JPH11290695A - Photocatalytic filter - Google Patents

Photocatalytic filter

Info

Publication number
JPH11290695A
JPH11290695A JP11629598A JP11629598A JPH11290695A JP H11290695 A JPH11290695 A JP H11290695A JP 11629598 A JP11629598 A JP 11629598A JP 11629598 A JP11629598 A JP 11629598A JP H11290695 A JPH11290695 A JP H11290695A
Authority
JP
Japan
Prior art keywords
photocatalyst
filter
light
adsorbent
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11629598A
Other languages
Japanese (ja)
Inventor
Yoshiharu Uchiumi
慶春 内海
Makoto Setoyama
誠 瀬戸山
Masanori Tsujioka
正憲 辻岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11629598A priority Critical patent/JPH11290695A/en
Publication of JPH11290695A publication Critical patent/JPH11290695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To emit a light sufficiently deep inside and thereby fully exhibit the photocatalytic performance of a deodorizing material as a whole by integrally combining an adsorbing material borne on the surface and the interior of a photocatalyst with a light waveguide path which guides an excited light to the photocatalyst to form a photocatalytic filter. SOLUTION: A microparticular powder of TiO2 is added to and dispersed in a silica sol prepared by dissolving a tetraethoxysilane in ethanol and adding a mixed solution of water, nitric acid and ethanol. Further, a fibrous activated carbon is soaked in this dispersion and is removed from the dispersion to be dried and baked and consequently, a TiO2 bearing fibrous activated carbon unwoven fabric 1 is obtained. A platelike filter comprising alternately laminated sheetlike light waveguide paths 2 consisting of a bundle of guarty fibers and the unwoven fabric 1, is built in a closed circulation-type gaseous phase reaction device. In addition, acetoaldehyde is circulated through the filter while ultraviolet rays are irradiated from the end face of the light waveguide paths 2. Thus, it is possible to efficiently emit an excited light from outside the filter to the inside photocatalyst, so that the performance of the photocatalyst can be fully exhibited.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は空気清浄機、汚水処
理装置、浄水器などに使用される光触媒フィルタに関す
るものである。 【0002】 【従来の技術】近年、空気浄化や汚水浄化などの環境浄
化に光触媒を利用する試みが活発となっている。これは
酸化チタン(TiO2)などの半導体にエネルギーギャップ
以上のエネルギーを持つ光を照射することにより生じた
電子と正孔の酸化、還元作用により、空気中や水中の悪
臭物質、有害物質などを分解、除去するものである。 【0003】光触媒反応は光触媒表面でのみ反応が生じ
るため、光触媒を用いた空気浄化、汚水浄化において
は、処理物質が光触媒の表面へ効率良く供給される必要
がある。そこで、活性炭などの吸着剤に光触媒を担持さ
せて、空気中の悪臭物質や汚水浄化に利用する試みが行
われている。しかし、光触媒反応は光が当たっている部
分でしか反応が生じないため、光触媒を吸着剤に担持さ
せたものでは、光の当たらない部分ができてしまい、光
触媒の性能を充分に発揮できないという問題がある。 【0004】悪臭物質の分解性能の高い光触媒を利用し
た脱臭方法として、例えば特開平9−75434号では
酸化チタンを担持させた多孔性物質からなる吸着剤に、
紫外線増感剤、透光性セラミックス、透光性プラスチッ
クスのうちから選ばれた少なくとも1種の成分を加えて
成形した脱臭材を使用する方法が提示されている。これ
は紫外線増感材、透光性セラミックス、透光性プラスチ
ックスのいずれかにより、励起光の酸化チタンへの照射
効率を高め、脱臭性能を高めたものである。 【0005】 【発明が解決しようとする課題】上記提示の技術は優れ
たものであるが、酸化チタンを担持した吸着剤と、紫外
線増感剤、透光性セラミックス、透光性プラスチックス
を混合した粒子または粉末状か、バインダまたは接着剤
によって板状などに成形したものであり、脱臭材表面か
らある程度の深さまでは光が透過することが可能である
が、それぞれの構成要素が分散して存在するために脱臭
材の充分内部まで光を照射することができないと言う問
題を残している。 【0006】具体的には、実施例として酸化チタンを担
持した椰子殻活性炭100gと紫外線増感材であるp−
ニトロアニリン1g、透光性セラミックスである透光性
アルミナ粉末2gおよびポリエチレン粉末バインダ15
gを混合し、板状に成形したものがあげられているが、
光を内部に導く透光性材料が粉末で分散しており、全体
にしめる体積も小さいため、充分内部まで光を供給する
ことができず、脱臭材全体の光触媒性能を充分発揮でき
ない。 【0007】 【課題を解決するための手段】本発明は光触媒を表面乃
至内部に担持させた吸着材と、光触媒の励起光を導光可
能な光導波路とを一体に組合せて、光触媒フィルタを形
成することにより、フィルタ外部から照射した励起光を
フィルタ内部の光触媒に効率良く供給することができ、
処理物質の分解、除去性能にすぐれた光触媒フィルタを
実現したものである。なおこの光触媒フィルタの使用に
当っては、フィルタのハウジングとか接着剤など、他の
部品や構造材料と合わせ用いられることが多いことは言
うまでもない。 【0008】 【作用】本発明の光触媒フィルタは、光触媒を表面乃至
内部に担持させた吸着材と、光触媒の励起光を導光可能
な光導波路とを一体に組合せてなることを特徴とする。
本発明では、フィルタ外部から照射された光がフィルタ
の構成部材の1つある光導波路によりフィルタ内部まで
導かれるため、フィルタ内の光触媒への光の照射効率が
高く、フィルタ全体の光触媒の能力を充分発揮させるこ
とができ、処理物質の分解処理性能に優れている。 【0009】また、光触媒の担持基材として使用してい
る吸着材が、空気中や水中の処理物質を効率良く捕集
し、処理物質の光触媒表面への接触確率を高めるため、
処理性能に優れている。光触媒により完全分解しにくく
中間生成物を生成しやすい物質であっても、吸着材が中
間生成物を再吸着して光触媒表面に接触する確率を高め
るため、完全分解しやすいという効果もある。吸着材に
吸着させた処理物質は、光触媒により完全に分解される
ため、吸着飽和による性能劣化がない。 【0010】本発明で光触媒の担持基材として使用する
吸着材としては、処理物質に対して吸着性を有するもの
であればどんなものでも使用可能であるが、比表面積が
大きなこと、吸着性能が優れていること、入手の容易さ
などの理由から、活性炭、シリカゲル、活性アルミナ、
ゼオライトなどを用いることが望ましく、これらを単独
あるいは必要に応じて複数を組み合わせて用いても良
い。処理物質によって最適な吸着材を選定することが重
要であり、例えば空気中の悪臭物質の除去や、水道水中
のトリハロメタン類、残留塩素、カビ臭の除去などには
活性炭を用いるのが良い。 【0011】活性炭は粒状、粉末状、繊維状などいずれ
のものでも使用することができるが、繊維状活性炭は比
表面積が大きいため吸着性能に優れており、また後述す
るようにシート状に形成してフィルタ形状を作製しやす
いことから最も好ましい。粒状あるいは粉末状活性炭の
原料には、椰子殻、石炭、コークス、木炭など、繊維状
活性炭の原料にはセルロース系繊維、フェノール系繊
維、ピッチ系繊維などがあるが、いずれも使用すること
ができ、処理する物質に対し吸着性能の優れたものを選
んで使用すればよい。例えば水道水中のトリハロメタン
除去には、椰子殻原料のものを使用するのが好ましい。 【0012】粒状活性炭、粉末状活性炭、シリカゲル、
活性アルミナ、ゼオライト等前記した吸着材はバインダ
等を用いて容易にシート状に形成できる。またこれら粒
状、粉末状の吸着材を繊維状活性炭と組み合わせること
により、繊維状活性炭の機能の向上をはかることもでき
る。例えば繊維状活性炭に椰子殻原料の粒状活性炭を組
み合わせて、水中のトリハロメタン類の除去性能を向上
さす如くである。 【0013】本発明に用いる光触媒としては、例えばTi
O2、SrTiO3、CdS 、CdSe、GaP 、ZrO2、KTaO3 、KTa
0.77Nb0.23O3 、Nb2O5 、ZnO 、Fe2O3 、WO3 、SnO2、I
n2O3 、MoO3、Cu2O、CuFeO2など公知の光触媒能を有す
る物質であればどんなものでも、単独あるいは複数の物
質の組み合わせのいずれの形でも使用することができ
る。特にTiO2は強い酸化力を有し安価で無害であるため
特に望ましい。TiO2はアナターゼ型とルチル型の2種類
の結晶構造が存在し、どちらも使用することができる
が、より触媒活性の高いアナターゼ型を使用するほうが
望ましい。あるいは両者を組み合わせて用いても良い。 【0014】光触媒性能を向上させる目的で、TiO2表面
にPt、Pd、Au、Ag、Ru、Rh、Fe、Co、Ni、Cu、Znなどの
金属あるいはこれらの金属の酸化物を単独あるいは複数
を組み合わせて担持させても良い。特にTiO2表面にPt、
Pd、Auなどの貴金属の粒径1〜100nmの微粒子を担持
させたものは、公知のように光触媒性能が高いため特に
望ましい。TiO2表面にこれらの金属あるいは金属酸化物
を担持させる方法としては、含浸法、光析出法、化学析
出法、同時沈殿法、混練法、振り混ぜ法、金属粉添加
法、真空蒸着法、スパッタ法などの公知の技術を用いる
ことができる。これらの金属あるいは金属酸化物を担持
したTiO2を使用する場合は、これらの物質を担持させた
TiO2微粒子を吸着材に担持させて用いても良いし、吸着
材にTiO2を担持させた後にこれらの材料を担持させて用
いても良い。 【0015】光触媒は吸着材の表面乃至は内部にできる
だけ吸着材の細孔を埋めてしまわないように担持されて
いる必要がある。光触媒の担持方法としては、ゾルゲル
法、熱分解法、パイロゾル法、CVD 法、真空蒸着法、ス
パッタ法、イオンプレーティング法、金属酸化法など公
知の技術を利用することができる。また、光触媒の微粒
子を光触媒に対し難分解性のバインダを介して担持させ
てもよい。この場合のバインダとしてはシリカやアルミ
ナなどの無機系バインダ、フッ素系ポリマー、シリコン
系ポリマーなどの有機系バインダなど公知のものを使用
すればよい。光触媒微粒子粉末は粒径が小さなものほど
光触媒活性が高いため望ましく、1〜500nmの平均粒
径をもつものが望ましい。前記したような金属あるいは
金属酸化物の微粒子を表面に担持したTiO2微粒子を用い
てもよい。光触媒がTiO2の場合は市販されている無機バ
インダ成分を含んだ光触媒コーティング材を使用しても
よい。 【0016】本発明で用いる光導波路としては、光触媒
を励起可能な光を導光できるものであれば、どんなもの
でも使用可能である。形状としては、ファィバ状、シー
ト状、板状、円筒状など組み合わせる吸着材に応じて選
択し、所要のフィルタ形状に適用しやすいようにすれば
よい。構造としては、例えばガラスファイバのように導
光部だけからなるものでも、例えば光ファイバのように
導光部に光を閉じ込める構造でもよい。導光部の材料と
しては、光触媒の励起光の透過率ができるだけ高いもの
が望ましく、光触媒にTiO2を使用する場合は例えば、石
英ガラス、硼珪酸ガラス、アルミナ、ポリカーボネート
などを使用することが望ましい。光導波路としては具体
的には、板状、シート状、円筒状に加工したガラス、透
光性樹脂、透光性セラミックスなど、あるいはガラスフ
ァイバ、石英ファイバ、光ファイバなどを使用すること
ができる。 【0017】本発明で使用する光導波路は入射した光が
フィルタ内部に伝搬するに従い、徐々に光が漏れること
が望ましい。導光部だけからなる光導波路では特別な工
夫をしなくても良い。光ファイバを用いる場合は、例え
ば光ファイバを曲げてフィルタに設置する、クラッドの
一部を削ってコアを露出させる、最大受光角よりもわず
かに大きな入射角で光を入射するようにレンズなどで調
整するなどを行えばよい。 【0018】光ファイバを使用する場合は、1.3μm
帯、1.55μm帯、0.85μm帯などの光通信で用
いられている信号伝送用のシングルモードファイバを使
用することが特に望ましい。このようなファイバはコア
の断面積こ比べクラッドの断面積が非常に大きなため、
クラッドを光の伝搬に使用することにより、大光量の光
を伝搬させることができる。さらに光が適度に漏れなが
ら伝搬するため、光の入射角を制御したり、光ファイバ
を曲げたりする必要がない。また、クラッドの材質が可
視光から紫外光までの透過率の高い石英であるため、Ti
O2のように励起光に紫外光が必要な光触媒を用いる場合
でも、紫外光を効率良く伝搬させることが可能である。
さらに光通信用に大量に製造されていて、非常に安価で
あるという利点もある。 【0019】ソングルモードファィバは、クラッドが石
英ガラスであればどんなものでも使用することができ
る。クラッド材料としては、紫外光から可視光までの透
過特性の良好な純粋石英ガラスがもっとも望ましいが、
フッ素なとの不純物をドープしたものを用いることもで
きる。コア材料はどんなものでも使用でき、SiO2+GeO2
ガラス、石英ガラスなどが入手しやすいが、これらの
材料に不純物がドープしてあるものでもよい。クラッド
径としては50〜500μmのものが望ましい。これ以
上細いものは伝搬できる光量が少なく強度的にも弱いた
め適さず、これ以上太いものはフィルタを作る際に曲げ
にくくなるため適さない。伝撒可能な光量、強度、曲げ
やすさ、入手の容易さから、100〜150μmのもの
がさらに望ましい。コア径としては1〜25μmが望ま
しい。これ以上細いものは作製が困難であり、これ以上
太いものはクラッドの断面積が小さくなり伝搬できる光
量が小さくなるため望ましくない。作製の容易さ、クラ
ッド断面積の大きさ、入手の容易さから、5〜15μm
のものがさらに望ましい。 【0020】このようなシングルモードファイバとして
は、例えば1.3μm帯用シングルモードファイバ、
1.55μm帯用純粋石英コアファイバ(カットオフシ
フトファイバ)、1.55μm帯用分散シフトファイ
バ、0.85μm用シングルモードファイバなどがあ
り、いずれも使用できるが、クラッドが純粋石英ガラス
でコア系の小さい1.3μm帯シングルモードファィバ
が、光の伝搬効率が良好なため最も望ましい。光フアイ
バ心線は通常、強度を確保するため表面にウレタンアク
リレートなどの被覆がされているので、このような表面
被覆を除去して使用する。表面被覆の除去法としては、
例えば硫酸などの酸で溶かす方法などが利用できる。 【0021】次に本発明の光触媒フィルタの構造につい
て説明する。フィルタ形状としては、シート、板状、円
筒状、ハニカムなど装置の形状に応じて任意に選ぶこと
ができる。図1は吸着材がシート状に成形された繊維状
活性炭であり、光触媒を担持した繊維状活性炭1と光導
波路2が積層して組み合わされた構造を有する板状フィ
ルタの例を示している。このシート状の繊維状活性炭に
は不織布状(フェルト状)、ペーパー状、ハニカム状と
したものなども含まれる。図は光導波路2にガラスファ
イバや光ファイバなどのファイバ状のものを用いた例を
示しているが、ファイバ状に限らず、先に述べたものか
ら選んで使用することができる。図の例ではファイバ状
光導波路の端面がでているフィルタ上面から励起光を入
射して使用する。 【0022】図2(a)は吸着材がシート状に成形され
た繊維状活性炭であり、光触媒を担持したシート状の繊
維状活性炭1と光導波路2が同心円状に配置組み合わさ
れた、円筒状フィルタの例を示している。図2(b)は
光触媒を担持したシート状の繊維状活性炭1と光導波路
2を多重渦巻き状に巻いた円筒状フィルタの例を示して
いる。図は光導波路にファイバ状のものを用いた例を示
しているが、ファイバ状に限らず、前記のものから選ん
で使用することができる。図の例ではファイバ状光導波
路の端面がでているフィルタ上面から励起光を入射して
使用する。 【0023】図3(a)は吸着材が長繊維状に紡糸され
