JP4231426B2 - Metal material molding simulation method - Google Patents

Metal material molding simulation method Download PDF

Info

Publication number
JP4231426B2
JP4231426B2 JP2004012169A JP2004012169A JP4231426B2 JP 4231426 B2 JP4231426 B2 JP 4231426B2 JP 2004012169 A JP2004012169 A JP 2004012169A JP 2004012169 A JP2004012169 A JP 2004012169A JP 4231426 B2 JP4231426 B2 JP 4231426B2
Authority
JP
Japan
Prior art keywords
friction
friction coefficient
coefficient
steel plates
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004012169A
Other languages
Japanese (ja)
Other versions
JP2005207774A (en
Inventor
浩二 橋本
亨 吉田
栄志 磯貝
幸久 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004012169A priority Critical patent/JP4231426B2/en
Publication of JP2005207774A publication Critical patent/JP2005207774A/en
Application granted granted Critical
Publication of JP4231426B2 publication Critical patent/JP4231426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、金属板を用いたプレス成形によって、自動車用部品をはじめとした部品を製造する工程に於いて、プレス金型設計段階で有限要素法シミュレーションによりプレス不具合を精度高く予測して、金型製造納期を短くすることで製造コストを下げ、さらにはプレス不具合の発生割合の低減を図った摩擦係数算出方法及びそれを用いた非線形摩擦モデルを考慮した有限要素法による成形シミュレーション方法に関する。   The present invention predicts a press failure with high accuracy by a finite element method simulation at a press die design stage in a process of manufacturing a part such as an automobile part by press forming using a metal plate. The present invention relates to a friction coefficient calculation method that reduces the manufacturing cost by shortening the die manufacturing delivery time and further reduces the rate of occurrence of press defects, and a molding simulation method by a finite element method that takes into consideration a nonlinear friction model using the friction coefficient calculation method.

従来の有限要素法シミュレーションでは、摩擦係数を一定として扱うCoulomb摩擦則が用いられている。このため、成形中の摩擦係数の変化は数値解析シミュレーションにおいて考慮されていない。有限要素法による成形シミュレーションは、材料の機械的特性を材料構成式として入力し、工具との接触問題については摩擦係数を入力することによって材料の変形状態の釣り合い式を解いたり(静的陰解法や静的陽解法)、運動方程式を解いたり(動的陽解法)することによって、応力分布や歪み分布を出力する方法である。しかし、従来の有限要素法プログラムは摩擦係数の変化を正確に反映していないため、正確な応力分布や歪み分布を出力することができず、成形可否の予測精度は十分とはいえない。   In the conventional finite element method simulation, the Coulomb friction law which treats the friction coefficient as a constant is used. For this reason, changes in the coefficient of friction during molding are not taken into account in the numerical analysis simulation. Forming simulation by the finite element method inputs the mechanical properties of the material as a material constitutive equation, and solves the balance equation of the deformation state of the material by inputting the friction coefficient for the contact problem with the tool (static implicit method). Or a static explicit method) or a dynamic equation (dynamic explicit method) to output a stress distribution or a strain distribution. However, since the conventional finite element method program does not accurately reflect the change of the friction coefficient, it is impossible to output an accurate stress distribution or strain distribution, and it cannot be said that the predictability of molding is sufficient.

また、摩擦係数を状態関数として扱い、非線形摩擦モデルを有限要素法に組み込んだ例としては、非特許文献1に、摺動距離と非加工材に加わるひずみの2つをパラメーターとして多項式近似した状態関数が記載され、非特許文献2に、面圧と摩擦仕事量の2つをパラメーターとして多項式近似した状態関数が記載されている。   In addition, as an example in which the friction coefficient is treated as a state function and the nonlinear friction model is incorporated into the finite element method, Non-Patent Document 1 is a state in which polynomial approximation is performed using two parameters, sliding distance and strain applied to a non-working material. A function is described, and Non-Patent Document 2 describes a state function obtained by approximating a polynomial function with two parameters of surface pressure and friction work.

しかしながら、これらの手法でも有限要素法による数値解析の精度は十分とはいえない。   However, the accuracy of numerical analysis by the finite element method is not sufficient even with these methods.

