JPH11290961A - Method of designing draw bead for press working - Google Patents

Method of designing draw bead for press working

Info

Publication number
JPH11290961A
JPH11290961A JP10095633A JP9563398A JPH11290961A JP H11290961 A JPH11290961 A JP H11290961A JP 10095633 A JP10095633 A JP 10095633A JP 9563398 A JP9563398 A JP 9563398A JP H11290961 A JPH11290961 A JP H11290961A
Authority
JP
Japan
Prior art keywords
draw bead
bead
strain
draw
bending radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10095633A
Other languages
Japanese (ja)
Inventor
Haruyuki Konishi
晴之 小西
Akifumi Fujiwara
昭文 藤原
Masatoshi Yoshida
正敏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10095633A priority Critical patent/JPH11290961A/en
Publication of JPH11290961A publication Critical patent/JPH11290961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the design of a draw bead without the need of a new experiment or the like even if conditions change such as a draw bead shape, lubrication and bead pressing force, by arranging, as a general design diagram, a relation among the strain of a material after draw bead passing, draw bead drawing resistance, and equivalent bending radius. SOLUTION: A first design diagram showing a relation between the strain of a material after draw bead passing and the drawing resistance of a draw bead is prepared, also a second design diagram showing a relation between the draw bead drawing resistance and an equivalent bending radius is prepared; on the basis of the first design diagram, under an arbitrary lubrication and a draw bead pressing force, a drawing resistance value is determined corresponding to the strain value of the material after the draw bead passing; on the basis of the second design diagram, an equivalent bending radius is determined for generating the drawing resistance; and, from the equivalent bending radius, determined is a draw bead shape for generating the prescribed drawing resistance and the strain of the material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属板材をプレス
加工する金型におけるドロービードの設計方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for designing a draw bead in a die for pressing a metal plate.

【0002】[0002]

【従来の技術】従来より、実験的手法、数値解析、近似
計算などにより、ビード通過抵抗を評価することが行わ
れている。また、個々のビードに対する結果(ドロービ
ード押え力−引き抜き抵抗の関係)に基づき、ビード形
状やビード押え力の設計が行われている。
2. Description of the Related Art Conventionally, bead passing resistance has been evaluated by an experimental method, numerical analysis, approximate calculation, or the like. Further, a bead shape and a bead holding force are designed based on the results (the relationship between the draw bead holding force and the pull-out resistance) for each bead.

【外1】 [Outside 1]

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の手法で
は、ビード形状、潤滑条件、ビード押え力などがビード
通過抵抗、材料のうけるひずみ量などに及ぼす影響を、
一般的な形で整理、設計線図化されていなかった。この
ためビード形状、潤滑、ビード押え力などの条件が変化
するたびに、実験等によりビード通過抵抗、ひずみ量を
知る必要があり、多くの設計コストを要していた。
However, in the conventional method, the influence of the bead shape, lubrication conditions, bead holding force, etc. on the bead passing resistance, the amount of strain applied to the material, etc.
It was not organized and designed in a general form. For this reason, every time the conditions such as the bead shape, lubrication, and bead holding force change, it is necessary to know the bead passing resistance and the amount of strain through experiments and the like, which requires a lot of design costs.

