JP2005131696A - Method for calculating coefficient of friction in non-ferrous metallic sheet, and forming simulation method - Google Patents

Method for calculating coefficient of friction in non-ferrous metallic sheet, and forming simulation method Download PDF

Info

Publication number
JP2005131696A
JP2005131696A JP2003372860A JP2003372860A JP2005131696A JP 2005131696 A JP2005131696 A JP 2005131696A JP 2003372860 A JP2003372860 A JP 2003372860A JP 2003372860 A JP2003372860 A JP 2003372860A JP 2005131696 A JP2005131696 A JP 2005131696A
Authority
JP
Japan
Prior art keywords
friction coefficient
friction
surface pressure
simulation
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003372860A
Other languages
Japanese (ja)
Inventor
Takeshi Takada
健 高田
Eiji Isogai
栄志 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003372860A priority Critical patent/JP2005131696A/en
Publication of JP2005131696A publication Critical patent/JP2005131696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for highly precisely and efficiently calculating a coefficient of friction, that varies during forming, in carrying out a forming simulation of a non-ferrous metallic sheet material, and also to provide a forming simulation method improved in analytical precision. <P>SOLUTION: The coefficient of friction μ is expressed in equation (1): μ=a0+a1P<SB>N</SB>+a2P<SB>N</SB><SP>2</SP>+a3P<SB>N</SB><SP>3</SP>+a4P<SB>N</SB><SP>4</SP>where [Pa] is parameter, with constants a<SB>0</SB>, a<SB>1</SB>, a<SB>2</SB>, a<SB>3</SB>and a<SB>4</SB>determined by measuring change in the surface pressure and the coefficient of friction, fitting the data obtained and calculating through the method of least squares for example. Then, equation (1) is applied to a finite element method simulation in which a nonlinear frictional model is taken into consideration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非鉄金属板、特にアルミニウム板、アルミニウム合金板をプレス成形する金型の設計に際し、有限要素法シミュレーションによるプレス不具合を高精度で効率良く予測するための摩擦係数算出方法及び有限要素法による成形シミュレーション方法に関する。   The present invention relates to a friction coefficient calculation method and a finite element method for predicting a press failure by a finite element method simulation with high accuracy and efficiency when designing a die for press forming a non-ferrous metal plate, particularly an aluminum plate or an aluminum alloy plate. The present invention relates to a molding simulation method based on the above.

非鉄金属板、特にアルミニウム板、アルミニウム合金板をメカニカルプレス、油圧プレス、トランスファープレス、ACサーボ制御プレス等によってプレス成形加工する際、有限要素法による成形シミュレーションを利用し、プレス金型を製造する前に成形可否を判断し、金型の設計にフィードバックさせて、工期短縮、コスト削減が図られている。この金型の設計における工期短縮、コスト削減には、有限要素法を用いた成形シミュレーションの精度の向上が不可欠である。   When press-molding non-ferrous metal plates, especially aluminum plates and aluminum alloy plates, using mechanical presses, hydraulic presses, transfer presses, AC servo control presses, etc., before using the finite element method forming simulation to manufacture press dies Whether the molding is possible or not is fed back to the mold design to shorten the work period and reduce the cost. Improving the accuracy of molding simulation using the finite element method is indispensable for shortening the work period and cost reduction in the design of this mold.

有限要素法による成形シミュレーションは、材料の機械的特性を材料構成式として入力し、摩擦係数をパラメータとした材料の変形状態の釣り合い式によって工具との接触問題を解いたり(静的陰解法や静的陽解法)、運動方程式を解いたりすること(動的陽解法)によって応力分布や歪み分布を出力する方法である。   Forming simulation by the finite element method inputs the mechanical properties of the material as a material constitutive equation and solves the contact problem with the tool by a balance equation of the deformation state of the material with the friction coefficient as a parameter (static implicit method or static method). This is a method of outputting stress distribution and strain distribution by solving dynamic equation) or solving equations of motion (dynamic explicit method).

仲町他、「表面処理板材の摩擦特性実験式の導出と有限要素法による成形性評価」 平成4年度塑性加工春季講演会 講演論文集I(5月24日、25日午前)、社団法人 日本塑性加工学会、1992年5月6日発行、p355Nakamachi et al., “Derivation of Experimental Formula for Friction Properties of Surface-treated Plates and Formability Evaluation by Finite Element Method” 1992 Plastic Working Spring Lecture Meeting Proceedings I (May 24, 25 am), Nippon Plastics Processing Society, May 6, 1992, p355 橋本他、「めっき鋼板の摺動距離による摩擦力の変化とその深絞り成形への影響」、塑性と加工、vol.44、No.504、社団法人 日本塑性加工学会、2003年1月25日 発行、p35Hashimoto et al., “Change in frictional force due to sliding distance of plated steel sheet and its effect on deep drawing”, plasticity and processing, vol. 44, no. 504, Japan Society for Technology of Plasticity, published on January 25, 2003, p35 桑原他、「アルミニウム合金板A5182−Oのビード引抜き特性とビード張力計算モデル」、塑性と加工、vol.36、No.413、社団法人 日本塑性加工学会、1995年6月20日発行Kuwahara et al., “Bead drawing characteristics and bead tension calculation model of aluminum alloy plate A5182-O”, plasticity and processing, vol. 36, no. 413, The Japan Society for Technology of Plasticity, published on June 20, 1995

