾き である。テザー人工衛星の目的軌道は、次式(2)で示
される。
M: mass of the tether satellite [kg] T: tether tension [N] l: tether length φ: inclination with respect to the perpendicular of the tether. The target orbit of the tether artificial satellite is represented by the following equation (2).

【0011】 l=ls, l′=φ=φ′=0 …(2) 上記式(1)で記述されるテザー人工衛星に対し、ミッ
ション関数Mを次式(3)のように定める。
L = ls, l ′ = φ = φ ′ = 0 (2) For the tether satellite described by the above equation (1), a mission function M is defined as the following equation (3).

【0012】[0012]

【数3】 ここで、a1 とa2 ,bは、制御の調整パラメータとし
て使用する正の実数である。a1 とa2 ,bを正の実数
に選定する限り、Mは負の値をとらない。またMが最小
値0となるのは,式(2)の目的軌道においてのみであ
る。
(Equation 3) Here, a1, a2, and b are positive real numbers used as control adjustment parameters. M does not take a negative value as long as a1, a2, and b are selected as positive real numbers. Further, the minimum value of M is 0 only in the target trajectory of Expression (2).

【0013】[0013]

【数4】 ここで、kは調整パラメータとして使用する正の実数で
ある。
(Equation 4) Here, k is a positive real number used as an adjustment parameter.

【0014】図6は、式(4)を用いた制御系のブロッ
ク図である。式(3)を時間τで微分し、式(1)、
(4)を代入すると、次式(5)を得る。 dM/dτ=−kΛ(Λ´)2 M …(5) 明らかに、式(5)の右辺は目的軌道以外では負の値を
持つ。よって式(4)の制御入力を利用すると、Mはそ
の最小値0になるまで、時間と共に単調に減少する。
FIG. 6 is a block diagram of a control system using the equation (4). Differentiating equation (3) with respect to time τ, equation (1),
By substituting (4), the following equation (5) is obtained. dM / dτ = −kΛ (Λ ′) 2 M (5) Obviously, the right side of Expression (5) has a negative value except for the target trajectory. Thus, using the control input of equation (4), M monotonically decreases with time until its minimum value becomes zero.

【0015】[0015]

【数5】 M=0は目的軌道に相当するので、結局式(4)の制御
入力を利用するとテザー衛星を目的軌道に投入できる。
(Equation 5) Since M = 0 corresponds to the target orbit, the tether satellite can be put into the target orbit by using the control input of Expression (4).

【0016】[0016]

【発明が解決しようとする課題】図7は、従来のミッシ
ョン関数法による軌道投入のシミュレーション結果を示
す図であり、親衛星2を原点(X=Y=0km)に取
り、テザー人工衛星1の軌跡をプロットした図である。
目的軌道は、X=−100km、Y=0kmである。テ
ザー人工衛星は目的軌道付近には安定に達するものの、
目的軌道の近傍では目的軌道を周回し整定しない。
FIG. 7 is a view showing a simulation result of orbit insertion by the conventional mission function method. The parent satellite 2 is taken at the origin (X = Y = 0 km), and It is the figure which plotted the locus.
The target trajectory is X = -100 km and Y = 0 km. Although the tether satellite reaches stability near the target orbit,
In the vicinity of the target trajectory, the target trajectory orbit is not set.

【0017】図8は、このときのテザー長の時間変化を
示す図である。目的の100kmには約3×104 秒程
度で達するものの、振動が持続し、計算を終了した9×
104 秒に致っても整定しないことが分かる。
FIG. 8 is a diagram showing a time change of the tether length at this time. Although the target 100 km is reached in about 3 × 10 4 seconds, the vibration continues and the calculation is completed 9 ×
It can be seen that does not settle even I致to 10 4 seconds.