【0004】[0004]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、ビード押え力P及び潤滑条件の影響を、摩
擦係数をμとして、T=2μPで与えられる単位幅あ
たりの摩擦力であらわし、さらにそれら全てがビード流
入前の材料の初期張力として作用するものと考えたと
き、ビード通過後の材料のうけるひずみ量εと、ビード
通過前後における無次元化した張力値(T/Ty)、
(T/Ty)の間に、ビード形状によらず各材料ごとに
決まる一定の関係が近似的に成立することを見いだし、
その関係を示す線図を作成した。ここで、Tyは材料の
降伏断面力(=σy・t)、ただしσyは材料の降伏応
力、tは板厚である。図1は、FEM解析の結果に基づ
いて作成した、5000系アルミニウム合金板材のひず
み量(板厚ひずみεt)と(T/Ty)、(T/Ty)
の関係を示す線図である。ドロービード通過後の張力は
板材の引き抜き抵抗となることから、図1では(T/T
y)を無次元化引き抜き抵抗と言い換えている。また、
本発明者らは、ビード流入側(通過前)の無次元化張力
(T/Ty)を一定とするとき、ビード出側(通過
後)の無次元化張力(T/Ty)と、後述する無次元化
した等価曲げ半径
Means for Solving the Problems and Embodiments of the Invention The present inventors have studied the effects of the bead pressing force P and the lubrication conditions by assuming that the friction coefficient is μ and the friction per unit width is given by T 0 = 2 μP. When the force is expressed and all of them act as the initial tension of the material before the bead flows, the strain ε applied to the material after the bead passes and the dimensionless tension value (T 0) before and after the bead passes. / Ty),
During (T / Ty), a constant relationship determined for each material is approximately established regardless of the bead shape,
A diagram showing the relationship was created. Here, Ty is the yield sectional force of the material (= σy · t), where σy is the yield stress of the material, and t is the plate thickness. FIG. 1 shows the strain amount (thickness strain εt), (T 0 / Ty), and (T / Ty) of a 5000 series aluminum alloy sheet material prepared based on the results of FEM analysis.
FIG. In FIG. 1, (T / T)
In other words, y) is referred to as dimensionless pullout resistance. Also,
When the dimensionless tension (T 0 / Ty) on the bead inflow side (before passing) is constant, the present inventors consider the dimensionless tension (T / Ty) on the bead exit side (after passing) as described below. Dimensionless equivalent bending radius

【数1】 との間に、各材料ごとに決まる一定の関係が近似的に成
立することを見いだし、その関係を示す線図を作成し
た。ここで無次元化した等価曲げ半径
(Equation 1) A constant relationship determined for each material was found to be approximately established between the two, and a diagram showing the relationship was created. Dimensionless equivalent bending radius

【数2】 は、例えば図3に示すようなドロービードの場合、材料
と接触するコーナー半径をr、r、rとすると
き、次式で与えられる。
(Equation 2) For example, in the case of a draw bead as shown in FIG. 3, when the corner radii in contact with the material are r 1 , r 2 , r 3 , the following equation is given.

【0005】[0005]

【数3】 図2は、FEM解析の結果に基づき、同じく5000系
アルミニウム合金板材の(T/Ty)と等価曲げ半径の
関係を、(T/Ty)を一定とし線図として整理した
ものである。なお、図2でも(T/Ty)を無次元化引
き抜き抵抗と言い換えている。
(Equation 3) FIG. 2 shows the relationship between (T / Ty) and the equivalent bending radius of the 5000-series aluminum alloy sheet material based on the results of the FEM analysis as a diagram with (T 0 / Ty) kept constant. In FIG. 2, (T / Ty) is also referred to as a dimensionless pullout resistance.