しかし、従来の有限要素法による成形シミュレーションのプログラムは、摩擦係数を一定として扱うクーロン摩擦則を用いており、成形中の摩擦係数の変化を正確に反映していなかったために正確な応力分布や歪み分布を出力することができず、成形可否の予測精度は十分とはいえなかった。   However, conventional molding simulation programs using the finite element method use the Coulomb friction law that treats the friction coefficient as a constant, and do not accurately reflect changes in the friction coefficient during molding. The distribution could not be output, and the accuracy of predicting molding was not sufficient.

このような問題に対して、成形速度、しわ押さえ圧力の変化等の加工条件に起因する摩擦係数の変化、被加工材と金型との間での摺動距離の増加に起因する被加工材の表面トポロジー状態の変化に伴う摩擦係数の変化等を、有限要素法による成形シミュレーションに組み込む方法が提案されている。   In response to such problems, workpieces caused by changes in friction coefficient due to machining conditions such as molding speed and changes in wrinkle pressure, and increased sliding distance between the workpiece and the mold There has been proposed a method of incorporating a change in friction coefficient associated with a change in the surface topology of the material into a forming simulation by a finite element method.

摩擦係数を状態関数として扱い、有限要素法による成形シミュレーションに非線形摩擦モデルを組み込んだ例としては、摺動距離と非加工材に加わるひずみの2つをパラメータとして多項式近似した状態関数(例えば、非特許文献1)、面圧と摩擦仕事量の2つをパラメータとして多項式近似した状態関数(例えば、非特許文献2)等の例が報告されている。また、アルミニウム板の摩擦係数に関しては、摩擦係数を面圧の3次までの多項式近似式した状態関数として求める方法が報告されている(例えば、非特許文献3)。   As an example in which the friction coefficient is treated as a state function and a nonlinear friction model is incorporated into a forming simulation by the finite element method, a state function (for example, a non-linear function) that uses a sliding distance and a strain applied to a non-processed material as parameters is used. Patent Document 1), an example of a state function (for example, Non-Patent Document 2) obtained by polynomial approximation using two parameters of surface pressure and friction work is reported. As for the friction coefficient of an aluminum plate, a method for obtaining the friction coefficient as a state function obtained by approximating a polynomial up to the third order of the surface pressure has been reported (for example, Non-Patent Document 3).

しかし、これらの手法を用いても、有限要素法による成形シミュレーションにおける摩擦係数の評価の精度が不十分であり、成形可否の予測精度は満足できるものではなかった。   However, even if these methods are used, the accuracy of evaluation of the friction coefficient in the molding simulation by the finite element method is insufficient, and the prediction accuracy of the molding possibility is not satisfactory.

本発明は上記のような点に鑑みてなされたものであり、アルミニウム板、アルミニウム合金板に代表される板形状の非鉄金属材料の成形シミュレーションを実施するにあたり、成形加工中に変化する摩擦係数を高精度に効率良く算出する摩擦係数算出方法、及び、より解析精度を向上させた成形シミュレーション方法を提供することを目的とする。   The present invention has been made in view of the above points, and in carrying out a forming simulation of a plate-shaped non-ferrous metal material typified by an aluminum plate or an aluminum alloy plate, a friction coefficient that changes during forming is determined. It is an object of the present invention to provide a friction coefficient calculation method for efficiently calculating with high accuracy and a forming simulation method with improved analysis accuracy.

本発明者は、様々なプレス加工条件により成形過程中に変化する摩擦係数に着目し、摩擦係数と面圧との関係を詳細に解析し、摩擦係数μを面圧PN[Pa]のみを用いて、4次の多項式近似によって計算すれば、最も精度良く、且つ、効率良く評価できることを見出した。本発明は、このような知見に基づいてなされたものであり、その要旨は以下のとおりである。
(1).摩擦係数を面圧のみの4次以上の多項式近似によって計算することを特徴とする非鉄金属板の摩擦係数算出方法。
(2).(1)記載の摩擦係数を用いて有限要素法による成形シミュレーションを行うことを特徴とする非鉄金属板の成形シミュレーション方法。
(3).非鉄金属板の摩擦係数と面圧との変化を測定する手順と、
上記非鉄金属板の摩擦係数μを面圧Pで表わす状態関数
μ=a0+a1N+a2N 2+a3N 3+a4N 4
の定数a0,a1,a2,a3,a4を、上記測定結果を用いて決定する手順と、
上記定数a0,a1,a2,a3,a4が決定された状態関数を用いて、有限要素法による成形シミュレーションを行う手順とを有することを特徴とする非鉄金属板の成形シミュレーション方法。
The inventor pays attention to the friction coefficient that changes during the molding process due to various press working conditions, analyzes the relationship between the friction coefficient and the surface pressure in detail, and calculates the friction coefficient μ as the surface pressure P N [Pa] only. It has been found that the calculation can be performed with the highest accuracy and efficiency by using a fourth-order polynomial approximation. This invention is made | formed based on such knowledge, The summary is as follows.
(1). A friction coefficient calculation method for a non-ferrous metal plate, wherein the friction coefficient is calculated by polynomial approximation of the fourth or higher order of only the surface pressure.
(2). (1) A forming simulation method of a non-ferrous metal plate, wherein forming simulation by a finite element method is performed using the friction coefficient described in (1).
(3). A procedure for measuring changes in the friction coefficient and surface pressure of a non-ferrous metal plate;
State function μ = a 0 + a 1 PN + a 2 PN 2 + a 3 PN 3 + a 4 PN 4
The constants a 0 , a 1 , a 2 , a 3 , a 4 are determined using the above measurement results;
A non-ferrous metal sheet forming simulation method comprising a step of performing a forming simulation by a finite element method using a state function in which the constants a 0 , a 1 , a 2 , a 3 , and a 4 are determined .