【0018】このように、従来の方法には、目的軌道付
近で振動が継続するという問題がある。この原因は次の
ように説明できる。テザー人工衛星が目的軌道に近づく
とミッション関数Mの値が小さくなり、式( 5) で与え
られるミッション関数の減少速度は、ミッション関数M
の値に比例する。よって、目的軌道の近傍ではミッショ
ン関数Mの減少速度が小さくなるので、目的軌道への整
定が遅れる。本発明の目的は、テザー人工衛星の目的軌
道への整定に要する時間を短縮する誘導制御装置を提供
することにある。
As described above, the conventional method has a problem that the vibration continues near the target trajectory. The cause can be explained as follows. As the tether satellite approaches the target orbit, the value of the mission function M decreases, and the rate of decrease of the mission function given by equation (5) is equal to the mission function M
Is proportional to the value of Therefore, the rate of decrease of the mission function M decreases near the target trajectory, so that the settling to the target trajectory is delayed. An object of the present invention is to provide a guidance control device that reduces the time required for setting a tether artificial satellite to a target orbit.

【0019】[0019]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明の誘導制御装置は以下の如く構
成されている。本発明の誘導制御装置は、ミッション関
数法に基づきテザー人工衛星を誘導制御する誘導制御装
置において、テザーの長さの時間変化率に基づき前記テ
ザーの張力を加減する制御手段を備えた。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems and achieve the object, a guidance control device of the present invention is configured as follows. The guidance control device of the present invention is a guidance control device for guiding and controlling a tether artificial satellite based on a mission function method, comprising a control means for adjusting the tension of the tether based on a time change rate of the length of the tether.

【0020】[0020]

【発明の実施の形態】図1は、本発明の実施の形態に係
る誘導制御装置の制御系のブロック図である。本実施の
形態によるテザー人工衛星の誘導制御装置7は、上述し
た従来の誘導制御装置のミッション関数制御器5に減衰
制御器6を追加することを特徴とする。
FIG. 1 is a block diagram of a control system of a guidance control device according to an embodiment of the present invention. The guidance control device 7 for a tether artificial satellite according to the present embodiment is characterized in that an attenuation controller 6 is added to the mission function controller 5 of the conventional guidance control device described above.

【0021】[0021]

【数6】 ここにcは正の実数で、減衰制御の調整パラメータとし
て使用する。
(Equation 6) Here, c is a positive real number, and is used as an adjustment parameter for damping control.

【0022】[0022]

【数7】 (Equation 7)

【0023】式( 7) の制御入力を適用すると、式(
3) に示すミッション関数Mの減少速度は次式(8)と
なる。 dM/dτ=−(kΛM+c)(Λ′)2 …(8) したがって、下式(9)のようになる。
When the control input of equation (7) is applied, the equation (7)
The decreasing speed of the mission function M shown in 3) is given by the following equation (8). dM / dτ = − (kΛM + c) (Λ ′) 2 (8) Therefore, the following equation (9) is obtained.

【0024】 dM/dτ<−c(Λ′)2 …(9) よって、ミッション関数MはMの値によらず定数cの値
により定まる最低限の減少速度が保証される。この性質
により、テザー人工衛星が目的軌道に近づき、ミッショ
ン関数Mの値が小さくなったとしても、( 9) 式に示す
ように、減少速度は0とはならないので、目的軌道への
整定を早めることができる。
DM / dτ <−c (Λ ′) 2 (9) Accordingly, the mission function M is guaranteed to have a minimum decreasing speed determined by the value of the constant c regardless of the value of M. Due to this property, even if the tether artificial satellite approaches the target orbit and the value of the mission function M becomes small, the decrease speed does not become 0 as shown in Expression (9), so that the settling to the target orbit is accelerated. be able to.

【0025】図2は、本実施の形態によるテザー人工衛
星の誘導制御装置6による軌道投入のシミュレーション
結果を示す図である。図7に示す従来法の結果と比較す
ると、テザー人工衛星が目的軌道( X=−100km、
Y=0km) 付近で振動することなく目的軌道に整定し
ていることが分かる。
FIG. 2 is a diagram showing a simulation result of orbit insertion by the tether artificial satellite guidance control device 6 according to the present embodiment. Compared to the result of the conventional method shown in FIG. 7, the tether satellite has a target orbit (X = −100 km,
It can be seen that the target trajectory is settled without vibrating around (Y = 0 km).