【0006】ここで、プレス加工金型に設けられるドロ
ービード形状の設計を、所定の材料と潤滑、しわ押え力
の条件の元で、引き抜き抵抗及び材料の受けるひずみ量
(板厚ひずみ等)が適切な値になるべく行う場合を想定
する。ビード引き抜き抵抗と板厚ひずみの間に、ドロー
ビード形状によらず図1の線図のような関係が成り立つ
ことから、あるビード引き抜き力を仮定したときに生じ
る材料の板厚ひずみを同線図から予測できる。従って、
例えばその引き抜き力のもとでの材料の破断の有無を判
断でき、また、これにより例えば製品として許容される
ひずみ範囲内で可能な最大の引き抜き抵抗を設定するこ
とができる。さらに、図2に示すような線図を用いるこ
とにより、所定の引き抜き抵抗に対して、それを実現す
るドロービード等価曲げ半径を定めることができる。そ
して、得られた等価曲げ半径に等しくなるように、任意
の個数のドロービード半径を定めることで、求める引き
抜き抵抗と引き抜き後のひずみ量を発生するドロービー
ド形状を得ることができる。逆に、図2に示すような線
図を用いることにより、あるドロービード形状(その形
状から等価曲げ半径が算出できる)について、ある潤滑
及びしわ押え力に対応する引き抜き抵抗の値を予測でき
る。そして、図1に基づいてその引き抜き抵抗の値から
板厚ひずみを予測できるので、しわ押え、潤滑などの成
形条件が適当かどうかを判定できる。また、これにより
成形条件の最適化を行うことができる。
Here, the design of the shape of the draw bead provided in the press-working die is determined by appropriately setting the pull-out resistance and the amount of strain received by the material (eg, plate thickness strain) under the conditions of a predetermined material, lubrication, and wrinkle holding force. It is assumed that this is performed as much as possible. Since the relationship shown in the diagram of FIG. 1 is established between the bead pull-out resistance and the plate thickness strain regardless of the draw bead shape, the plate thickness strain of the material generated when a certain bead pull-out force is assumed is calculated from the same diagram. Can be predicted. Therefore,
For example, it is possible to determine the presence or absence of breakage of the material under the pulling force, and thereby it is possible to set the maximum possible pulling resistance within a strain range allowable as a product, for example. Further, by using a diagram as shown in FIG. 2, it is possible to determine a draw bead equivalent bending radius for realizing the predetermined pull-out resistance. Then, by defining an arbitrary number of draw bead radii so as to be equal to the obtained equivalent bending radius, it is possible to obtain a draw bead shape that generates a required pulling resistance and a strain amount after pulling. Conversely, by using the diagram as shown in FIG. 2, it is possible to predict the value of the pull-out resistance corresponding to a certain lubrication and wrinkle holding force for a certain draw bead shape (an equivalent bending radius can be calculated from the shape). Since the thickness strain can be predicted from the value of the pull-out resistance based on FIG. 1, it is possible to determine whether molding conditions such as wrinkle holding and lubrication are appropriate. Further, this makes it possible to optimize the molding conditions.

【0007】図1及び図2に示すような設計線図は、F
EM解析による近似、あるいは実験結果から決定するこ
とができるが、下記のように計算のみによって得ること
もできる。材料の変形応力をσf、板厚をt、σfに対す
る降伏断面力Tf、全塑性モーメントMfを、Tf=σf・
t、Mf=σft/4、ドロービードの各コーナー部に
おける曲げ半径をρi=ri+t/2(iはドロービード
Rを示す数を表し、図3のドロービード形状の場合は1
〜3の値を取る)で定義し、さらに材料の弾性変形を無
視する剛塑性の近似が成り立つものと仮定する。無次元
化した張力(T/Ty)の元で曲げ半径ρでの曲げを受
ける際、板厚中心において生じるひずみ量△εは
The design diagram as shown in FIGS.
It can be determined from approximation by EM analysis or from experimental results, but can also be obtained only by calculation as described below. The deformation stress of the material is σf, the plate thickness is t, the yielding section force Tf for σf, and the total plastic moment Mf is Tf = σf ·
t, Mf = σft 2/4 , ρi bend radius at each corner of drawbead = ri + t / 2 (i is a number indicating the drawbead R, in the case of drawbead shape of FIG. 3 1
を 取 る 3), and it is assumed that a rigid-plastic approximation that ignores elastic deformation of the material holds. When subjected to bending with a bending radius ρ under dimensionless tension (T / Ty), the amount of strain △ ε generated at the center of the plate thickness is

【数4】 で与えられる。またドロービードR部分でのモーメント
の釣り合いから
(Equation 4) Given by Also from the moment balance in the draw bead R part