なお、本発明において非鉄金属板とは、プレス成形加工に供する板形状のアルミニウム、アルミニウム合金、チタン、チタン合金、マグネシウム及びマグネシウム合金等の非鉄金属材料をいう。   In the present invention, the non-ferrous metal plate refers to a non-ferrous metal material such as plate-shaped aluminum, aluminum alloy, titanium, titanium alloy, magnesium and magnesium alloy used for press forming.

本発明によれば、非鉄金属板、特にアルミニウム板、アルミニウム合金板の有限要素法によるプレス成形シミュレーションを高精度、且つ、高効率で行うことが可能になり、プレス金型の設計工期及び製造工期が短縮する等、産業上の貢献が極めて顕著である。   According to the present invention, it becomes possible to perform a press molding simulation of a non-ferrous metal plate, in particular, an aluminum plate or an aluminum alloy plate by a finite element method with high accuracy and high efficiency. The industrial contribution is extremely remarkable, such as shortening

以下、図面を参照して、本発明の好適な実施形態について説明する。摩擦係数に影響を及ぼす因子は、成形条件に起因するものと、成形過程中に材料に生じる変化に起因するものに大別することができる。成形条件に起因する因子としては、メカニカルプレスや油圧プレス、トランスファープレスやACサーボ制御プレス等を用いて金属板を成形加工したときの成形速度S、また、ダイフェース上とダイス肩部やビード部等のように材料が受ける局部的な面圧PNの差異や可変しわ押さえ圧制御等でのしわ押さえ圧力の変化、及び潤滑油の種類の違いによる粘度υの影響や金型材質と被加工材との硬度差ΔH、粗度Ra等が摩擦係数に影響を及ぼす代表的な因子である。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Factors affecting the coefficient of friction can be broadly classified into those caused by molding conditions and those caused by changes in the material during the molding process. Factors resulting from the molding conditions include the molding speed S when a metal plate is molded using a mechanical press, hydraulic press, transfer press, AC servo control press, etc., and on the die face, die shoulder and bead. Such as the difference in local surface pressure P N received by the material, the change in wrinkle holding pressure due to variable wrinkle holding pressure control, etc. The hardness difference ΔH from the material, the roughness Ra, and the like are typical factors that affect the friction coefficient.

また、成形過程中に材料に生じる変化に起因する因子としては、被加工材と金型との間での摺動距離の増加に伴う被加工材の表面トポロジー状態の変化や、加工発熱・摺動発熱による熱影響、被加工材が塑性変形を受ける間に生じる塑性ひずみεP等が摩擦係数に影響を及ぼす事が知られている。 In addition, factors resulting from changes in the material during the molding process include changes in the surface topology of the workpiece as the sliding distance between the workpiece and the mold increases, as well as processing heat generation and sliding. It is known that the thermal effect due to dynamic heat generation, the plastic strain ε P generated while the workpiece is subjected to plastic deformation, and the like affect the friction coefficient.

これらの因子のうち、面圧PNは同一の表面トポロジー状態のサンプルにおいて、摩擦係数に大きな影響を与えることは、非特許文献3等に報告されており、面圧PNは摩擦係数の状態関数表記とする場合のパラメータとして極めて重要である。本発明者は、様々なプレス加工条件により成形過程中に変化する金型とアルミニウム板の摩擦係数に着目し、その変化に影響を及ぼす面圧の影響について鋭意検討を行った。 Among these factors, the surface pressure P N in a sample of the same surface topology state, a significant impact on the coefficient of friction, has been reported in Non-Patent Document 3 or the like, the surface pressure P N is the coefficient of friction conditions It is extremely important as a parameter for function notation. The inventor paid attention to the friction coefficient between the mold and the aluminum plate that changes during the molding process under various press working conditions, and intensively studied the influence of the surface pressure that affects the change.