【0026】図3はそのときのテザー長の時間変化を示
す図である。目的軌道の100kmには約3×104
で整定していることが分かる。以上のように本実施の形
態の誘導制御装置によれば、目的軌道への整定に要する
時間を大幅に短縮できるので、運用上有効になる。
FIG. 3 is a diagram showing the change over time of the tether length at that time. It can be seen that the settling time is about 3 × 10 4 seconds for 100 km of the target trajectory. As described above, according to the guidance control device of the present embodiment, the time required for settling to the target trajectory can be significantly reduced, which is effective in operation.

【0027】なお、本発明は上記実施の形態のみに限定
されず、要旨を変更しない範囲で適宜変形して実施でき
る。 (実施の形態のまとめ)実施の形態に示された構成及び
作用効果をまとめると次の通りである。
It should be noted that the present invention is not limited to only the above-described embodiment, and can be appropriately modified and implemented without changing the gist. (Summary of Embodiment) The configuration, operation and effect shown in the embodiment are summarized as follows.

【0028】実施の形態に示された誘導制御装置は、ミ
ッション関数法に基づきテザー人工衛星1を誘導制御す
る誘導制御装置7において、テザー3の張力を制御入力
とし、前記テザー3の長さの時間変化率に基づき前記テ
ザー3の張力を加減する制御手段(減衰制御器6)を備
えた。このように上記誘導制御装置によれば、テザー人
工衛星1が目的軌道付近で振動することなく、目的軌道
に短時間で整定する。
The guidance control device shown in the embodiment is a guidance control device 7 for guiding and controlling the tether artificial satellite 1 based on the mission function method, wherein the tension of the tether 3 is used as a control input and the length of the tether 3 is controlled. Control means (attenuation controller 6) for adjusting the tension of the tether 3 based on the time change rate is provided. As described above, according to the guidance control device, the tether artificial satellite 1 is settled in the target orbit in a short time without vibrating near the target orbit.

【0029】[0029]

【発明の効果】本発明の誘導制御装置によれば、テザー
人工衛星が目的軌道付近で振動することなく、目的軌道
に短時間で整定する。
According to the guidance control device of the present invention, the tether artificial satellite is settled in the target orbit in a short time without vibrating near the target orbit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る誘導制御装置の制御
系のブロック図。
FIG. 1 is a block diagram of a control system of a guidance control device according to an embodiment of the present invention.

【図2】本発明の実施の形態によるテザー人工衛星の誘
導制御装置による軌道投入のシミュレーション結果を示
す図。
FIG. 2 is a diagram showing a simulation result of orbit insertion by the guidance control device of the tether artificial satellite according to the embodiment of the present invention.

【図3】本発明の実施の形態によるテザー長の時間変化
を示す図。
FIG. 3 is a diagram showing a time change of a tether length according to the embodiment of the present invention.

【図4】従来例に係るテザー人工衛星の誘導制御を説明
するための図。
FIG. 4 is a diagram for explaining guidance control of a tether artificial satellite according to a conventional example.

【図5】従来例に係るミッション関数法によるテザー人
工衛星の誘導制御を説明するための図。
FIG. 5 is a diagram for explaining guidance control of a tether artificial satellite by a mission function method according to a conventional example.

【図6】従来例に係る誘導制御装置の制御系のブロック
図。
FIG. 6 is a block diagram of a control system of a guidance control device according to a conventional example.

【図7】従来例によるミッション関数法による軌道投入
のシミュレーション結果を示す図。
FIG. 7 is a diagram showing a simulation result of orbit insertion by a mission function method according to a conventional example.