【数5】 が近似的に成り立つ。ただし、△Tは曲げ半径ρの前後
における張力増分をあらわす。以下では、ドロービード
通過中の材料の変形挙動を、離散的な塑性曲げの連続で
近似する。式(2)から、図3のドロービード通過後の
板厚中心におけるひずみ量εは、各ビードR部分で曲
げ、曲げ戻しの2回の塑性変形を受けることから次式で
近似できる。
(Equation 5) Holds approximately. Here, ΔT represents an increase in tension before and after the bending radius ρ. In the following, the deformation behavior of the material during the passage of the draw bead is approximated by a series of discrete plastic bending. From the equation (2), the strain amount ε 3 at the center of the sheet thickness after passing through the draw bead in FIG. 3 can be approximated by the following equation since each bead R undergoes two plastic deformations of bending and unbending.

【数6】 ただし、Tiはi番目のビードRを通過した後の張力を
あらわす。一方、式(3)から、
(Equation 6) Here, Ti represents the tension after passing through the i-th bead R. On the other hand, from equation (3),

【数7】 となり、これを式(4)に代入して次式を得る。(Equation 7) Which is substituted into equation (4) to obtain the following equation.

【数8】 ただし、Tは初期張力をあらわし、ドロービード押え
力Pと摩擦係数μを用いて、次式で近似する。
(Equation 8) Here, T 0 represents the initial tension, and is approximated by the following equation using the draw bead pressing force P and the friction coefficient μ.

【数9】 また、(3)式より、(Equation 9) Also, from equation (3),

【数10】 が得られる。式(6)よりドロービード通過後の材料に
おけるひずみ量εとドロービード前後における張力
、Tの関係を得ることができ、ドロービード通過
後の張力Tが引き抜き抵抗Tとなることから、図1に
示した線図を計算のみによって近似解として得ることが
できる。また、式(8)より、ドロービード形状とドロ
ービード引き抜き抵抗の関係を求めることができ、図2
に示した線図を計算のみによって近似解として得ること
ができる。なお、降伏断面力Tf、全塑性モーメントMf
の定義に含まれる材料の変形応力σfについては、いわ
ゆる初期降伏応力ではなく、ドロービード中の変形によ
るひずみ硬化を考慮して決定した適切な値を用いること
とする。
(Equation 10) Is obtained. From the equation (6), the relationship between the strain amount ε of the material after passing through the draw bead and the tensions T 0 and T 3 before and after the draw bead can be obtained. Since the tension T 3 after passing through the draw bead becomes the pullout resistance T, FIG. Can be obtained as an approximate solution only by calculation. Further, the relationship between the draw bead shape and the draw bead pull-out resistance can be obtained from equation (8).
Can be obtained as an approximate solution only by calculation. Note that the yield force Tf and the total plastic moment Mf
Is not a so-called initial yield stress, but an appropriate value determined in consideration of strain hardening due to deformation in a draw bead.

【0008】[0008]

【実施例】次に、許容される板厚減少の範囲内で最大の
引き抜き抵抗を発生するビード形状を決定する方法を具
体的に説明する。ここでは、図1、2に示す5000系
アルミ板材に対する設計線図を用い、摩擦係数μ=0.
1、ビード単位幅あたりのしわ押え力P/Ty=3のも
とで、板厚減少が20%以内となる最大の引き抜き張力
を発生するビード形状を決定する。この場合、2μP/
Ty(=T/Ty)=0.6であり、図1における2μ
P/Ty=0.6の曲線から、板厚ひずみε=0.2に
対するビード引き抜き力はT/Ty=1.25と求める
ことができる。次に図2から、このT/Tyを生じるド
ロービード等価曲げ半径は1/Σ(t/ρi)=1.7
5と得られる。用いる材料の板厚を1mmとするとき、
例えば図3のようなドロービード形状において、図4の
ように各ドロービードRの曲げ半径=4.75を選ぶ
と、等価曲げ半径は
Next, a specific description will be given of a method of determining a bead shape that generates the maximum drawing resistance within an allowable range of a reduction in thickness. Here, the design diagram for the 5000 series aluminum plate material shown in FIGS. 1 and 2 is used, and the friction coefficient μ = 0.
1. Under the wrinkle pressing force P / Ty = 3 per bead unit width, a bead shape that generates the maximum drawing tension with which the thickness reduction is within 20% is determined. In this case, 2 μP /
Ty (= T 0 /Ty)=0.6 and 2 μm in FIG.
From the curve of P / Ty = 0.6, the bead pull-out force for the plate thickness strain ε = 0.2 can be obtained as T / Ty = 1.25. Next, from FIG. 2, the draw bead equivalent bending radius that generates T / Ty is 1 / Σ (t / ρi) = 1.7.
5 is obtained. When the thickness of the material used is 1 mm,
For example, in a draw bead shape as shown in FIG. 3, if a bending radius of each draw bead R = 4.75 is selected as shown in FIG.