た繊維状活性炭であり、光触媒を担持した長繊維状活性
炭3とファイバ状光導波路4を束ねてシートを形成した
ものを、図3(b)は光触媒を担持した長繊維状活性炭
とファイバ状光導波路4を編みこんでシートを形成した
ものを示しており、これらのシートを複数枚重ねて板状
に成形したり、あるいは巻くことにより円筒状に成形し
てフィルタとして用いる。図は長繊維状繊維状活性炭と
ファイバ状光導波路の束ねかた、あるいは編みかたの一
例を示しているのであって、他の束ねかたや編みかたで
シートを形成しても良い。これらの例は、吸着性能の高
い繊維状活性炭を使用すること、励起光の照射効率が特
に優れていること、フィルタ作製が容易であることから
特に望ましい構造である。 【0024】図4は円筒状の光導波路5を同心円状に配
置し、該光導波路5の間に光触媒担持した吸着材6を詰
めた円筒状フィルタを示している。このフィルタでは円
筒の中心の穴から円筒側面へ、あるいは円筒側面から円
筒の中心に向かって処理する気体や液体を流通させるこ
とができるように、円筒状の導波路の側面に穴7を開け
ている。 【0025】以上図を用いて説明したものは本発明の光
触媒フィルタのほんの一例であり、これまで説明してき
たように、すくなくとも光触媒を担持した吸着材と、光
導波路とを組合わせた構成を有するものであれば、任意
の構造のものを用いることができる。光導波路がフィル
タ外部まで延びており、フィルタから離れたところから
励起光を入射するような構造であってもよい。また前記
の説明においては、光触媒を担持した吸着材並びに光導
波路の生成は公知の方法によればよいと記述したが、今
後生ずるかも知れない新しい方法によっても差し支えな
いことは言うまでもない。 【0026】光触媒反応のために光導波路端面から入射
させる光としては、吸着材に担持した光触媒を励起可能
な波長を持つものが使用でき、光源として例えば水銀ラ
ンプ、キセノンランプなどの放電ランプ、蛍光灯、ブラ
ックライト、殺菌灯などの蛍光ランプ、白熱灯などのフ
ィラメントランプ、レーザ光源などの人工光源または、
太陽光を使用することができる。 【0027】本発明の光触媒フィルタは、前記した光触
媒励起用の光源と組み合わせて使用することにより、気
体または液体の処理に用いることができる。例えば気体
処理としては、空気中の悪臭物質や細菌などの分解除
去、排ガス中の有機塩素化合物などの有害物質の分解除
去、大気中のNOx の酸化除去などに、液体の処理として
は、排水中の有機塩素化合物などの有害物質の分解除
去、地下水中の農薬等の有害物質の分解除去、水道水中
のトリハロメタン類、残留塩素、カビ臭物質、細菌等の
分解除去、排水や水道水中の重金属イオンの除去などに
利用することができる。また、水の光分解や水の光分解
によるH2発生などにも用いることができる。 【0028】 【発明の実施の形態】本発明の具体的な実施の形態は次
の実施例によって述べる。 【0029】 【実施例】実施例1 吸着材に不織布状の繊維状活性炭を用い、光触媒として
TiO2を次のようにして担持させた。まず、テトラエトキ
シシラン100gをエタノール1000mlに溶かし、
水、硝酸、エタノールを1:20:100のモル比で混
合した溶液500mlを加えてシリカゾルを調製した。
これにアナターゼ型TiO2の微粒子粉末(石原産業製、S
T−01)を加えて分散させたものに、繊維状活性炭を
浸し、引き上げて乾燥した後、400℃で1時間焼成
し、TiO2担持繊維状活性炭不織布を得た。 光導波路と
して直径100μmの石英ファイバを用い、これを束ね
てシート状にしたものと、TiO2担持繊維状活性炭不織布
を交互に積層して、図1の構造を持つ幅35cm、長さ3
0cm、厚さ5mmの板状のフィルタを作製した。 【0030】このフィルタを閉鎖循環式の気相反応装置
に組み込み、石英ファイバの端面から光が入射するよう
にフィルタの上部から10Wのブラックライト蛍光ラン
プを用いて紫外光を照射しながら、大気で希釈した初期
濃度100ppm のアセトアルデヒドをフィルタを通して
循環させた。光照射開始後のアセトアルデヒド濃度の経
時変化をガスクロマトグラフにより測定したところ、2
時間後にはアセトアルデヒド濃度は1ppm まで減少し
た。以上の操作を10回繰り返したが、アセトアルデヒ
ドの除去能力は変化しなかった。 【0031】実施例2 実施例1と同様にして作製したTiO2担持繊維状活性炭不
織布と、直径100μmの石英ファイバを束ねてシート
状にしたものを重ね、これを渦巻き状に巻いて図2
(b)の構造を持つ内径3cm、外径5cm、長さ30cmの
円筒状フィルタを作製した。 【0032】このフィルタを閉鎖循環式の液相反応装置
に組み込み、石英ファイバの端面から光が入射するよう
にフィルタの上部から10Wのブラックライト蛍光ラン
プを用いて紫外光を照射しながら、初期濃度1ppm の2
−メチルイソボルネオールを含む処理水をフィルタを通
して循環させた。処理水は円筒の中央の穴から円筒を通
って円筒側面から外部へ抜けるように流通させた。光照
射開始後の2−メチルイソボルネオール濃度の経時変化
をガスクロマトグラフ質量分析計により測定したとこ
ろ、30分後には2−メチルイソボルネオール濃度は
0.01ppm まで減少した。以上の操作を20回繰り返
したが、2−メチルイソボルネオールの除去能力は変化
しなかった。なお必要によっては、渦巻き状に巻かず図
2aのように円筒状に形成することもできる。 【0033】実施例3 吸着材に長繊維状に紡糸された繊維状活性炭を用い、実
施例1と同様にしてTiO2を担持し、TiO2担持長繊維状活
性炭を得た。光導波路として表面被覆を10%硫化水素
水溶液で除去したコアはSiO2+GeO2ガラスの径8μm、
クラッドは石英ガラスの径125μmの1.3μm帯用
シングルモードファイバ(住友電気工業製、品番:ES
−1)を用い、縦糸にシングルモードファイバを、横糸
にTiO2担持繊維状活性炭長繊維を用いて格子状に織り込
み、図3(b)に示す構造を持つシートを形成した。こ
のシートをシングルモードファイバがフィルタの長手方
向になるように巻いて内径3cm、外径5cm、長さ30cm
の円筒状のフィルタを作製した。 【0034】このフィルタを閉鎖循環式の液相反応装置
に組み込み、石英ファイバの端面から光が入射するよう
にフィルタの上部から10Wのブラックライト蛍光ラン
プを用いて紫外光を照射しながら、初期濃度1ppm のト
リクロロエタンを含む処理水をフィルタを通して循環さ
せた。処理水は円筒の中央の穴から円筒を通って円筒側
面から外部へ抜けるように流通させた。光照射開始後の
トリクロロエタン濃度の経時変化をガスクロマトグラフ
により測定したところ、30分後にはトリクロロエタン
濃度は0.02ppm まで減少した。以上の操作を20回
繰り返したが、トリクロロエタンの除去能力は変化しな
かった。なお必要によっては、上記縦糸と横系を格子状
に織り込まず、図3(a)の様に並べて束ねて使用する
こともできる。 【0035】実施例4 吸着材に標準粒度50メッシュの粒状椰子殻活性炭を用
い、実施例1と同様にしてTiO2を担持し、TiO2担持粒状
活性炭を得た。光導波路として側面に穴のあいた厚さ2
mm、長さ30cmの円筒状の石英ガラスを用いた。光導波
路は内径が3cm、3.5cm、4cm、4.5cm、5cmの5
枚を用い、内径5cmのものだけ底部を持つものを使用し
た。これらを同心円状に配置し、光導波路の間にTiO2
持粒状活性炭を充填し、図4の構造を持つ円筒状フィル
タを作製した。 【0036】このフィルタを閉鎖循環式の液相反応装置
に組み込み、石英ガラス導波路の端面から光が入射する
ようにフィルタの上部から10Wのブラックライト蛍光
ランプを用いて紫外光を照射しながら、初期濃度1ppm
のクロロホルムを含む処理水をフィルタを通して循環さ
せた。処理水は円筒の中央の穴から円筒を通って円筒側
面から外部へ抜けるように流通させた。光照射開始後の
クロロホルム濃度の経時変化をガスクロマトグラフ質量
分析装置により測定したところ、30分後にはクロロホ
ルム濃度は0.01ppm まで減少した。以上の操作を2
0回繰り返したが、クロロホルムの除去能力は変化しな
かった。 【0037】実施例5 吸着材に平均粒度6メッシュのシリカゲルを用い、ゾル
ゲル法によりTiO2を担持した。ゾルゲル法の手順として
は、まず80wt%のチタンテトライソプロポキシドのイ
ソプロパノール溶液150mlを純水750ml、硝酸
5mlに加え、加水分解によりチタニアゾルを作製し、
シリカゲルにチタニアゾルをディップコートした後、5
50℃にて焼成を行い、TiO2担持シリカゲルを得た。光
導波路に実施例4と同様の円筒状石英ガラスを用い、光
触媒担持粒状活性炭のかわりにTiO2担持シリカゲルを用
いて、実施例4と同様の円筒状フィルタを作製した。 【0038】このフィルタを閉鎖循環式の気相反応装置
に組み込み、石英ガラス導波路の端面から光が入射する
ようにフィルタの上部から10Wのブラックライト蛍光
ランプを用いて紫外光を照射しながら、大気で希釈した
初期濃度100ppm のテトラクロロエチレンをフィルタ
を通して循環させた。ガスは円筒の中央の穴から円筒を
通って円筒側面から外部へ抜けるように流通させた。光
照射開始後のテトラクロロエチレン濃度の経時変化をガ
スクロマトグラフにより測定したところ、2時間後には
テトラクロロエチレン濃度は5ppm まで減少した。以上
の操作を10回繰り返したが、テトラクロロエチレンの
除去能力は変化しなかった。 【0039】以上のように本発明の光触媒フィルタを使
用すると、気相中や水中の悪臭物質、有害物質などを効
率良く分解、除去することができる。光導波路によりフ
ィルタ全体にわたり効率良く光が照射されるため、処理
能力が高く、フィルタ内部の吸着材に吸着された物質も
効率良く分解されるため、反応を繰り返しても除去性能
が劣化しない。 【0040】 【発明の効果】以上説明したように、本発明によるとフ
ィルタ外部から照射した励起光をフィルタ内部の光触媒
に効率良く供給することができ、処理物質の分解、除去
性能にすぐれた光触媒フィルタを実現できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst filter used for an air purifier, a sewage treatment apparatus, a water purifier and the like. In recent years, attempts have been made to use photocatalysts for environmental purification such as air purification and sewage purification. It irradiates semiconductors such as titanium oxide (TiO 2 ) with light having an energy greater than the energy gap, thereby oxidizing and reducing electrons and holes, causing odorous and harmful substances in the air and water. Decompose and remove. [0003] Since the photocatalytic reaction occurs only on the surface of the photocatalyst, in air purification and sewage purification using the photocatalyst, it is necessary to efficiently supply a treatment substance to the surface of the photocatalyst. Attempts have been made to use a photocatalyst carried on an adsorbent such as activated carbon to purify odorous substances in air and sewage. However, since the photocatalytic reaction occurs only in the area where light is illuminated, if the photocatalyst is supported by the adsorbent, the area where the light does not illuminate is created, and the performance of the photocatalyst cannot be fully exhibited. There is. [0004] As a deodorizing method using a photocatalyst having a high decomposition performance of malodorous substances, for example, in Japanese Patent Application Laid-Open No. 9-75434, an adsorbent made of a porous substance carrying titanium oxide is used.
There has been proposed a method of using a deodorant formed by adding at least one component selected from an ultraviolet sensitizer, a light-transmitting ceramic, and a light-transmitting plastic. This is one in which the irradiation efficiency of the excitation light to the titanium oxide is increased and the deodorizing performance is increased by using any of an ultraviolet sensitizer, a translucent ceramic, and a translucent plastic. [0005] Although the technique presented above is excellent, the adsorbent supporting titanium oxide is mixed with an ultraviolet sensitizer, translucent ceramics, and translucent plastics. Particles or powder, or molded into a plate or the like with a binder or an adhesive.Light can pass through to a certain depth from the surface of the deodorizing material, but each component is dispersed. There remains a problem that light cannot be irradiated to the inside of the deodorizing material due to its existence. Specifically, as an example, 100 g of coconut shell activated carbon supporting titanium oxide and p-
1 g of nitroaniline, 2 g of translucent alumina powder as translucent ceramic, and polyethylene powder binder 15
g is mixed and shaped into a plate.
Since the light-transmitting material that guides light into the inside is dispersed in powder and the volume of the whole is small, light cannot be sufficiently supplied to the inside, and the photocatalytic performance of the entire deodorizing material cannot be sufficiently exhibited. According to the present invention, a photocatalyst filter is formed by integrally combining an adsorbent carrying a photocatalyst on the surface or inside thereof and an optical waveguide capable of guiding excitation light of the photocatalyst. By doing so, it is possible to efficiently supply the excitation light irradiated from the outside of the filter to the photocatalyst inside the filter,
This realizes a photocatalyst filter having excellent performance of decomposing and removing processing substances. Needless to say, the photocatalytic filter is often used in combination with other components or structural materials such as a filter housing and an adhesive. The photocatalyst filter of the present invention is characterized in that an adsorbent carrying a photocatalyst on the surface or inside thereof and an optical waveguide capable of guiding excitation light of the photocatalyst are integrally combined.