仲町ら(平成4年春期塑性加工講論、(1992)、P355)Nakamachi et al. (1992 Spring Processing Seminar, (1992), P355) 橋本ら(塑性と加工、Vol.44、No.504、(2003)、P35)Hashimoto et al. (Plasticity and processing, Vol.44, No.504, (2003), P35)

本発明は、表面処理鋼板等の成形加工中に摩擦係数が変化する金属材料の成形シミュレーションを実施するにあたり、より解析精度を向上させることができる金属材料の成形シミュレーション方法を提供することを目的とする。   It is an object of the present invention to provide a metal material forming simulation method capable of further improving analysis accuracy in carrying out a metal material forming simulation in which a friction coefficient changes during forming processing of a surface-treated steel sheet or the like. To do.

本発明者らは、鋭意検討した結果、上記非特許文献1及び2では、様々なプレス加工条件により成形過程中に変化する摩擦係数に着目し、摩擦係数の変化に影響する様々な因子の2つだけしか考慮していないのに対し、解析中の状態変数を用いた多項式による摩擦係数の状態関数表示を用いることにより、非線形摩擦モデルを有限要素法プログラムに組み込み、成形過程中の摩擦変化に伴う数値解析の誤差を最小とすることで、正確な応力分布や歪み分布を出力することができる有限要素法シミュレーションプログラムを開発した。   As a result of intensive studies, the present inventors have focused on the friction coefficient that changes during the molding process due to various pressing conditions in the above Non-Patent Documents 1 and 2, and 2 of various factors that affect the change of the friction coefficient. Whereas only one is taken into account, by using the state function display of the coefficient of friction by a polynomial equation with the state variable being analyzed, a nonlinear friction model is incorporated into the finite element method program, and the friction change during the molding process is incorporated. We developed a finite element method simulation program that can output accurate stress distribution and strain distribution by minimizing the error of numerical analysis.

具体的には、本発明では、面圧及び摩擦仕事量と、塑性ひずみを用いて、多項式近似式により金属板の摩擦係数を求める。例えば、摩擦係数をCoulomb則のように一定値として扱うのではなく、摩擦係数μ(PN、ω、εP)のように、面圧(PN[Pa])及び摩擦仕事量(ω[N/m])と、塑性ひずみ(εP)を用いて多項式近似式により金属板の摩擦係数μを算出する。 Specifically, in the present invention, the friction coefficient of the metal plate is obtained by a polynomial approximation formula using the surface pressure, the friction work, and the plastic strain. For example, the friction coefficient rather than treated as a constant value as Coulomb law, the friction coefficient μ (P N, ω, ε P) as the surface pressure (P N [Pa]) and friction work amount (omega [ N / m]) and the plastic strain (ε P ), the friction coefficient μ of the metal plate is calculated by a polynomial approximation formula.

なお、前記金属板として、例えば、軟鋼板、高張力鋼板、表面処理鋼板、潤滑鋼板、ステンレス鋼板、及びステンレス鋼板と鋼板とのクラッド鋼板からなる群から選択された1種を、摩擦係数を求める対象とすることができる。   As the metal plate, for example, a coefficient of friction is obtained by selecting one type selected from the group consisting of mild steel plate, high-tensile steel plate, surface-treated steel plate, lubricated steel plate, stainless steel plate, and stainless steel plate and clad steel plate. Can be targeted.

また、本願発明に係る金属材料の成形シミュレーション方法は、上記のいずれかの方法により前記金属板の摩擦係数を求め、前記金属板の摩擦係数を用いて有限要素法による成形シミュレーションを行うことを特徴とする。   Further, the metal material forming simulation method according to the present invention is characterized in that a friction coefficient of the metal plate is obtained by any one of the above methods, and a forming simulation by a finite element method is performed using the friction coefficient of the metal plate. And

本発明によれば、有限要素法によるプレス成形の数値解析シミュレーション精度を格段に向上させることができる。従って、本発明は産業上極めて価値の高い発明であるといえる。   According to the present invention, the numerical analysis simulation accuracy of press forming by the finite element method can be remarkably improved. Therefore, it can be said that the present invention is an industrially extremely valuable invention.

本発明の実施形態に係る非線形摩擦モデルを考慮した有限要素法シミュレーションプログラムは、予め被加工材及びプレス成形条件に応じて、金属板の摩擦係数μを各種パラメーターを用いた多項式近似式により定める方法をアルゴリズムに採用する。そして、条件によって、摩擦係数μ(PN、ω、εP)のように、面圧:PN及び摩擦仕事量:ωだけでなく、塑性ひずみ:εPを用いて表す多項式近似式を状態関数として適用する。 A finite element method simulation program considering a nonlinear friction model according to an embodiment of the present invention is a method for preliminarily determining a friction coefficient μ of a metal plate by a polynomial approximation expression using various parameters according to a workpiece and press forming conditions. To the algorithm. Depending on the conditions, a polynomial approximate expression expressed using not only the surface pressure: P N and the friction work: ω but also the plastic strain: ε P as the friction coefficient μ (P N , ω, ε P ). Apply as a function.