摩擦係数は、図1に模式的に示したように平板金型1a、1bで板材2を挟み込み、平板金型1a、1bを押し付けながら板材2を引き抜き、平板金型1a、1bを押し付ける荷重(押付荷重という)に対して、板材2を引き抜くのに必要な力(引抜力という)を計測する平板引抜試験によって、具体的には以下の方法によって測定した。平板引抜試験装置は、平板金型1a、1bを保持して板材2に押し付ける機構と面圧PNの測定機構を設けた押付装置を設置した引張試験機であり、クロスヘッドによって引抜力PSを負荷することができる。なお、面圧PNは平板金型1a、1bを試験片に押し付ける力(押付力という)を平板金型1a、1bが板材2と接触する部分の面積で除して求める。板材2は、10〜20mm幅、250〜400mm長さであり、押付装置に設置された平板金型1a、1bは5〜10mm高さ、25mm幅である。 As schematically shown in FIG. 1, the friction coefficient is determined by inserting the plate material 2 between the flat plate molds 1a and 1b, pulling out the plate material 2 while pressing the flat plate molds 1a and 1b, and pressing the flat plate molds 1a and 1b ( Specifically, it was measured by a flat plate pull-out test for measuring a force (referred to as a pulling force) required for pulling out the plate member 2 with respect to a pressing load. Flat pull-test apparatus is a flat die 1a, mechanism for pressing the sheet material 2 to retain 1b and tensile tester installed a pressing device provided with a measuring mechanism of the surface pressure P N, pullout force P S by a cross head Can be loaded. The surface pressure PN is obtained by dividing the force for pressing the flat plate molds 1a, 1b against the test piece (referred to as pressing force) by the area of the portion where the flat plate molds 1a, 1b are in contact with the plate material 2. The plate material 2 has a width of 10 to 20 mm and a length of 250 to 400 mm, and the flat plate molds 1a and 1b installed in the pressing device have a height of 5 to 10 mm and a width of 25 mm.

平板引抜試験装置のクロスヘッドに板材2の上端を冶具を用いて固定し、板材2の下部は、押付装置に設置した平板金型1a、1bに挟んだ。押付装置により、一定の面圧を加えて、クロスヘッドを移動させて板材2を引抜きながら、引抜力と変位との関係を測定した。クロスヘッドの変位に対する引抜力の変化がほぼ一定である部分で、引抜力の最大値と最小値の平均値(平均引抜力という)を求めた。面圧を0〜150MPaの範囲で変化させ、面圧を横軸、平均引抜力を縦軸にプロットし、グラフの傾きを摩擦係数として求めた。また、摩擦係数の測定は、板材の摺動距離、潤滑剤、摺動回数を変化させて行った。   The upper end of the plate material 2 was fixed to the cross head of the flat plate pull-out test apparatus using a jig, and the lower portion of the plate material 2 was sandwiched between flat plate molds 1a and 1b installed in the pressing device. A relationship between the pulling force and the displacement was measured while pulling out the plate member 2 by moving the cross head by applying a constant surface pressure by the pressing device. The average value of the maximum value and the minimum value of the pulling force (referred to as the average pulling force) was determined at a portion where the change in the pulling force with respect to the displacement of the crosshead was almost constant. The surface pressure was changed in the range of 0 to 150 MPa, the surface pressure was plotted on the horizontal axis, the average pulling force was plotted on the vertical axis, and the slope of the graph was determined as the friction coefficient. The coefficient of friction was measured by changing the sliding distance, lubricant, and number of sliding of the plate material.

図2は、1mm厚の5000系アルミニウム合金板の摩擦係数の面圧による変化を示したものである。図2から、摩擦係数は面圧の増加にともない一端減少するものの、その後再び上昇するという新しい知見が見出された。したがって、非特許文献3に提案されたように、摩擦係数を面圧の3次式として計算すると、高面圧での上昇を考慮することができないため、誤差が大きくなり、有限要素法によるプレス成形シミュレーションで、精度が低下する。   FIG. 2 shows changes in the friction coefficient of a 1 mm-thick 5000 series aluminum alloy plate due to surface pressure. From FIG. 2, a new finding was found that the coefficient of friction decreased once with increasing surface pressure, but then increased again. Therefore, as proposed in Non-Patent Document 3, if the coefficient of friction is calculated as a cubic expression of the surface pressure, an increase in high surface pressure cannot be taken into account, so the error increases, and the finite element method press In molding simulation, accuracy decreases.

本発明者は、更に、この高面圧での上昇傾向を精度良く計算するための近似式について、種々のパラメータを見直す等の詳細な検討を行った。その結果、摩擦係数を面圧の4次以上の多項式とすれば、精度良く摩擦係数の面圧による変化を計算できることを見出した。また、摩擦係数を面圧の5次以上の多項式とすれば4次の多項式よりも更に精度が向上するものの、計算に時間がかかるため、実用的には4次の多項式が最適であることがわかった。   The present inventor further conducted detailed examinations such as reviewing various parameters with respect to the approximate expression for accurately calculating the upward tendency at high surface pressure. As a result, it has been found that if the friction coefficient is a fourth or higher order polynomial of the surface pressure, the change of the friction coefficient due to the surface pressure can be calculated with high accuracy. Further, if the friction coefficient is a polynomial of 5th order or higher of the surface pressure, the accuracy is further improved than that of the 4th order polynomial, but the calculation takes time. Therefore, the 4th order polynomial may be optimal in practice. all right.