【数11】 となり、所定の機能を持つドロービード形状を決定する
ことができる。
[Equation 11] Thus, a draw bead shape having a predetermined function can be determined.

【0009】[0009]

【発明の効果】本発明によれば、ドロービード通過後の
材料のひずみ、ドロービード引き抜き抵抗及び等価曲げ
半径の関係を一般的な設計線図として整理することによ
り、ドロービード形状、潤滑、ビード押え力などの条件
が変化しても、新たに実験等を必要とせずにドロービー
ドの設計が可能となった。具体的には、所定の材料に対
して予め作成した設計線図から、所定の潤滑、しわ押え
力の条件のもとで、任意のビード引き抜き抵抗に対応し
て材料がビード通過後に受けるひずみを予測でき、逆に
材料が通過後に受けるひずみに対応するビード引き抜き
抵抗を予測できる。さらに、所定の引き抜き抵抗に対応
するドロービード等価曲げ半径を決定でき、そのドロー
ビード等価曲げ半径に等しくなるようにドロービード半
径を定めることで、求めるドロービード形状を得ること
ができる。
According to the present invention, the relationship between the strain of the material after the draw bead has passed, the draw bead pull-out resistance, and the equivalent bending radius is arranged as a general design diagram, so that the draw bead shape, lubrication, bead holding force, etc. Even if the above conditions change, it is possible to design a draw bead without needing a new experiment or the like. Specifically, based on a design diagram prepared in advance for a predetermined material, under the conditions of predetermined lubrication and wrinkle holding force, the strain received by the material after passing the bead corresponding to an arbitrary bead pull-out resistance is obtained. Predictable, and conversely, bead pull-out resistance corresponding to the strain the material experiences after passing through. Furthermore, a draw bead equivalent bending radius corresponding to a predetermined pull-out resistance can be determined, and a draw bead shape can be obtained by determining the draw bead radius so as to be equal to the draw bead equivalent bending radius.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ドロービード通過後の材料のひずみとドロー
ビード引き抜き抵抗の関係をあらわす設計線図の例であ
る。
FIG. 1 is an example of a design diagram showing a relationship between a strain of a material after passing a draw bead and a draw bead withdrawal resistance.

【図2】 ドロービード引き抜き抵抗とドロービード等
価曲げ半径の関係をあらわす設計線図である。
FIG. 2 is a design diagram showing a relationship between draw bead pull-out resistance and draw bead equivalent bending radius.

【図3】 本発明を適用したドロービード形状の例であ
る。
FIG. 3 is an example of a draw bead shape to which the present invention is applied.

【図4】 実施例で求めたドロービード形状である。FIG. 4 shows a draw bead shape obtained in an example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ドロービード通過後の材料のひずみとド
ロービード引き抜き抵抗の関係をあらわす設計線図を作
成し、その設計線図に基づき、任意の潤滑、ドロービー
ド押え力のもとでの引き抜き抵抗及びドロービード通過
後における材料のひずみの値を決定することを特徴とす
るプレス加工用ドロービードの設計方法。
1. A drawing diagram representing the relationship between the strain of a material after passing through a draw bead and the drawing bead withdrawal resistance is created, and the drawing resistance and draw bead under arbitrary lubrication, draw bead holding force are created based on the design diagram. A method for designing a draw bead for press working, wherein a value of strain of a material after passing is determined.
【請求項2】 ドロービード引き抜き抵抗とドロービー
ド等価曲げ半径の関係をあらわす設計線図を作成し、そ
の設計線図に基づき、任意の潤滑、ビード押え力のもと
で必要とされる引き抜き抵抗を発生する等価曲げ半径を
決定することを特徴とするプレス加工用ドロービードの
設計方法。
2. A design diagram representing the relationship between the draw bead pull-out resistance and the draw bead equivalent bending radius is created, and the required pull-out resistance is generated under any lubrication and bead holding force based on the design diagram. A method for designing a draw bead for press working, characterized in that an equivalent bending radius to be determined is determined.
【請求項3】 ドロービード通過後の材料のひずみとド
ロービード引き抜き抵抗の関係を表す設計線図、及びド
ロービード引き抜き抵抗と等価曲げ半径の関係を表す設
計線図を作成し、その両設計線図に基づいて、任意の潤
滑、ビード押え力のもとで、所定の引き抜き抵抗と材料
のひずみを発生するドロービード形状を決定することを
特徴とするプレス加工用ドロービードの設計方法。
3. A design diagram representing the relationship between the strain of the material after passing through the draw bead and the draw bead pull-out resistance and a design diagram representing the relationship between the draw bead pull-out resistance and the equivalent bending radius are prepared, and based on both design diagrams. And determining the shape of the draw bead that generates a predetermined pulling resistance and material strain under an arbitrary lubrication and bead holding force.
JP10095633A 1998-04-08 1998-04-08 Method of designing draw bead for press working Pending JPH11290961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10095633A JPH11290961A (en) 1998-04-08 1998-04-08 Method of designing draw bead for press working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10095633A JPH11290961A (en) 1998-04-08 1998-04-08 Method of designing draw bead for press working

Publications (1)

Publication Number Publication Date
JPH11290961A true JPH11290961A (en) 1999-10-26

Family

ID=14142933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10095633A Pending JPH11290961A (en) 1998-04-08 1998-04-08 Method of designing draw bead for press working

Country Status (1)

Country Link
JP (1) JPH11290961A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314125A (en) * 2003-04-16 2004-11-11 Jfe Steel Kk Method for designing press die with bead, and press die with bead
JP2007083294A (en) * 2005-09-26 2007-04-05 Fusahito Yoshida Press forming method and press forming system
KR100878936B1 (en) 2007-08-08 2009-01-19 현대자동차주식회사 Automatic controll apparatus for bead force of draw molding
JP2012006038A (en) * 2010-06-24 2012-01-12 Nippon Steel Corp Draw bead test method and press forming analyzing method using physical property value determined by the same test method
JP2012166225A (en) * 2011-02-14 2012-09-06 Toyota Central R&D Labs Inc Spring-back analysis method, spring-back analysis device, program, and storage medium
JP2013193119A (en) * 2012-03-22 2013-09-30 Toyota Central R&D Labs Inc Press molding analysis system and program of the same
JP2016137514A (en) * 2015-01-28 2016-08-04 株式会社Jsol Calculation method for lift-up force during drawing bead press molding and press molding analysis system and program using lift-up force
FR3056127A1 (en) * 2016-09-16 2018-03-23 Peugeot Citroen Automobiles Sa DEVICE FOR PACKING A FLAN OF A TOOL FOR LOW DEPTH OF STACKING A JONC
KR20210133419A (en) * 2020-04-29 2021-11-08 현대제철 주식회사 Method for designing molding condition of pressing die

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314125A (en) * 2003-04-16 2004-11-11 Jfe Steel Kk Method for designing press die with bead, and press die with bead
JP4552383B2 (en) * 2003-04-16 2010-09-29 Jfeスチール株式会社 Press die design method with beads and press die with beads
JP2007083294A (en) * 2005-09-26 2007-04-05 Fusahito Yoshida Press forming method and press forming system
JP4660638B2 (en) * 2005-09-26 2011-03-30 総仁 吉田 Press molding method and press molding system
KR100878936B1 (en) 2007-08-08 2009-01-19 현대자동차주식회사 Automatic controll apparatus for bead force of draw molding
JP2012006038A (en) * 2010-06-24 2012-01-12 Nippon Steel Corp Draw bead test method and press forming analyzing method using physical property value determined by the same test method
JP2012166225A (en) * 2011-02-14 2012-09-06 Toyota Central R&D Labs Inc Spring-back analysis method, spring-back analysis device, program, and storage medium
JP2013193119A (en) * 2012-03-22 2013-09-30 Toyota Central R&D Labs Inc Press molding analysis system and program of the same
JP2016137514A (en) * 2015-01-28 2016-08-04 株式会社Jsol Calculation method for lift-up force during drawing bead press molding and press molding analysis system and program using lift-up force
FR3056127A1 (en) * 2016-09-16 2018-03-23 Peugeot Citroen Automobiles Sa DEVICE FOR PACKING A FLAN OF A TOOL FOR LOW DEPTH OF STACKING A JONC
KR20210133419A (en) * 2020-04-29 2021-11-08 현대제철 주식회사 Method for designing molding condition of pressing die

Similar Documents

Publication Publication Date Title
Livatyali et al. Prediction and elimination of springback in straight flanging using computer aided design methods: Part 1. Experimental investigations
Samuel Influence of drawbead geometry on sheet metal forming
Pereira et al. Sliding distance, contact pressure and wear in sheet metal stamping
Dabboussi et al. Modeling of ductile fracture using the dynamic punch test
US9874504B2 (en) Metal sheet bending fracture determination method and recording medium
Merklein et al. Time dependent determination of forming limit diagrams
JPH11290961A (en) Method of designing draw bead for press working
JP6330981B1 (en) Break determination apparatus, break determination program, and method thereof
JP6828476B2 (en) Edge fracture prediction method, program and recording medium
CN101379381A (en) Breaking prediction method
JP2012033039A (en) Method and device for predicting bending fracture of material, and program and recording medium
JPWO2009113719A1 (en) Learning method of rolling load prediction in hot plate rolling.
Luyen et al. Investigating the impact of yield criteria and process parameters on fracture height of cylindrical cups in the deep drawing process of SPCC sheet steel
JP6287665B2 (en) Method and apparatus for predicting ductile brittle fracture characteristics of thin steel plate members, and program and recording medium therefor
Neugebauer et al. A new technology for the joining by forming of magnesium alloys
JP5655394B2 (en) Drawing bead test method and press forming analysis method using physical property values obtained by the test method
Miyazaki et al. Dynamic axial plastic buckling of square tube
Gedney Sheet metal formability: Sheet metal formability can be evaluated by a variety of mechanical tests
Martínez et al. A new approach to evaluate bending forces for deep-drawing operations of a TRIP700+ EBT steel sheet
Hu et al. Stability analysis of chatter on a tandem rolling mill
JP2020175443A (en) Estimation method for deformation state of material to be corrected and control method for roll push-in amount of roller leveller
JP2005131696A (en) Method for calculating coefficient of friction in non-ferrous metallic sheet, and forming simulation method
JP7472779B2 (en) Adhesion prediction method, adhesion prediction program, and adhesion prediction device
Kriechenbauer et al. Extension of Process Limits with Bidirectional Deep Drawing
Kuboki et al. Prediction of stress–strain diagram from forming load in stretch forming