摩擦係数に影響を及ぼす因子は、成形条件に起因するものと、成形過程中に材料に生じる変化に起因するものに大別することができる。   Factors affecting the coefficient of friction can be broadly classified into those caused by molding conditions and those caused by changes in the material during the molding process.

成形条件に起因して摩擦係数に影響を及ぼす代表的な因子としては、メカニカルプレス、油圧プレス、トランスファープレスやACサーボ制御プレス等によって金属板を成形加工したときの成形速度S、ダイフェース上、ダイス肩部やビード部等において材料が受ける局部的な面圧PNの差異、可変しわ押さえ圧制御等によるしわ押さえ圧力の変化、潤滑油の種類の違いによる粘度υの影響、金型材質と被加工材との硬度差ΔH、及び、粗度Ra等が挙げられる。 Typical factors that affect the coefficient of friction due to the molding conditions include the molding speed S when the metal plate is molded by a mechanical press, hydraulic press, transfer press, AC servo control press, etc., on the die face, localized surface pressure P N of differences material undergoes the die shoulder and the bead portion or the like, change in pressure holding wrinkles due to the variable blank holding pressure control, etc., the influence of the viscosity υ by type of difference in the lubricating oil, and the mold material Examples thereof include a hardness difference ΔH with respect to the workpiece and a roughness Ra.

また、成形過程中に材料に生じる変化に起因して摩擦係数に影響を及ぼす因子としては、被加工材と金型との間での摺動距離の増加に伴う被加工材の表面トポロジー変化、加工発熱・摺動発熱による熱影響、及び、被加工材が塑性変形を受ける間に生じる塑性ひずみεP等が挙げられる。 In addition, factors affecting the coefficient of friction due to changes that occur in the material during the molding process include changes in the surface topology of the workpiece as the sliding distance increases between the workpiece and the mold, Examples thereof include heat effects due to processing heat generation and sliding heat generation, and plastic strain ε P generated while the workpiece is subjected to plastic deformation.

これら因子のうち、被加工材の特定の部分がある時間Δtnの間に受けた摩擦抵抗圧力ΔPTn[Pa]と摺動距離ΔSLn[m]との積の総和で表される摩擦仕事量ω(=ΣΔPT・ΔSL)[N/m]は、被加工材の表面トポロジー変化を表すパラメーターとして非常に重要な役割を果たしており、本願発明者は、成形過程中に生じた表面トポロジー変化が同一レベルであれば、次の摺動において同一の摩擦係数を与えることを実験により明らかにした。また、面圧PNは同一の表面トポロジー状態のサンプルにおいて、後続の摺動における摩擦係数に大きな影響を与えることが、同じく詳細な実験によって判明した。従って、摩擦仕事量ω及び面圧PNは摩擦係数を状態関数で表記する場合の状態変数に適用することが必須である。 Of these factors, the friction work expressed by the sum of products of the friction resistance pressure ΔP Tn [Pa] and the sliding distance ΔS Ln [m] received during a certain time Δt n of a specific part of the workpiece. The quantity ω (= ΣΔP T · ΔS L ) [N / m] plays a very important role as a parameter representing the surface topology change of the workpiece. Experiments have shown that if the change is at the same level, the same coefficient of friction is given in the next slide. Further, it was also found from detailed experiments that the surface pressure PN has a great influence on the coefficient of friction in subsequent sliding in samples having the same surface topology. Therefore, it is essential to apply the friction work ω and the surface pressure P N to state variables when the friction coefficient is expressed by a state function.

しかし、これら2つのパラメーターを状態変数として採用しても、成形条件や被加工材の組み合わせにおいては摩擦係数の変化を十分には表し切れず、精度の高い数値解析シミュレーションを行うことは困難である。   However, even if these two parameters are adopted as state variables, the change in the coefficient of friction cannot be fully expressed in the combination of molding conditions and workpieces, and it is difficult to perform highly accurate numerical analysis simulations. .