In the present invention, the light emitted from the outside of the filter is guided to the inside of the filter by the optical waveguide, which is one of the constituent members of the filter. It can be fully exhibited and has excellent decomposition treatment performance for treated substances. In addition, the adsorbent used as the supporting substrate for the photocatalyst efficiently collects the treatment substance in the air or water and increases the probability of contact of the treatment substance with the photocatalyst surface.
Excellent processing performance. Even if the substance is difficult to be completely decomposed by the photocatalyst and easily produces an intermediate product, the adsorbent increases the probability of re-adsorbing the intermediate product and coming into contact with the photocatalyst surface. Since the treatment substance adsorbed on the adsorbent is completely decomposed by the photocatalyst, there is no performance deterioration due to adsorption saturation. As the adsorbent used as a supporting substrate for the photocatalyst in the present invention, any adsorbent can be used as long as it has an adsorbing property to the treatment substance. Activated charcoal, silica gel, activated alumina,
It is desirable to use zeolite or the like, and these may be used alone or in combination as necessary. It is important to select an optimal adsorbent according to the treatment substance. For example, activated carbon is preferably used for removing malodorous substances in the air and removing trihalomethanes, residual chlorine and mold odor in tap water. Activated carbon can be used in any form, such as granular, powdered, and fibrous. However, fibrous activated carbon has a large specific surface area and thus has excellent adsorption performance. This is most preferable because the filter shape can be easily manufactured. Raw materials for granular or powdered activated carbon include coconut shell, coal, coke, and charcoal, and raw materials for fibrous activated carbon include cellulosic fibers, phenolic fibers, and pitch-based fibers, all of which can be used. What is necessary is just to select a substance having excellent adsorption performance for the substance to be treated. For example, to remove trihalomethane from tap water, it is preferable to use a coconut shell material. Granular activated carbon, powdered activated carbon, silica gel,
The above-mentioned adsorbent such as activated alumina and zeolite can be easily formed into a sheet using a binder or the like. By combining these granular or powdery adsorbents with fibrous activated carbon, the function of the fibrous activated carbon can be improved. For example, fibrous activated carbon is combined with granular activated carbon as a coconut shell material to improve the performance of removing trihalomethanes in water. The photocatalyst used in the present invention is, for example, Ti
O 2 , SrTiO 3 , CdS, CdSe, GaP, ZrO 2 , KTaO 3 , KTa
0.77 Nb 0.23 O 3 , Nb 2 O 5 , ZnO, Fe 2 O 3 , WO 3 , SnO 2 , I
Any known substance having a photocatalytic ability, such as n 2 O 3 , MoO 3 , Cu 2 O, and CuFeO 2 , can be used alone or in combination of a plurality of substances. In particular, TiO 2 is particularly desirable because it has a strong oxidizing power and is inexpensive and harmless. TiO 2 has two types of crystal structures, anatase type and rutile type, both of which can be used, but it is preferable to use an anatase type having higher catalytic activity. Alternatively, both may be used in combination. For the purpose of improving the photocatalytic performance, a metal such as Pt, Pd, Au, Ag, Ru, Rh, Fe, Co, Ni, Cu, Zn or an oxide of these metals may be used alone or in combination on the TiO 2 surface. May be carried in combination. Especially Pt on TiO 2 surface,
What carries fine particles of a noble metal such as Pd and Au having a particle size of 1 to 100 nm is particularly desirable because of its high photocatalytic performance as is known. Methods for supporting these metals or metal oxides on the TiO 2 surface include impregnation, light deposition, chemical deposition, simultaneous precipitation, kneading, shaking, metal powder addition, vacuum evaporation, and sputtering. A known technique such as a method can be used. When using TiO 2 carrying these metals or metal oxides, these materials were supported
The TiO 2 fine particles may be supported on the adsorbent and used, or these materials may be supported and used after the TiO 2 is supported on the adsorbent. The photocatalyst needs to be supported on the surface or inside of the adsorbent so as not to fill the pores of the adsorbent as much as possible. Known methods such as a sol-gel method, a thermal decomposition method, a pyrosol method, a CVD method, a vacuum deposition method, a sputtering method, an ion plating method, and a metal oxidation method can be used as a method for supporting the photocatalyst. The fine particles of the photocatalyst may be supported on the photocatalyst via a binder that is hardly decomposable. In this case, a known binder such as an inorganic binder such as silica or alumina, or an organic binder such as a fluorine-based polymer or a silicon-based polymer may be used. The smaller the particle diameter of the photocatalyst is, the smaller the particle diameter is. The higher the photocatalytic activity, the more desirable it is to have an average particle diameter of 1 to 500 nm. TiO 2 fine particles having the above-described metal or metal oxide fine particles supported on the surface may be used. When the photocatalyst is TiO 2, a commercially available photocatalyst coating material containing an inorganic binder component may be used. As the optical waveguide used in the present invention, any waveguide can be used as long as it can guide light capable of exciting the photocatalyst. The shape may be selected depending on the adsorbent to be combined, such as a fiber shape, a sheet shape, a plate shape, and a cylindrical shape, so that the shape can be easily applied to a required filter shape. As a structure, for example, a structure including only a light guide portion such as a glass fiber or a structure for confining light in a light guide portion such as an optical fiber may be used. As the material of the light guide portion, that the transmittance of the excitation light of the photocatalyst as high as possible is desirable, when using a TiO 2 photocatalyst, for example, quartz glass, borosilicate glass, alumina, the use of polycarbonate desired . As the optical waveguide, specifically, glass, translucent resin, translucent ceramic, or the like processed into a plate, sheet, or cylinder, glass fiber, quartz fiber, optical fiber, or the like can be used. In the optical waveguide used in the present invention, it is desirable that the light gradually leaks as the incident light propagates inside the filter. The optical waveguide including only the light guide section does not need to be specially devised. When using an optical fiber, for example, bend the optical fiber and install it in a filter, scrape a part of the cladding to expose the core, and use a lens etc. so that light is incident at an angle of incidence slightly larger than the maximum acceptance angle Adjustment may be performed. When an optical fiber is used, 1.3 μm
It is particularly desirable to use a single mode fiber for signal transmission used in optical communication such as a band, a 1.55 μm band, and a 0.85 μm band. In such a fiber, the cross-sectional area of the clad is very large compared to the cross-sectional area of the core.
By using the clad for transmitting light, a large amount of light can be transmitted. Further, since the light propagates while leaking appropriately, there is no need to control the incident angle of the light or to bend the optical fiber. In addition, since the material of the clad is quartz having a high transmittance from visible light to ultraviolet light,