即ち、摩擦係数μを、最も精度良く、且つ、効率良く計算できる式は、面圧PN[Pa]をパラメータとする下記式(1)である。
μ=a0+a1N+a2N 2+a3N 3+a4N 4 ・・・(1)
That is, the equation that can calculate the friction coefficient μ with the highest accuracy and efficiency is the following equation (1) using the surface pressure P N [Pa] as a parameter.
μ = a 0 + a 1 P N + a 2 P N 2 + a 3 P N 3 + a 4 P N 4 (1)

上式(1)のa0、a1、a2、a3、a4は定数であり、面圧と摩擦係数の変化を測定し、得られたデータをフィッティングして、例えば最小2乗法等の計算により各パラメータを決定し、4次の多項式近似で表す摩擦係数の状態関数を得ることができる。なお、摩擦係数の面圧による変化を測定するには、面圧を変化させて摩擦係数を求めれば良い。摩擦係数を測定する試験法としては、上述の平板引き抜き試験法の他、日本塑性加工学会編、「塑性加工技術シリーズ3 プロセストライボロジー −塑性加工の潤滑−」、コロナ社、1993年3月25日発行、p.66、67に記載されているバウデン試験法等の一般的な摩擦係数試験法を採用することができる。また、非特許文献2に記載の連続摺動試験機を用い、面圧PNを変化させて同一箇所を複数回摺動させて、摩擦係数を測定しても良い。 In the above equation (1), a 0 , a 1 , a 2 , a 3 , and a 4 are constants, and the changes in the surface pressure and the friction coefficient are measured. Each parameter is determined by the calculation of, and a state function of the friction coefficient expressed by a fourth-order polynomial approximation can be obtained. In order to measure the change of the friction coefficient due to the surface pressure, the friction coefficient may be obtained by changing the surface pressure. As a test method for measuring the friction coefficient, in addition to the above-described flat plate pull-out test method, edited by the Japan Society for Technology of Plasticity, “Plastics Technology Series 3 Process Tribology-Lubrication of Plasticity”, Corona, March 25, 1993 Issue, p. A general friction coefficient test method such as the Bowden test method described in 66, 67 can be employed. Further, using the continuous sliding tester described in Non-Patent Document 2, the friction coefficient may be measured by changing the surface pressure PN and sliding the same portion a plurality of times.

この知見は、アルミニウム板、5000系、6000系等のアルミニウム合金板以外でも同様であり、チタン板及びチタン合金板、マグネシウム板及びマグネシウム合金板等の非鉄金属板に適用することができる。なお、鉄鋼材料に適用できない理由は明確ではないが、非鉄金属材料は鉄鋼材料よりもプレス成形性に劣ることが挙げられる。   This knowledge is the same for aluminum plates other than aluminum plates such as aluminum plates, 5000 series, and 6000 series, and can be applied to non-ferrous metal plates such as titanium plates, titanium alloy plates, magnesium plates, and magnesium alloy plates. In addition, although the reason which cannot apply to a steel material is not clear, it is mentioned that a nonferrous metal material is inferior to press formability than a steel material.

また、非鉄金属材料で面圧の増加とともに摩擦係数が低下し、その後、増加するという新たな知見については、非鉄金属材料が、硬質の鉄鋼材料からなる金型よりも軟質であることに起因している可能性がある。即ち、面圧の増加に伴い、まず、表面が金型と接触した際に凸部が塑性変形によって潰れ、凹部から潤滑油が排出されて油膜を形成し、潤滑が良好になって、摩擦係数が低下する。その後、更に塑性変形が進行し、接触する面積が増加すると摩擦係数が再び増加すると考えられる。   In addition, the new finding that the coefficient of friction decreases and then increases with increasing surface pressure in non-ferrous metal materials is due to the fact that non-ferrous metal materials are softer than molds made of hard steel materials. There is a possibility. That is, as the surface pressure increases, first, when the surface comes into contact with the mold, the convex portion is crushed by plastic deformation, the lubricating oil is discharged from the concave portion to form an oil film, the lubrication becomes good, and the friction coefficient Decreases. Thereafter, the plastic deformation further proceeds, and it is considered that the friction coefficient increases again as the contact area increases.

次に、(1)式を非線形摩擦モデルを考慮した有限要素法シミュレーションに適用した。これは、被加工材の材料パラメータ、プレス成形条件をパラメータ化して入力し、応力分布や歪み分布を出力する既存の有限要素法による成形シミュレーションのプログラムに、成形に応じて、摩擦係数μを面圧のみの4次以上の多項式(1)式を状態関数として計算するサブルーチンプログラムを組み込んだものである。   Next, Equation (1) was applied to a finite element method simulation considering a nonlinear friction model. This is because the material parameters and press molding conditions of the work material are parameterized and input, and the friction coefficient μ is applied to the existing finite element method molding simulation program that outputs the stress distribution and strain distribution according to the molding. A subroutine program for calculating a pressure-only fourth-order or higher-order polynomial (1) as a state function is incorporated.