そこで、本発明者が鋭意検討を重ねた結果、上記に挙げた摩擦係数の成形過程中に変化を及ぼす因子のうち、塑性ひずみεPを新たなパラメーターとして多項式近似式に組み込み、摩擦係数の状態関数として用いることにより、有限要素法シミュレーションの精度が格段に向上することが判明した。成形中に被加工材に生じる塑性ひずみはめっき鋼板の場合、表面にクラックを生じさせることが判っており、摩擦係数にも影響を与える。 Therefore, as a result of repeated studies by the inventor, the plastic strain ε P is incorporated into the polynomial approximation formula as a new parameter among the factors that change during the molding process of the friction coefficient listed above, and the state of the friction coefficient It has been found that the accuracy of the finite element method simulation is remarkably improved by using it as a function. It has been found that the plastic strain generated in the workpiece during forming causes cracks on the surface in the case of a plated steel sheet, which also affects the coefficient of friction.

従って、成形条件と被加工材の組み合わせにより状態変数として、摩擦係数を表す状態関数μ(PN、ω、εP)を定めればよい。 Therefore, a state function μ (P N , ω, ε P ) representing a friction coefficient may be determined as a state variable by a combination of molding conditions and a workpiece.

そして、このような摩擦係数の算出方法によれば、メカニカルプレス、油圧プレス、トランスファープレスやACサーボ制御プレス等によって金属板を成形加工するときの成形速度やしわ押さえ圧力の変化等の加工条件に起因する摩擦係数の変化や、被加工材と金型との間での摺動距離の増加に伴う被加工材の表面トポロジー変化に伴う摩擦係数変化を、有限要素法を用いた成形シミュレーションにおいて考慮できるようになり、数値解析精度を向上することができる。   And, according to such a calculation method of the friction coefficient, the processing conditions such as a change in forming speed and wrinkle holding pressure when the metal plate is formed by a mechanical press, a hydraulic press, a transfer press, an AC servo control press, etc. Changes in the friction coefficient due to changes in the surface topology of the workpiece as the sliding distance between the workpiece and the mold increases, are considered in the forming simulation using the finite element method. As a result, numerical analysis accuracy can be improved.

ここで、金属板として用いられる材料は、例えば、軟鋼板、高張力鋼板、及びそれらの表面処理鋼板、潤滑鋼板、ステンレス鋼板等の鉄鋼材料、ステンレス鋼板/鋼板等のクラッド鋼板である。なお、アルミニウム板及びアルミニウム合金板、チタニウム板及びチタニウム合金板に関しては、金型とのかじりが顕著であることから長い摺動距離を伴う成形には適せず、摩擦仕事量ω及び面圧PNの他に、1つ以上のパラメーターを状態変数とする摩擦係数表示でも特徴を表すことが困難である。 Here, the material used as the metal plate is, for example, a mild steel plate, a high-tensile steel plate, a steel material such as a surface-treated steel plate, a lubricated steel plate, or a stainless steel plate, or a clad steel plate such as a stainless steel plate / steel plate. The aluminum plate, the aluminum alloy plate, the titanium plate, and the titanium alloy plate are not suitable for molding with a long sliding distance because of galling with the mold, and the friction work ω and the surface pressure P In addition to N , it is difficult to represent a feature even with a friction coefficient display using one or more parameters as state variables.

なお、各種因子を状態関数とし、そのパラメーターを求める摩擦係数試験法としては、バウデン試験法や平板引き抜き試験法等の一般的な摩擦係数試験法や、本発明者の提案した連続摺動試験機(塑性と加工、Vol.44、No.504、(2003)、P35)等を用い、面圧PNをさまざまに変化させ、同一箇所を複数回摺動させることにより摩擦仕事量ωを求め、更に他のパラメーターとして摺動速度Sや工具硬度H、金属板粗度Ra、潤滑油粘度υを様々に変えることによって3つ以上のパラメーターを振った条件下で摩擦係数を測定する。各種パラメーターを用いた多項式で表す摩擦係数の状態関数の各係数は、このようにして求めた多数の実験結果を基に、最小2乗法等の計算により特定し、多項式近似で表す摩擦係数の状態関数として算出することできる。 In addition, as a friction coefficient test method for obtaining various parameters using various factors as state functions, a general friction coefficient test method such as a Bowden test method or a flat plate pull-out test method, or a continuous sliding test machine proposed by the present inventor is used. (Plasticity and processing, Vol. 44, No. 504, (2003), P35), etc., the frictional work ω is obtained by variously changing the surface pressure PN and sliding the same portion multiple times. Further, the friction coefficient is measured under conditions where three or more parameters are varied by variously changing the sliding speed S, tool hardness H, metal plate roughness Ra , and lubricating oil viscosity υ as other parameters. Each coefficient of the state function of the friction coefficient expressed by a polynomial using various parameters is specified by calculation such as the least square method based on the results of many experiments thus obtained, and the state of the friction coefficient expressed by polynomial approximation It can be calculated as a function.