Even when using a photocatalyst such as O 2 that requires ultraviolet light for excitation light, it is possible to efficiently propagate ultraviolet light.
Furthermore, there is an advantage that it is manufactured in large quantities for optical communication and is very inexpensive. The songle mode fiber can use any fiber if the cladding is quartz glass. As the clad material, pure silica glass with good transmission characteristics from ultraviolet light to visible light is most desirable,
A material doped with an impurity such as fluorine can also be used. Any core material can be used, SiO 2 + GeO 2
Glass, quartz glass, and the like are easily available, but these materials may be doped with impurities. The cladding diameter is desirably 50 to 500 μm. A filter thinner than this is not suitable because the amount of light that can be transmitted is small and the intensity is weak, and a filter thicker than this is not suitable because it becomes difficult to bend when making a filter. In view of the amount of light that can be transmitted, the strength, the ease of bending, and the availability, it is more desirable that the thickness be 100 to 150 μm. The core diameter is desirably 1 to 25 μm. Thicker than this is difficult to fabricate, and thicker than this is not desirable because the cross-sectional area of the cladding is small and the amount of light that can propagate is small. 5 to 15 μm from ease of fabrication, size of clad cross-sectional area, and availability
Are more desirable. As such a single mode fiber, for example, a single mode fiber for 1.3 μm band,
Pure silica core fiber (cutoff shift fiber) for 1.55 μm band, dispersion shift fiber for 1.55 μm band, single mode fiber for 0.85 μm, etc., all of which can be used. The 1.3 μm band single mode fiber having a small value is most desirable because of good light propagation efficiency. The optical fiber core wire is usually coated with urethane acrylate or the like on the surface in order to secure the strength. Therefore, such a surface coating is removed before use. As a method of removing the surface coating,
For example, a method of dissolving with an acid such as sulfuric acid can be used. Next, the structure of the photocatalytic filter of the present invention will be described. The shape of the filter can be arbitrarily selected according to the shape of the device, such as a sheet, a plate, a cylinder, and a honeycomb. FIG. 1 shows an example of a plate filter in which the adsorbent is fibrous activated carbon formed in a sheet shape, and has a structure in which a fibrous activated carbon 1 supporting a photocatalyst and an optical waveguide 2 are stacked and combined. The sheet-like fibrous activated carbon includes non-woven fabric (felt-like), paper-like, and honeycomb-like ones. The figure shows an example in which a fiber-like material such as a glass fiber or an optical fiber is used for the optical waveguide 2. However, the present invention is not limited to the fiber shape, and any one of the above-described ones can be used. In the example shown in the figure, the excitation light is used from the upper surface of the filter where the end face of the fiber optical waveguide is exposed. FIG. 2A shows a fibrous activated carbon in which an adsorbent is formed in a sheet shape, and a sheet-shaped fibrous activated carbon 1 carrying a photocatalyst and an optical waveguide 2 are concentrically arranged and combined. 9 shows an example of a filter. FIG. 2B shows an example of a cylindrical filter in which a sheet-like fibrous activated carbon 1 supporting a photocatalyst and an optical waveguide 2 are wound in a multiple spiral. Although the figure shows an example in which a fiber-shaped optical waveguide is used, the present invention is not limited to the fiber-shaped one and can be selected from the above-mentioned ones. In the example shown in the figure, the excitation light is used from the upper surface of the filter where the end face of the fiber optical waveguide is exposed. FIG. 3A shows a fibrous activated carbon in which an adsorbent is spun into a long fiber, and a sheet formed by bundling a long fiber activated carbon 3 carrying a photocatalyst and a fiber optical waveguide 4 is shown in FIG. FIG. 3B shows a sheet formed by weaving a long fiber activated carbon carrying a photocatalyst and a fiber optical waveguide 4, and a plurality of these sheets are formed into a plate shape, or It is formed into a cylindrical shape by winding and used as a filter. The figure shows an example of how to bundle or knit a long fibrous fibrous activated carbon and a fibrous optical waveguide, and a sheet may be formed with another bundling or knitting method. These examples have a particularly desirable structure because fibrous activated carbon having high adsorption performance is used, excitation light irradiation efficiency is particularly excellent, and filter fabrication is easy. FIG. 4 shows a cylindrical filter in which cylindrical optical waveguides 5 are arranged concentrically and an adsorbent 6 carrying a photocatalyst is filled between the optical waveguides 5. In this filter, a hole 7 is formed in the side surface of the cylindrical waveguide so that the gas or liquid to be processed can flow from the hole at the center of the cylinder to the side of the cylinder or from the side of the cylinder toward the center of the cylinder. I have. What has been described above with reference to the drawings is only one example of the photocatalyst filter of the present invention. As described above, the photocatalyst filter has at least a structure in which an adsorbent supporting a photocatalyst and an optical waveguide are combined. Any structure can be used. The optical waveguide may extend to the outside of the filter, and may have a structure in which excitation light is incident from a place away from the filter. Further, in the above description, the production of the adsorbent supporting the photocatalyst and the optical waveguide may be performed by a known method, but it goes without saying that a new method that may be generated in the future may be used. Light having a wavelength that can excite the photocatalyst supported on the adsorbent can be used as light to be incident from the end face of the optical waveguide for the photocatalytic reaction. Examples of the light source include a discharge lamp such as a mercury lamp and a xenon lamp, and a fluorescent lamp. Lamps, black lights, fluorescent lamps such as germicidal lamps, filament lamps such as incandescent lamps, artificial light sources such as laser light sources, or
Sunlight can be used. The photocatalyst filter of the present invention can be used for treating gas or liquid by using it in combination with the light source for photocatalyst excitation described above. For example as a gas process, decompose and remove such malodorous substances or bacteria in the air, decomposing and removing harmful substances such as organic chlorine compounds in the exhaust gas, and the like oxidation removal of the NO x in the atmosphere, as the processing liquid, drained Decomposition and removal of harmful substances such as organic chlorine compounds in water, decomposition and removal of harmful substances such as pesticides in groundwater, decomposition and removal of trihalomethanes, residual chlorine, moldy odor substances, bacteria, etc. in tap water, heavy metals in drainage and tap water It can be used for removing ions. Can also be used in such as H 2 generated by photolysis of water photolysis and water. Embodiments of the present invention will be described in detail with reference to the following examples. EXAMPLE 1 Non-woven fibrous activated carbon was used as an adsorbent and used as a photocatalyst.
TiO 2 was loaded as follows. First, 100 g of tetraethoxysilane is dissolved in 1000 ml of ethanol,
A silica sol was prepared by adding 500 ml of a solution obtained by mixing water, nitric acid and ethanol at a molar ratio of 1: 20: 100.
This is followed by an anatase type TiO 2 fine particle powder (Ishihara Sangyo, S
T-01) was added and dispersed, and fibrous activated carbon was immersed, pulled up and dried, and then baked at 400 ° C. for 1 hour to obtain a TiO 2 -supported fibrous activated carbon nonwoven fabric. A quartz fiber having a diameter of 100 μm is used as an optical waveguide, and a bundle of the fibers and a sheet-like fiber and a TiO 2 -supported fibrous activated carbon nonwoven fabric are alternately laminated to form a 35 cm width and a length 3 having the structure of FIG.
A plate-like filter having a thickness of 0 cm and a thickness of 5 mm was prepared. This filter was assembled in a closed-circulation type gas phase reactor, and irradiated with ultraviolet light from above the filter using a 10 W black light fluorescent lamp so that light was incident from the end face of the quartz fiber. A diluted initial concentration of 100 ppm acetaldehyde was circulated through the filter. The time-dependent change in the concentration of acetaldehyde after the start of light irradiation was measured by gas chromatography.
After time, the acetaldehyde concentration decreased to 1 ppm. The above operation was repeated 10 times, but the ability to remove acetaldehyde did not change. Example 2 A TiO 2 -supported fibrous activated carbon nonwoven fabric produced in the same manner as in Example 1 and a sheet formed by bundling quartz fibers having a diameter of 100 μm were stacked, and this was spirally wound.
A cylindrical filter having an inner diameter of 3 cm, an outer diameter of 5 cm, and a length of 30 cm having the structure of (b) was produced. The filter was assembled in a closed circulation type liquid phase reaction apparatus, and irradiated with ultraviolet light from above the filter using a 10 W black light fluorescent lamp so that light was incident from the end face of the quartz fiber. 1 ppm of 2
-Treated water containing methyl isoborneol was circulated through the filter. The treated water was allowed to flow through the center hole of the cylinder, through the cylinder, and to the outside from the side surface of the cylinder. The time-dependent change in the concentration of 2-methylisoborneol after the start of light irradiation was measured by a gas chromatograph mass spectrometer. As a result, after 30 minutes, the concentration of 2-methylisoborneol was reduced to 0.01 ppm. The above operation was repeated 20 times, but the removal ability of 2-methylisoborneol did not change. If necessary, it may be formed in a cylindrical shape as shown in FIG. 2A without being spirally wound. Example 3 Using fibrous activated carbon spun into long fibers as an adsorbent, TiO 2 was carried in the same manner as in Example 1 to obtain TiO 2 -supported long fibrous activated carbon. The core whose surface coating was removed with a 10% aqueous hydrogen sulfide solution as an optical waveguide was SiO 2 + GeO 2 glass having a diameter of 8 μm.
The cladding is a single-mode fiber of 1.3 μm band with a diameter of 125 μm of quartz glass (manufactured by Sumitomo Electric Industries, product number: ES
Using -1), a single-mode fiber was woven into the warp and a TiO 2 -supported fibrous activated carbon filament was used as the weft in a lattice pattern to form a sheet having the structure shown in FIG. 3B. This sheet is wound so that the single mode fiber is in the longitudinal direction of the filter, and the inner diameter is 3 cm, the outer diameter is 5 cm, and the length is 30 cm.
Was manufactured. The filter was assembled in a closed-circulation liquid-phase reactor, and irradiated with ultraviolet light from above the filter using a 10 W black light fluorescent lamp so that light was incident from the end face of the quartz fiber. Treated water containing 1 ppm of trichloroethane was circulated through the filter. The treated water was allowed to flow through the center hole of the cylinder, through the cylinder, and to the outside from the side surface of the cylinder. The time-dependent change of the trichloroethane concentration after the start of the light irradiation was measured by gas chromatography, and after 30 minutes, the trichloroethane concentration was reduced to 0.02 ppm. The above operation was repeated 20 times, but the ability to remove trichloroethane did not change. In addition, if necessary, the warp and the weft may not be woven in a lattice shape, but may be used by being arranged side by side as shown in FIG. Example 4 Activated TiO 2 was carried out in the same manner as in Example 1 using granular coconut shell activated carbon having a standard particle size of 50 mesh as an adsorbent to obtain TiO 2 -supported granular activated carbon. Thickness with a hole on the side as an optical waveguide 2
A cylindrical quartz glass having a length of 30 mm and a length of 30 mm was used. The optical waveguide has an inner diameter of 3 cm, 3.5 cm, 4 cm, 4.5 cm, and 5 cm.
One having an inner diameter of 5 cm and having a bottom was used. These were arranged concentrically and TiO 2 -supported granular activated carbon was filled between the optical waveguides to produce a cylindrical filter having the structure of FIG. This filter was assembled in a closed-circulation liquid-phase reactor, and irradiated with ultraviolet light from above the filter using a 10 W black light fluorescent lamp so that light was incident from the end face of the quartz glass waveguide. Initial concentration 1ppm
Processed water containing chloroform was circulated through the filter. The treated water was allowed to flow through the center hole of the cylinder, through the cylinder, and to the outside from the side surface of the cylinder. The change with time of the chloroform concentration after the start of light irradiation was measured by a gas chromatograph mass spectrometer, and the chloroform concentration was reduced to 0.01 ppm after 30 minutes. Perform the above operations 2
Although repeated 0 times, the ability to remove chloroform did not change. Example 5 Silica gel having an average particle size of 6 mesh was used as an adsorbent, and TiO 2 was supported by a sol-gel method. As a procedure of the sol-gel method, first, 150 ml of an isopropanol solution of 80% by weight of titanium tetraisopropoxide is added to 750 ml of pure water and 5 ml of nitric acid, and a titania sol is prepared by hydrolysis.
After dip-coating silica gel with titania sol, 5
Calcination was performed at 50 ° C. to obtain TiO 2 -supported silica gel. A cylindrical filter similar to that of Example 4 was produced using the same cylindrical quartz glass as the optical waveguide and TiO 2 -supported silica gel instead of the photocatalyst-supported granular activated carbon. This filter was incorporated in a closed-circulation type gas phase reactor, and irradiated with ultraviolet light using a 10 W black light fluorescent lamp from the top of the filter so that light was incident from the end face of the quartz glass waveguide. A 100 ppm initial concentration of tetrachloroethylene diluted with air was circulated through the filter. The gas was circulated so as to pass through the center hole of the cylinder, pass through the cylinder, and escape from the side of the cylinder to the outside. The change with time of the tetrachloroethylene concentration after the start of the light irradiation was measured by gas chromatography, and after 2 hours, the tetrachloroethylene concentration was reduced to 5 ppm. The above operation was repeated 10 times, but the ability to remove tetrachloroethylene did not change. As described above, the use of the photocatalytic filter of the present invention makes it possible to efficiently decompose and remove malodorous substances and harmful substances in the gas phase and in water. Since the light is efficiently irradiated over the entire filter by the optical waveguide, the processing capacity is high, and the substance adsorbed by the adsorbent inside the filter is also efficiently decomposed, so that the removal performance does not deteriorate even if the reaction is repeated. As described above, according to the present invention, the excitation light radiated from the outside of the filter can be efficiently supplied to the photocatalyst inside the filter, and the photocatalyst excellent in the decomposition and removal performance of the processing substance can be obtained. A filter can be realized.

【図面の簡単な説明】 【図1】実施例1の光触媒フィルタの構成を説明する斜
視図である。 【図2】(a)(b)は実施例2の光触媒フィルタの構
成を説明する斜視図である。 【図3】(a)(b)は実施例3の光触媒フィルタの構
成を説明する平面図である。 【図4】実施例4の光触媒フィルタの構成を説明する斜
視図である。 【符号の説明】 1 光触媒を担持した繊維状活性炭 2 光導波路 3 光触媒を担持した長繊維状活性炭 4 ファイバ状光導波路 5 円筒状の光導波路 6 光触媒を担持した吸着材 7 円筒状の光導波路の側面に設けた穴
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view illustrating a configuration of a photocatalytic filter according to a first embodiment. FIGS. 2A and 2B are perspective views illustrating the configuration of a photocatalytic filter according to a second embodiment. FIGS. 3A and 3B are plan views illustrating the configuration of a photocatalytic filter according to a third embodiment. FIG. 4 is a perspective view illustrating a configuration of a photocatalytic filter according to a fourth embodiment. DESCRIPTION OF THE SYMBOLS 1 Fibrous activated carbon carrying photocatalyst 2 Optical waveguide 3 Long fibrous activated carbon carrying photocatalyst 4 Fiber optical waveguide 5 Cylindrical optical waveguide 6 Adsorbent carrying photocatalyst 7 Cylindrical optical waveguide Hole on the side