また、既存の成形シミュレーションのプログラムとしては、公知の動的陽解法FEM(Pam−stampやLS−DYNA等)、静的陽解法FEM(ITAS−3D等)、静的陰解法FEM(ABAQUSやAUTOFORM等)を使用することができる。   Also, as existing molding simulation programs, known dynamic explicit FEM (Pam-stamp, LS-DYNA, etc.), static explicit FEM (ITAS-3D, etc.), static implicit FEM (ABAQUS, AUTOFORM, etc.) Can be used.

(実施例)
以下、実施例により、本発明による成形過程中での摩擦係数変化を考慮した有限要素法による成形シミュレーション方法の詳細を説明する。板厚1mmの6000系アルミニウム合金の摩擦係数の面圧による変化を連続摺動試験機を用いて求め、式(1)の定数a0、a1、a2、a3、a4を決定した。
μ=a0+a1N+a2N 2+a3N 3+a4N 4 ・・・(1)
ただし、a0=0.124、a1=0.0056、a2=−0.0003、
3=6×10-6、a4=−4×10-8
である。
(Example)
Hereinafter, the details of the molding simulation method by the finite element method considering the friction coefficient change during the molding process according to the present invention will be described by way of examples. A change in friction coefficient due to surface pressure of a 6000 series aluminum alloy having a thickness of 1 mm was obtained using a continuous sliding tester, and constants a 0 , a 1 , a 2 , a 3 , and a 4 of Equation (1) were determined. .
μ = a 0 + a 1 P N + a 2 P N 2 + a 3 P N 3 + a 4 P N 4 (1)
However, a 0 = 0.124, a 1 = 0.0056, a 2 = −0.0003,
a 3 = 6 × 10 −6 , a 4 = −4 × 10 −8
It is.

次に、同じ素材から板厚1mm、直径190mmの円盤状の試験片を作製し、ポンチの径を100mm、ポンチの肩Rを10mm、ダイスの径を105mm、ダイスの肩Rを10mmとして円筒深絞り試験を行った。なお、金型はSKD11製である。   Next, a disk-shaped test piece having a plate thickness of 1 mm and a diameter of 190 mm was prepared from the same material, the punch diameter was 100 mm, the punch shoulder R was 10 mm, the die diameter was 105 mm, and the die shoulder R was 10 mm. A drawing test was conducted. The mold is made of SKD11.

試験に用いた潤滑油は摩擦係数測定時に使用したものと同じにして、試験片に油を塗布し、しわ押え力を4tとして深絞り試験を行い、その破断高さを求めた。また、破断後の試験片の破断部から2mm離れた部分の板厚(破断板厚という)をマイクロメータで計測した。   The lubricating oil used in the test was the same as that used in the measurement of the friction coefficient, and the oil was applied to the test piece. A deep drawing test was conducted with a wrinkle pressing force of 4 t, and the breaking height was obtained. Further, the thickness of the portion 2 mm away from the rupture portion of the test piece after rupture (referred to as rupture plate thickness) was measured with a micrometer.

成形シミュレーション計算では、式(1)によって摩擦係数μを計算した場合(本発明例という)と、摩擦係数μを面圧PNに依らず一定値、具体的には0.15にした場合(従来例という)の両方で計算を実施した。計算による成形高さは、実際のプレス試験を行った試験片の破断板厚と、成形シミュレーションの計算で得られた板厚が同等になった時点での成形高さとして評価した。図3に、成形シミュレーションによる破断時の成形高さを実測データとともに示す。図3から、摩擦係数を面圧の4次多項式として算出するサブルーチンを使用した本発明例は、従来例よりも精度が高いことが分かる。 In the molding simulation calculation, the friction coefficient μ is calculated by the equation (1) (referred to as an example of the present invention), and the friction coefficient μ is set to a constant value regardless of the surface pressure P N , specifically 0.15 ( The calculation was performed on both of them. The molding height by calculation was evaluated as the molding height when the fractured plate thickness of the test piece subjected to the actual press test was equal to the plate thickness obtained by the calculation of the molding simulation. In FIG. 3, the molding height at the time of the fracture | rupture by molding simulation is shown with measured data. FIG. 3 shows that the example of the present invention using the subroutine for calculating the friction coefficient as a fourth-order polynomial of the surface pressure has higher accuracy than the conventional example.