また、摩擦係数を導入した有限要素法による成形シミュレーションにおいて上記の方法により算出した摩擦係数をパラメーターとして入力して計算に用いることができる。成形シミュレーションとしては、公知の動的陽解法FEM(Pam−stampやLS−DYNA等)、静的陽解法FEM(ITAS−3D等)、静的陰解法FEM(ABAQUSやAUTOFORM等)を使用することができる。   Further, the friction coefficient calculated by the above method in the forming simulation by the finite element method with the friction coefficient introduced can be input as a parameter and used for the calculation. As the molding simulation, a known dynamic explicit FEM (Pam-stamp, LS-DYNA, etc.), static explicit FEM (ITAS-3D, etc.), static implicit FEM (ABAQUS, AUTOFORM, etc.) can be used. .

次に、実際に行った実施例に基づいて、本発明に係る非線形摩擦モデルを考慮した有限要素法による成形シミュレーション方法について詳細に説明する。   Next, a forming simulation method based on the finite element method in consideration of the nonlinear friction model according to the present invention will be described in detail on the basis of an actually performed example.

摩擦係数に影響を与える因子をパラメーターとして多項式近似で表す非線形摩擦モデルを組み込んだ動的陽解法FEMプログラムで300mm径ポンチの円筒深絞り試験の成形シミュレーションを実施した。成形サンプルとしては0.8mm厚の合金化溶融亜鉛めっき鋼板(GA)を用いた。ここでは、計算に当たり、比較例1では、摩擦係数一定のCoulomb摩擦則を用い、比較例2では、状態変数として面圧PN[Pa]と摩擦仕事量ω[N/m]の2つだけを用いた非線形摩擦モデルの摩擦係数の状態関数μ(PN、ω)を用い、本発明の実施例では、状態変数として面圧PN[Pa]及び摩擦仕事量ω[N/m]の他に、塑性ひずみεPを用いた非線形摩擦モデルの摩擦係数の状態関数μ(PN、ω、εP)を用いた。 A molding simulation of a cylindrical deep drawing test of a 300 mm diameter punch was carried out by a dynamic explicit FEM program incorporating a nonlinear friction model expressed by polynomial approximation with a factor affecting the friction coefficient as a parameter. A 0.8 mm thick galvannealed steel sheet (GA) was used as a molded sample. Here, in the calculation, the Coulomb friction law with a constant friction coefficient is used in Comparative Example 1, and in Comparative Example 2, only two of surface pressure P N [Pa] and friction work ω [N / m] are used as state variables. In the embodiment of the present invention, the surface pressure P N [Pa] and the friction work ω [N / m] are used as the state variables in the embodiment of the present invention using the friction coefficient state function μ (P N , ω) of the nonlinear friction model using In addition, the state function μ (P N , ω, ε P ) of the friction coefficient of the nonlinear friction model using the plastic strain ε P was used.

摩擦仕事量ω[N/m]は数1で与えられる。ここで、PTは接線方向摩擦抵抗圧力[Pa]、gslは摺動距離[m]を表す。 The friction work ω [N / m] is given by Equation 1. Here, P T represents the tangential frictional resistance pressure [Pa], and g sl represents the sliding distance [m].

Figure 0004231426
Figure 0004231426

また、比較例2に関し、状態変数として面圧で与えられるPN及び摩擦仕事量で与えられるωの2つだけを用いた非線形摩擦モデルの摩擦係数の状態関数μ(PN、ω)は、数2とした。 Regarding Comparative Example 2, the state function μ (P N , ω) of the friction coefficient of the nonlinear friction model using only two of P N given by the surface pressure and ω given by the friction work as state variables is The number is 2.