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/32 C02F 1/72 101 1/72 101 F24F 7/00 A // F24F 7/00 B01D 53/36 ZABJ ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C02F 1/32 C02F 1/72 101 1/72 101 F24F 7/00 A // F24F 7/00 B01D 53/36 ZABJ

Claims (1)

【特許請求の範囲】 【請求項1】 フィルタは、少なくとも光触媒を表面乃
至内部に担持させた吸着材と、光触媒の励起光を導光可
能な光導波路とを一体に組み合わせてなり、該フィルタ
外部から照射した励起光が光導波路によりフィルタ内部
の光触媒に供給されることを特徴とする光触媒フィル
タ。 【請求墳2】 吸着材は活性炭、シリカゲル、活性アル
ミナ、ゼオライトのなかの1種または2種以上を組み合
わせてなることを特徴とする請求項1に記載の光触媒フ
ィルタ。 【請求項3】 吸着材がシート状に成形され、該シート
状吸着材と光導波路が積層された板状であることを特徴
とする請求項1または請求項2に記載の光触媒フィル
タ。 【請求項4】 吸着材がシート状に成形され、該シート
状吸着材と光導波路とが同心円状に配置された円筒状で
あるか、該シート状吸着材と光導波路とが多重渦巻き状
に巻かれた円筒状であることを特徴とする請求項1また
は請求項2に記載の光触媒フィルタ。 【請求項5】 吸着材は長繊維状に紡糸され、光導波路
はファイバ状に形成され、その両者が束ねるか編みこむ
ことによってシート状に形成されているか、または該シ
ート状が円筒状または多重渦巻き状に成形されてなるこ
とを特徴とする請求項1または請求項2に記載の光触媒
フィルタ。 【請求項6】 光導波路が光通信用のシングルモードフ
ァイバであることを特徴とする請求項1、請求項2、請
求項3、請求項4または請求項5に記載の光触媒フィル
タ。 【請求項7】 光触媒が酸化チタンであることを特徴と
する請求項1、請求項2、請求項3、請求項4、請求項
5または請求項6に記載の光触媒フィルタ。
Claims: 1. A filter is formed by integrally combining an adsorbent carrying at least a photocatalyst on the surface or inside thereof and an optical waveguide capable of guiding excitation light of the photocatalyst. A photocatalyst filter, wherein excitation light irradiated from the filter is supplied to a photocatalyst inside the filter by an optical waveguide. 2. The photocatalyst filter according to claim 1, wherein the adsorbent is made of one or a combination of activated carbon, silica gel, activated alumina and zeolite. 3. The photocatalytic filter according to claim 1, wherein the adsorbent is formed in a sheet shape, and has a plate shape in which the sheet-shaped adsorbent and the optical waveguide are laminated. 4. The adsorbent is formed in a sheet shape and the sheet-shaped adsorbent and the optical waveguide are formed in a concentric circular cylindrical shape, or the sheet-shaped adsorbent and the optical waveguide are formed in a multiple spiral shape. The photocatalyst filter according to claim 1 or 2, wherein the photocatalyst filter has a wound cylindrical shape. 5. The adsorbent is spun into a long fiber, the optical waveguide is formed into a fiber, and both are bundled or braided to form a sheet, or the sheet is cylindrical or multi-layered. The photocatalyst filter according to claim 1 or 2, wherein the photocatalyst filter is formed in a spiral shape. 6. The photocatalyst filter according to claim 1, wherein the optical waveguide is a single mode fiber for optical communication. 7. The photocatalyst filter according to claim 1, wherein the photocatalyst is titanium oxide.
JP11629598A 1998-04-10 1998-04-10 Photocatalytic filter Pending JPH11290695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11629598A JPH11290695A (en) 1998-04-10 1998-04-10 Photocatalytic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11629598A JPH11290695A (en) 1998-04-10 1998-04-10 Photocatalytic filter

Publications (1)

Publication Number Publication Date
JPH11290695A true JPH11290695A (en) 1999-10-26

Family

ID=14683499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11629598A Pending JPH11290695A (en) 1998-04-10 1998-04-10 Photocatalytic filter

Country Status (1)