図4は、有限要素法による成形シミュレーションを実行可能なコンピュータのハードウェア構成の一例を示す図である。同図に示すように、CPU651と、ROM652と、RAM653と、キーボード(KB)659のキーボードコントローラ(KBC)655と、表示部としてのディスプレイ(CRT)660のディスプレイコントローラ(CRTC)656と、ハードディスク(HD)661及びフレキシブルディスク(FD)662のディスクコントローラ(DKC)657と、ネットワー670との接続のためのネットワークインターフェースコントローラ(NIC)658とが、システムバス654を介して互いに通信可能に接続されて構成されている。   FIG. 4 is a diagram illustrating an example of a hardware configuration of a computer capable of executing a molding simulation by the finite element method. As shown in the figure, a CPU 651, a ROM 652, a RAM 653, a keyboard controller (KBC) 655 of a keyboard (KB) 659, a display controller (CRTC) 656 of a display (CRT) 660 as a display unit, a hard disk ( An HD) 661 and a flexible disk (FD) 662 disk controller (DKC) 657 and a network interface controller (NIC) 658 for connection to the network 670 are connected to each other via a system bus 654. Configured.

CPU651は、ROM652或いはハードディスク661に記憶されたソフトウェア、或いはFD662より供給されるソフトウェアを実行することで、システムバス654に接続された各構成部を総括的に制御する。すなわち、CPU651は、所定の処理シーケンスに従った処理プログラムを、ROM652、或いはハードディスク661、或いはフレキシブルディスク662から読み出して実行することで、上記本実施形態での動作を実現するための制御を行う。RAM653は、CPU651の主メモリ或いはワークエリア等として機能する。   The CPU 651 comprehensively controls each component connected to the system bus 654 by executing software stored in the ROM 652 or the hard disk 661 or software supplied from the FD 662. In other words, the CPU 651 performs a control for realizing the operation of the present embodiment by reading a processing program according to a predetermined processing sequence from the ROM 652, the hard disk 661, or the flexible disk 662 and executing it. The RAM 653 functions as a main memory or work area for the CPU 651.

キーボードコントローラKBC655は、キーボードKB659や図示していないポインティングデバイス等からの指示入力を制御する。ディスプレイコントローラ656は、ディスプレイ660の表示を制御する。ディスクコントローラ657は、ブートプログラム、種々のアプリケーション、編集ファイル、ユーザファイル、ネットワーク管理プログラム、及び本実施の形態における所定の処理プログラム等を記憶するハードディスク661及びフレキシブルディスク662とのアクセスを制御する。   The keyboard controller KBC655 controls an instruction input from a keyboard KB659 or a pointing device (not shown). The display controller 656 controls display on the display 660. The disk controller 657 controls access to the hard disk 661 and the flexible disk 662 that store a boot program, various applications, edit files, user files, a network management program, a predetermined processing program in the present embodiment, and the like.

ネットワークインターフェースコントローラ658は、ネットワーク670上の装置或いはシステムと双方向にデータをやりとりする。   The network interface controller 658 exchanges data bidirectionally with devices or systems on the network 670.

なお、上記実施の形態において示した各部の形状及び構造は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその精神、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。   It should be noted that the shapes and structures of the respective parts shown in the above embodiments are merely examples of implementation in carrying out the present invention, and these limit the technical scope of the present invention. It should not be interpreted. That is, the present invention can be implemented in various forms without departing from the spirit or the main features thereof.

摩擦係数試験法の一例である平板引抜試験の模式図である。It is a schematic diagram of the flat plate pull-out test which is an example of a friction coefficient test method. 摩擦係数の面圧による変化を示す図である。It is a figure which shows the change by the surface pressure of a friction coefficient. 成形シミュレーションによる破断成形高さの実測値との比較を示す図である。It is a figure which shows the comparison with the measured value of the fracture | rupture shaping | molding height by shaping | molding simulation. 有限要素法による成形シミュレーションを実行可能なコンピュータのハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the computer which can perform the shaping | molding simulation by a finite element method.

符号の説明Explanation of symbols

1a、1b 平板金型
2 板材
N 面圧(押付力)
S 引抜力
1a, 1b Flat plate mold 2 Plate material PN surface pressure (pressing force)
P S pull-out force

Claims (3)

非鉄金属板の摩擦係数を面圧のみの4次以上の多項式近似によって計算する手順を有することを特徴とする非鉄金属板の摩擦係数算出方法。   A method for calculating a friction coefficient of a non-ferrous metal plate, comprising a step of calculating the friction coefficient of the non-ferrous metal plate by a fourth-order or higher polynomial approximation of only the surface pressure. 請求項1に記載の非鉄金属板の摩擦係数算出方法により算出された摩擦係数を用いて有限要素法による成形シミュレーションを行うことを特徴とする非鉄金属板の成形シミュレーション方法。   A forming simulation method for a non-ferrous metal plate, wherein a forming simulation by a finite element method is performed using the friction coefficient calculated by the friction coefficient calculating method for a non-ferrous metal plate according to claim 1. 非鉄金属板の摩擦係数と面圧との変化を測定する手順と、
上記非鉄金属板の摩擦係数μを面圧Pで表わす状態関数
μ=a0+a1N+a2N 2+a3N 3+a4N 4
の定数a0,a1,a2,a3,a4を、上記測定結果を用いて決定する手順と、
上記定数a0,a1,a2,a3,a4が決定された状態関数を用いて、有限要素法による成形シミュレーションを行う手順とを有することを特徴とする非鉄金属板の成形シミュレーション方法。
A procedure for measuring changes in the friction coefficient and surface pressure of a non-ferrous metal plate;
State function μ = a 0 + a 1 PN + a 2 PN 2 + a 3 PN 3 + a 4 PN 4
The constants a 0 , a 1 , a 2 , a 3 , a 4 are determined using the above measurement results;
A non-ferrous metal sheet forming simulation method comprising a step of performing a forming simulation by a finite element method using a state function in which the constants a 0 , a 1 , a 2 , a 3 , and a 4 are determined .
JP2003372860A 2003-10-31 2003-10-31 Method for calculating coefficient of friction in non-ferrous metallic sheet, and forming simulation method Pending JP2005131696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372860A JP2005131696A (en) 2003-10-31 2003-10-31 Method for calculating coefficient of friction in non-ferrous metallic sheet, and forming simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372860A JP2005131696A (en) 2003-10-31 2003-10-31 Method for calculating coefficient of friction in non-ferrous metallic sheet, and forming simulation method