Figure 0004231426
Figure 0004231426

但し、数2において、各係数は最小自乗法により求め、電気亜鉛めっき鋼板の例の場合、A0=0.166、A1=−0.252×10-5、A2=−0.219×10-6、A3=0.293×10-11、A4=0.244×10-10、A5=0.895×10-12、A6=0.373×10-16、A7=0.315×10-18、A8=−0.165×10-15、A9=−0.113×10-17とした。 However, in Equation 2, each coefficient is obtained by the method of least squares. In the case of an electrogalvanized steel sheet, A 0 = 0.166, A 1 = −0.252 × 10 −5 , A 2 = −0.219 × 10 −6 , A 3 = 0.293 × 10 −11 , A 4 = 0.244 × 10 −10 , A 5 = 0.895 × 10 −12 , A 6 = 0.373 × 10 −16 , A 7 = 0.315 × 10 −18 , A 8 = −0.165 × 10 −15 , and A 9 = −0.113 × 10 −17 .

また、本発明の実施例に関し、状態変数として、面圧PN[Pa]、摩擦仕事量ω[N/m]及び塑性ひずみεPの3つを用いた非線形摩擦モデルの摩擦係数の状態関数μ(PN、ω、εP)は、数3とした。 Further, regarding the embodiment of the present invention, the state function of the friction coefficient of the nonlinear friction model using three of the surface pressure P N [Pa], the friction work ω [N / m], and the plastic strain ε P as the state variables. μ (P N , ω, ε P ) was set to Equation 3.

Figure 0004231426
Figure 0004231426

但し、数3において、各係数は最小自乗法により求め、電気亜鉛めっき鋼板の例の場合、A0=0.273、A1=−0.141×10-6、A2=−0.105×10-7、A3=0.536×10-8、A4=0.185×10-15、A5=0.212×10-9、A6=−0.184×10-20、A7=0.306×10-11、A8=−0.243×10-19、A9=−0.124×10-18、A10=0.256×10-8とした。 However, in Equation 3, each coefficient is obtained by the method of least squares. In the case of an electrogalvanized steel sheet, A 0 = 0.273, A 1 = −0.141 × 10 −6 , A 2 = −0.105 × 10 −7 , A 3 = 0.536 × 10 −8 , A 4 = 0.185 × 10 −15 , A 5 = 0.212 × 10 −9 , A 6 = −0.184 × 10 −20 , A 7 = 0.306 × 10 −11 , A 8 = −0.243 × 10 −19 , A 9 = −0.124 × 10 −18 , and A 10 = 0.256 × 10 −8 .

なお、状態関数の表記はこれらに限定されるものではない。   The notation of the state function is not limited to these.

図1に、成形解析結果の一例として、しわ押さえ圧240kNの成形条件で、本発明の実施例に係る非線形摩擦モデルを用いた解析結果(板厚分布)を示す。また、図2に、しわ押さえ圧力を240kN、480kN、720kNの3条件とした場合の成形高さの実験結果と、解析で板厚減少25%以上となり、破断と判定した時点の成形高さとを比較して示す。   FIG. 1 shows an analysis result (plate thickness distribution) using a nonlinear friction model according to an embodiment of the present invention under a molding condition of a wrinkle holding pressure of 240 kN as an example of the molding analysis result. FIG. 2 shows the experimental results of the molding height when the wrinkle holding pressure is three conditions of 240 kN, 480 kN, and 720 kN, and the molding height at the time when it is determined that the fracture is 25% or more and the fracture is determined by analysis. Shown in comparison.

図2に示すように、比較例1(摩擦係数一定のCoulomb摩擦則)では、しわ押さえ圧力が480kN及び720kNのときに、実験結果に比べて成形高さが低かった。また、比較例2(状態変数を2つ使った非線形摩擦モデル)では、240kN及び720kNのしわ押さえ圧力の場合に、実験結果に近いシミュレーション結果が得られているが、480kNのしわ押さえ圧力では、成形シミュレーションの精度は十分とはいえない。   As shown in FIG. 2, in Comparative Example 1 (Coulomb friction law with a constant friction coefficient), when the wrinkle holding pressure was 480 kN and 720 kN, the molding height was lower than the experimental result. In Comparative Example 2 (nonlinear friction model using two state variables), simulation results close to the experimental results are obtained in the case of wrinkle holding pressures of 240 kN and 720 kN, but with wrinkle holding pressure of 480 kN, The accuracy of the molding simulation is not sufficient.

これらの比較例に対し、本発明の実施例では、実験結果とほぼ一致したシミュレーション結果が得られた。   In contrast to these comparative examples, in the examples of the present invention, simulation results almost identical to the experimental results were obtained.