【図8】従来例によるテザー長の時間変化を示す図。FIG. 8 is a diagram showing a temporal change of a tether length according to a conventional example.

【符号の説明】[Explanation of symbols]

1…テザー人工衛星 2…親衛星 3…テザー(ひも) 4…リール機構 5…ミッション関数制御器 6…減衰制御器 7…誘導制御装置 DESCRIPTION OF SYMBOLS 1 ... Tether artificial satellite 2 ... Parent satellite 3 ... Tether (string) 4 ... Reel mechanism 5 ... Mission function controller 6 ... Attenuation controller 7 ... Guidance control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ミッション関数法に基づきテザー人工衛星
を誘導制御する誘導制御装置において、 テザーの長さの時間変化率に基づき前記テザーの張力を
加減する制御手段を備えたことを特徴とする誘導制御装
置。
1. A guidance control device for guiding and controlling a tether artificial satellite based on a mission function method, comprising: control means for adjusting the tension of the tether based on a time change rate of the length of the tether. Control device.
JP10101064A 1998-04-13 1998-04-13 Guidance control device Withdrawn JPH11291995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10101064A JPH11291995A (en) 1998-04-13 1998-04-13 Guidance control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10101064A JPH11291995A (en) 1998-04-13 1998-04-13 Guidance control device

Publications (1)

Publication Number Publication Date
JPH11291995A true JPH11291995A (en) 1999-10-26

Family

ID=14290687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10101064A Withdrawn JPH11291995A (en) 1998-04-13 1998-04-13 Guidance control device

Country Status (1)

Country Link
JP (1) JPH11291995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083924A (en) * 2005-09-22 2007-04-05 Tokyo Metropolitan Univ Space structure and tether folding device
US11047361B2 (en) 2018-12-11 2021-06-29 Toyota Jidosha Kabushiki Kaisha Wind power generation system using kite-shape structure staying in the air

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083924A (en) * 2005-09-22 2007-04-05 Tokyo Metropolitan Univ Space structure and tether folding device
JP4660763B2 (en) * 2005-09-22 2011-03-30 公立大学法人首都大学東京 Space structure
US11047361B2 (en) 2018-12-11 2021-06-29 Toyota Jidosha Kabushiki Kaisha Wind power generation system using kite-shape structure staying in the air

Similar Documents

Publication Publication Date Title
JP4511390B2 (en) Satellite attitude control device
JP2002506773A (en) Singularity Avoidance in Satellite Attitude Control
JP4550347B2 (en) System and method for controlling the attitude of a spacecraft
JPH03193599A (en) Reaction wheel friction compasated space ship
JP2009298345A (en) Attitude control device and position control device
JP2009303432A (en) Position controller using motor
Shi et al. Stable orbital transfer of partial space elevator by tether deployment and retrieval
US5597143A (en) Process and a device for controlling the attitude of a three-axis stabilized spinning spacecraft
EP0490518A1 (en) Sliding mode control system
JPH11291995A (en) Guidance control device
JPH07120216B2 (en) Position control method
JP2008510658A (en) Quantization control moment gyroscope array
JP2008015610A (en) Controller
RU2323464C2 (en) Method and device for controlling a guided missile by means of a drive which tracks orientation of trajectory
KR101920637B1 (en) method for controlling of satellite for large angle maneuver using satellite angular velocity
US9617015B2 (en) Method of commanding an attitude control system and attitude control system of a space vehicle
KR101695524B1 (en) Apparatus and method for controlling cluster of control moment gyroscope
JPH08147038A (en) Driving controller for motor
JPH03107384A (en) Motor drive controller
US20070027688A1 (en) Method and apparatus for an adaptive control system
JP5092597B2 (en) Drive control device
JP3363914B2 (en) Flying object guidance control device
JPH0665832B2 (en) Vibration control device
RU2761687C1 (en) Method for aircraft control at large angles of attack
KR102384557B1 (en) Method and system for stabilizing payload

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705