Publications (1)

Publication Number Publication Date
JP2005131696A true JP2005131696A (en) 2005-05-26

Family

ID=34649116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372860A Pending JP2005131696A (en) 2003-10-31 2003-10-31 Method for calculating coefficient of friction in non-ferrous metallic sheet, and forming simulation method

Country Status (1)

Country Link
JP (1) JP2005131696A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002926A (en) * 2007-05-22 2009-01-08 Jfe Steel Kk Method for estimating press-molded state, and method for acquiring coefficient of friction for molding simulation
JP2012006038A (en) * 2010-06-24 2012-01-12 Nippon Steel Corp Draw bead test method and press forming analyzing method using physical property value determined by the same test method
JP2012212193A (en) * 2011-03-30 2012-11-01 Jsol Corp Friction coefficient calculation system and calculation program as well as press molding simulation system and simulation program
JP2013210735A (en) * 2012-03-30 2013-10-10 Jsol Corp Press molding simulation system and program, and frictional force calculation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002926A (en) * 2007-05-22 2009-01-08 Jfe Steel Kk Method for estimating press-molded state, and method for acquiring coefficient of friction for molding simulation
JP2012006038A (en) * 2010-06-24 2012-01-12 Nippon Steel Corp Draw bead test method and press forming analyzing method using physical property value determined by the same test method
JP2012212193A (en) * 2011-03-30 2012-11-01 Jsol Corp Friction coefficient calculation system and calculation program as well as press molding simulation system and simulation program
JP2013210735A (en) * 2012-03-30 2013-10-10 Jsol Corp Press molding simulation system and program, and frictional force calculation method

Similar Documents

Publication Publication Date Title
Sigvant et al. Friction in sheet metal forming: Influence of surface roughness and strain rate on sheet metal forming simulation results
Pereira et al. Sliding distance, contact pressure and wear in sheet metal stamping
Krishnan et al. Study of the size effect on friction conditions in microextrusion—part I: microextrusion experiments and analysis
Wang et al. Investigation of die radius arc profile on wear behaviour in sheet metal processing of advanced high strength steels
Cao et al. Microforming: experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM
Carandente et al. Improvements in numerical simulation of the SPR process using a thermo-mechanical finite element analysis
Pereira et al. Contact pressure evolution and its relation to wear in sheet metal forming
Kim et al. Evaluation of stamping lubricants in forming advanced high strength steels (AHSS) using deep drawing and ironing tests
Rosa et al. External inversion of thin-walled tubes using a die: experimental and theoretical investigation
Ramezani et al. Computer aided modelling of friction in rubber-pad forming process
Kim et al. An analysis of the forging processes for 6061 aluminum-alloy wheels
Han et al. Prediction of contact pressure, slip distance and wear in cold rotary forging using finite element methods
Ramezani et al. Sheet metal forming with the aid of flexible punch, numerical approach and experimental validation
Falconnet et al. Prediction of abrasive punch wear in copper alloy thin sheet blanking
Hambli BLANKSOFT: a code for sheet metal blanking processes optimization
JP2014153321A (en) Arithmetic processing method, arithmetic processing device, and program
Cha et al. Adaptive wear model for shear-cutting simulation with open cutting line
Leu et al. Influence of punch shapes on the collar-drawing process of sheet steel
Gattmah et al. Numerical simulation of bending process for steel plate using finite element analysis
Brabie et al. Minimization of sheet thickness variation and other defects of mini drawn parts using a blank holder plate made from concentric rings
JP4231426B2 (en) Metal material molding simulation method
JP2005131696A (en) Method for calculating coefficient of friction in non-ferrous metallic sheet, and forming simulation method
Long et al. FE simulation of the influence of thermal and elastic effects on the accuracy of cold-extruded components
Zare Chavoshi A study on the influences of Coulomb–Amonton’s and Prandtl’s constant friction laws on the hot closed-die forging process of AA7075
Akhtar et al. Fatigue failure of extrusion dies: effect of process parameters and design features on die life

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908