実施例2では、実施例1の状態関数μ(PN、ω、εP)を非線形摩擦モデルとしてプログラムに組み込んだ動的陽解法FEMプログラムでリヤメンバーの成形シミュレーションを実施した。ここでの成形サンプルとしては、0.8mm厚の電気亜鉛めっき鋼板(EG)を用いた。 In Example 2, a rear member forming simulation was performed with a dynamic explicit FEM program in which the state function μ (P N , ω, ε P ) of Example 1 was incorporated into the program as a nonlinear friction model. As a forming sample here, an electrogalvanized steel sheet (EG) having a thickness of 0.8 mm was used.

図3に、成形解析結果の例として400kNのしわ押さえ圧力の条件で成形解析したときの板厚分布を示す。一般的な破断判定方法と同様に、板厚が元の板厚に対して25%以上減少した状態を破断と判定すると、図4に示すように、減肉でも破断しない領域(Safety thinning level)を区別することができる。図4中の「Forming available zone」は、実測で求めた成形可能範囲であり、その上限は約400kNである。   FIG. 3 shows the plate thickness distribution when the forming analysis is performed under the condition of the wrinkle holding pressure of 400 kN as an example of the forming analysis result. As in the case of a general fracture determination method, when a state in which the plate thickness is reduced by 25% or more with respect to the original plate thickness is determined to be a break, as shown in FIG. Can be distinguished. “Forming available zone” in FIG. 4 is a formable range obtained by actual measurement, and the upper limit is about 400 kN.

比較例(摩擦係数を一定としたCoulomb摩擦モデル)では、プレス成形による板厚減少を過大評価してしまっているため、しわ押さえ圧力が300kN、400kN及び600kNのいずれにおいても減少率が25%を上回ってしまい、成形可能な範囲が存在しないという結果が得られてしまった。即ち、実測で求めた成形可能範囲との相違が極めて大きかった。   In the comparative example (Coulomb friction model with a constant friction coefficient), the plate thickness reduction due to press forming has been overestimated, so the reduction rate is 25% at any of the wrinkle holding pressures of 300 kN, 400 kN and 600 kN. The result was that there was no moldable range. That is, the difference from the moldable range obtained by actual measurement was extremely large.

これに対し、本発明の実施例(3つの因子をパラメーターとして摩擦係数を状態関数表記したNon−linear(非線形)摩擦モデル)では、実測で求めた成形可能範囲(400kN以下)と非常に良い一致を示す結果が得られた。   On the other hand, in the embodiment of the present invention (non-linear friction model in which the friction coefficient is expressed as a state function using three factors as parameters), it is in very good agreement with the formable range (400 kN or less) obtained by actual measurement. The result which shows was obtained.

本発明の実施例による数値シミュレーション結果を示す図である。It is a figure which shows the numerical simulation result by the Example of this invention. 本発明の実施例と比較例の円筒深絞り成形高さを示すグラフである。It is a graph which shows the cylindrical deep drawing molding height of the Example and comparative example of this invention. 本発明の実施例による他の数値シミュレーション結果を示す図である。It is a figure which shows the other numerical simulation result by the Example of this invention. 本発明例と比較例による深絞り成形可能なしわ押さえ圧力範囲を示すグラフである。It is a graph which shows the wrinkle pressing pressure range which can be deep-drawn by an example of the present invention and a comparative example.

Claims (2)

面圧及び摩擦仕事量と、塑性ひずみを用いて、多項式近似式により金属板の摩擦係数を求め、前記金属板の摩擦係数を用いて有限要素法による成形シミュレーションを行うことを特徴とする金属材料の成形シミュレーション方法。   A metal material characterized by obtaining a friction coefficient of a metal plate by a polynomial approximation formula using a surface pressure, a friction work, and plastic strain, and performing a forming simulation by a finite element method using the friction coefficient of the metal plate Molding simulation method. 前記金属板は、軟鋼板、高張力鋼板、表面処理鋼板、潤滑鋼板、ステンレス鋼板、及びステンレス鋼板と鋼板とのクラッド鋼板からなる群から選択された1種であることを特徴とを特徴とする請求項1に記載の金属材料の成形シミュレーション方法。   The metal plate is one type selected from the group consisting of mild steel plates, high-tensile steel plates, surface-treated steel plates, lubricated steel plates, stainless steel plates, and stainless steel plates and clad steel plates. The metal material forming simulation method according to claim 1.
JP2004012169A 2004-01-20 2004-01-20 Metal material molding simulation method Expired - Fee Related JP4231426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012169A JP4231426B2 (en) 2004-01-20 2004-01-20 Metal material molding simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012169A JP4231426B2 (en) 2004-01-20 2004-01-20 Metal material molding simulation method