Country Link
JP (1) JPH11290695A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083309A1 (en) * 2001-04-06 2002-10-24 Mitsui Chemicals, Inc. Catalyst carrier structural body
JP2003226512A (en) * 2001-11-28 2003-08-12 Ueda Shikimono Kojo:Kk Photocatalytic activated carbon, colored photocatalytic activated carbon, coloring activated carbon, deodorant and/adsorption product using them, and soil cleaning method
JP2005342408A (en) * 2004-06-07 2005-12-15 Sanyo Electric Co Ltd Filter, and air conditioner
EP1798204A1 (en) * 2005-12-19 2007-06-20 Kang Na Hsiung Enterprise Co., Ltd. Fluid cleaning system and method for cleaning a fluid
KR20070069850A (en) * 2005-12-28 2007-07-03 연세대학교 산학협력단 A filter
KR101038689B1 (en) * 2010-04-21 2011-06-02 네오원 (주) Photocatalysis reactor
JP2012179530A (en) * 2011-02-28 2012-09-20 Silicon Plus Corp Photocatalyst-carrying carbon fiber, and photocatalyst-carrying carbon fiber filter
WO2013168985A1 (en) * 2012-05-08 2013-11-14 한국에너지기술연구원 Antimicrobial filter adopting optical fibers and air cleaner comprising same
WO2013168984A1 (en) * 2012-05-08 2013-11-14 한국에너지기술연구원 Air purification filter to which optical fibers are applied, and air purification device including same
KR101350942B1 (en) * 2012-05-08 2014-01-14 한국에너지기술연구원 Anti-microbial Filter using Optical Fibers and Air Cleaner Containing the Same
KR101397996B1 (en) * 2012-05-08 2014-05-27 한국에너지기술연구원 Non-woven air filter mixed with optical fiber and air cleaner containing the same
KR101400250B1 (en) * 2012-05-08 2014-05-28 한국에너지기술연구원 Multi-layer air filter having optical fiber layer and air cleaner containing the same
KR101442155B1 (en) * 2013-04-08 2014-09-19 한국에너지기술연구원 Air cleaning device using air filter having optical fiber
CN104437448A (en) * 2014-11-12 2015-03-25 中国海洋石油总公司 Preparation method of recycled TiO2 photocatalyst
CN107597164A (en) * 2017-09-14 2018-01-19 重庆理工大学 Photovoltaic/thermal changes the visible light catalytic optical fiber and preparation method with transmitting
CN109020014A (en) * 2018-06-21 2018-12-18 惠州市东江园林工程有限公司 A kind of Rainwater Resources management system
CN109250849A (en) * 2018-09-22 2019-01-22 福建凤竹纺织科技股份有限公司 A kind of processing method of textile waste
WO2023053316A1 (en) * 2021-09-30 2023-04-06 日本電信電話株式会社 Air-conditioning equipment

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083309A1 (en) * 2001-04-06 2002-10-24 Mitsui Chemicals, Inc. Catalyst carrier structural body
JP2003226512A (en) * 2001-11-28 2003-08-12 Ueda Shikimono Kojo:Kk Photocatalytic activated carbon, colored photocatalytic activated carbon, coloring activated carbon, deodorant and/adsorption product using them, and soil cleaning method
JP2005342408A (en) * 2004-06-07 2005-12-15 Sanyo Electric Co Ltd Filter, and air conditioner
JP4624007B2 (en) * 2004-06-07 2011-02-02 三洋電機株式会社 Filter and air conditioner
EP1798204A1 (en) * 2005-12-19 2007-06-20 Kang Na Hsiung Enterprise Co., Ltd. Fluid cleaning system and method for cleaning a fluid
KR20070069850A (en) * 2005-12-28 2007-07-03 연세대학교 산학협력단 A filter
KR101038689B1 (en) * 2010-04-21 2011-06-02 네오원 (주) Photocatalysis reactor
JP2012179530A (en) * 2011-02-28 2012-09-20 Silicon Plus Corp Photocatalyst-carrying carbon fiber, and photocatalyst-carrying carbon fiber filter
KR101350942B1 (en) * 2012-05-08 2014-01-14 한국에너지기술연구원 Anti-microbial Filter using Optical Fibers and Air Cleaner Containing the Same
WO2013168984A1 (en) * 2012-05-08 2013-11-14 한국에너지기술연구원 Air purification filter to which optical fibers are applied, and air purification device including same
WO2013168985A1 (en) * 2012-05-08 2013-11-14 한국에너지기술연구원 Antimicrobial filter adopting optical fibers and air cleaner comprising same
KR101397996B1 (en) * 2012-05-08 2014-05-27 한국에너지기술연구원 Non-woven air filter mixed with optical fiber and air cleaner containing the same
KR101400250B1 (en) * 2012-05-08 2014-05-28 한국에너지기술연구원 Multi-layer air filter having optical fiber layer and air cleaner containing the same
US9393339B2 (en) 2012-05-08 2016-07-19 Korea Institute Of Energy Research Antimicrobial filter adopting optical fibers and air cleaner comprising same
KR101442155B1 (en) * 2013-04-08 2014-09-19 한국에너지기술연구원 Air cleaning device using air filter having optical fiber
CN104437448A (en) * 2014-11-12 2015-03-25 中国海洋石油总公司 Preparation method of recycled TiO2 photocatalyst
CN107597164A (en) * 2017-09-14 2018-01-19 重庆理工大学 Photovoltaic/thermal changes the visible light catalytic optical fiber and preparation method with transmitting
CN107597164B (en) * 2017-09-14 2020-05-15 重庆理工大学 Visible light catalytic optical fiber for photoelectric and photothermal conversion and transfer and manufacturing method thereof
CN109020014A (en) * 2018-06-21 2018-12-18 惠州市东江园林工程有限公司 A kind of Rainwater Resources management system
CN109250849A (en) * 2018-09-22 2019-01-22 福建凤竹纺织科技股份有限公司 A kind of processing method of textile waste
WO2023053316A1 (en) * 2021-09-30 2023-04-06 日本電信電話株式会社 Air-conditioning equipment

Similar Documents

Publication Publication Date Title
JPH11290695A (en) Photocatalytic filter
US8709341B2 (en) System for purifying air through germicidal irradiation and method of manufacture
US20090041632A1 (en) Air Purifier System and Method
JP3049068B2 (en) Matrix for treating organic contaminants, method and apparatus using the same
JP4803653B2 (en) Visible light responsive type three-dimensional fine cell structure photocatalytic filter, manufacturing method thereof, and purification apparatus
US20030050196A1 (en) Photocatalyst compositions and methods for making the same
JP5141846B2 (en) Ultraviolet oxidation apparatus, ultrapure water production apparatus using the same, ultraviolet oxidation method, and ultrapure water production method
WO2006080216A1 (en) Surface emitting device
CN106765658A (en) A kind of enclosed environment mobile air purifier
US20040007453A1 (en) Photocatalytic air purifier
JP2009247546A (en) Air cleaning filter and air cleaner
JPH09225262A (en) Photocatalytic filter, device therefor and treatment of liquid using the same
JPH11290701A (en) Photocatalyst carrying member and photocatalyst filter
JP2009078058A (en) Air cleaning apparatus
US20030211022A1 (en) Method and apparatus for decontaminating water or air by a photolytic and photocatalytic reaction
JPH1071322A (en) Photocatalytic reaction fiber and photocatalytic reaction apparatus
JPH11335187A (en) Photocatalyst module and equipment for photocatalyst
JP2006061580A (en) Method and apparatus for cleaning air
JP2009513315A (en) Equipment for purifying waste air containing harmful substances
JPH11207149A (en) Metal carrying photocatalyst type air purifier
RU2465046C1 (en) Composite adsorption-catalytic material for photocatalytic oxidation
JPH11183728A (en) Gas treatment apparatus and gas treatment filter
JP2002210333A (en) Photocatalyst filter
JPH11276558A (en) Apparatus for purifying fluid and photocatalyst body used for the same
JP2004168616A (en) Photocatalytic fiber, photocatalytic filter and method for manufacturing the same