Publications (2)

Publication Number Publication Date
JP2005207774A JP2005207774A (en) 2005-08-04
JP4231426B2 true JP4231426B2 (en) 2009-02-25

Family

ID=34898630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012169A Expired - Fee Related JP4231426B2 (en) 2004-01-20 2004-01-20 Metal material molding simulation method

Country Status (1)

Country Link
JP (1) JP4231426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043035A1 (en) * 2022-08-24 2024-02-29 Jfeスチール株式会社 Press forming analysis method, press forming fracture determining method for press-formed article, press-formed article manufacturing method, press forming analysis device, and press forming analysis program

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813999B2 (en) * 2006-07-26 2011-11-09 株式会社神戸製鋼所 Forging shape prediction method and program thereof
JP5098651B2 (en) * 2007-05-22 2012-12-12 Jfeスチール株式会社 Press forming state estimation method and friction coefficient acquisition method for forming simulation
JP5135540B2 (en) * 2007-06-28 2013-02-06 新日鐵住金株式会社 Steel pipe manufacturing equipment and steel pipe manufacturing method
US8190408B2 (en) * 2010-03-22 2012-05-29 Livermore Software Technology Corporation Methods and systems for numerically predicting surface imperfections on stamped sheet metal parts
JP5714380B2 (en) * 2011-03-30 2015-05-07 株式会社Jsol Friction coefficient calculation system, calculation program, press forming simulation system, and simulation program
JP5887180B2 (en) * 2012-03-30 2016-03-16 株式会社Jsol Press forming simulation system and program, and friction force calculation method
JP6111717B2 (en) * 2013-02-13 2017-04-12 新日鐵住金株式会社 Arithmetic processing method, arithmetic processing device, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043035A1 (en) * 2022-08-24 2024-02-29 Jfeスチール株式会社 Press forming analysis method, press forming fracture determining method for press-formed article, press-formed article manufacturing method, press forming analysis device, and press forming analysis program

Also Published As

Publication number Publication date
JP2005207774A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
Sigvant et al. Friction in sheet metal forming: Influence of surface roughness and strain rate on sheet metal forming simulation results
Kim et al. Evaluation of stamping lubricants in forming advanced high strength steels (AHSS) using deep drawing and ironing tests
Duflou et al. Experimental study on force measurements for single point incremental forming
Kim et al. Estimation of die service life against plastic deformation and wear during hot forging processes
Livatyali et al. Prediction and elimination of springback in straight flanging using computer aided design methods: Part 1. Experimental investigations
Lee et al. On critical surface strain during hot forging of lubricated aluminum alloy
Al-Momani et al. An application of finite element method and design of experiments in the optimization of sheet metal blanking process
Samuel FEM simulations and experimental analysis of parameters of influence in the blanking process
Wang et al. Investigation of die radius arc profile on wear behaviour in sheet metal processing of advanced high strength steels
Manoochehri et al. Integration of artificial neural network and simulated annealing algorithm to optimize deep drawing process
JP5098651B2 (en) Press forming state estimation method and friction coefficient acquisition method for forming simulation
Pereira et al. The effect of the die radius profile accuracy on wear in sheet metal stamping
Cheon et al. Prediction of tool wear in the blanking process using updated geometry
Sigvant et al. Friction and lubrication modeling in sheet metal forming simulations of a Volvo XC90 inner door
Hol et al. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality
Leu The limiting drawing ratio for plastic instability of the cup-drawing process
JP4231426B2 (en) Metal material molding simulation method
Cillaurren et al. Contact pressure and sliding velocity ranges in sheet metal forming simulations
Farhoumand et al. Experimental investigation and numerical simulation of plastic flow behavior during forward-backward-radial extrusion process
Gattmah et al. Numerical simulation of bending process for steel plate using finite element analysis
Folle et al. Effect of surface roughness and lubrication on the friction coefficient in deep drawing processes of aluminum alloy aa1100 with fem analysis 1
Priyadarshini et al. Influence of the Johnson Cook material model parameters and friction models on simulation of orthogonal cutting process
Behrens et al. Advanced finite element analysis of die wear in sheet-bulk metal forming processes
Krachenfels et al. Influence of varying sheet material properties on dry deep drawing process
Klassen et al. Wear prediction for hot forging dies under consideration of structure modification in the surface layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R151 Written notification of patent or utility model registration

Ref document number: 4231426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees