JPH11290041A - Production of vegetable juice - Google Patents

Production of vegetable juice

Info

Publication number
JPH11290041A
JPH11290041A JP10096358A JP9635898A JPH11290041A JP H11290041 A JPH11290041 A JP H11290041A JP 10096358 A JP10096358 A JP 10096358A JP 9635898 A JP9635898 A JP 9635898A JP H11290041 A JPH11290041 A JP H11290041A
Authority
JP
Japan
Prior art keywords
resin
regeneration
denitrification
solution
nitrate ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10096358A
Other languages
Japanese (ja)
Other versions
JP3446599B2 (en
Inventor
Hiroshi Ejima
宏 江島
Yukimitsu Muto
幸光 武藤
Takayuki Moribe
隆行 森部
Takuya Katsumata
卓也 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUOKA PREFECTURE NOGYO KYODO
FUKUOKA PREFECTURE NOGYO KYODO KUMIAI RENGOKAI
Kurita Water Industries Ltd
Original Assignee
FUKUOKA PREFECTURE NOGYO KYODO
FUKUOKA PREFECTURE NOGYO KYODO KUMIAI RENGOKAI
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUOKA PREFECTURE NOGYO KYODO, FUKUOKA PREFECTURE NOGYO KYODO KUMIAI RENGOKAI, Kurita Water Industries Ltd filed Critical FUKUOKA PREFECTURE NOGYO KYODO
Priority to JP09635898A priority Critical patent/JP3446599B2/en
Publication of JPH11290041A publication Critical patent/JPH11290041A/en
Application granted granted Critical
Publication of JP3446599B2 publication Critical patent/JP3446599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently carrying out the regeneration of an anion exchange resin, efficiently removing nitrate ions from a vegetable juice and producing the vegetable juice with a low content of the nitrate ions. SOLUTION: A stock solution (a pressed liquid) in a stock solution tank 6 is introduced from a gas-liquid inlet 28 into the upper part of a denitrating column 1 and passed through a resin bed 2 formed of a Cl-form strong basic anion exchange resin to remove nitrate ions. When the regeneration of the resin 2 is required, wash water is introduced from a gas-liquid introduction device 42 to backwash the resin 2 and feed the ion exchange resin into a regeneration column 3. A warm aqueous solution of sodium hydroxide in a downward stream is then passed from a water supply device 57 through the formed resin bed 56 to remove organic impurities sticking to the resin. An aqueous solution of sodium chloride is subsequently introduced from a tank 5 of the aqueous solution of sodium chloride into the regeneration column 3 and in a downward stream is passed from the water supply device 57 therethough to convert the resin into the Cl form. The regenerated resin is returned to the denitrating column 1 to repeat the denitrating treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は野菜の搾汁液からイ
オン交換により硝酸イオンを除去して硝酸イオンの少な
い野菜汁を製造する野菜汁の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing vegetable juice in which nitrate ions are removed from a vegetable juice by ion exchange to produce vegetable juice with a small amount of nitrate ions.

【0002】[0002]

【従来の技術】ほうれん草等の緑色野菜には、作物の種
類、品種、施肥条件等により異なるが、多量の硝酸イオ
ンが含まれる場合が多く、これを搾汁した野菜汁には、
最高数千mg/lの硝酸イオンが検出される場合があ
る。硝酸イオンは多量に含まれる場合、健康上好ましく
ないといわれ、またブリキ等の金属容器の腐食を促進し
やすい。
2. Description of the Related Art Green vegetables such as spinach often contain a large amount of nitrate ions depending on the type of crop, variety, fertilizing conditions, and the like.
Nitrate ions of up to several thousand mg / l may be detected. It is said that when a large amount of nitrate ion is contained, it is not preferable for health, and the corrosion of a metal container such as tinplate is easily promoted.

【0003】このような点を解決する方法として、特開
昭55−131357号には、強塩基性アニオン交換樹
脂を用いてイオン交換により、セロリ搾汁液から硝酸イ
オンを除去する方法が記載されている。セロリ、ほうれ
ん草、ケール等の搾汁液には有機成分が相当量含まれて
いるため、脱硝酸処理時にこの有機成分がアニオン交換
樹脂に付着する。アニオン交換樹脂に付着した有機成分
は逆洗、再生時にある程度除去されるが、一部はアニオ
ン交換樹脂に付着したままとなり、このような状態で使
用を続けると、アニオン交換樹脂の処理性能が低下す
る。
As a method for solving such a problem, Japanese Patent Application Laid-Open No. 55-131357 discloses a method for removing nitrate ions from a celery juice by ion exchange using a strongly basic anion exchange resin. I have. Since squeezed liquids such as celery, spinach and kale contain a considerable amount of organic components, the organic components adhere to the anion exchange resin during the denitrification treatment. Organic components adhering to the anion exchange resin are removed to some extent during backwashing and regeneration, but some remain attached to the anion exchange resin, and if used in such a state, the processing performance of the anion exchange resin decreases. I do.

【0004】しかし、これまで野菜汁の製造方法では使
用するアニオン交換樹脂の種類およびその適切な再生方
法などは十分に検討されておらず、このため前記公報の
セロリ汁の製造方法においても、脱硝酸処理および樹脂
の再生サイクルを繰り返して行う一連の製造工程では、
効果のよい処理が行われないという問題点がある。
However, the type of anion exchange resin to be used and the appropriate regeneration method thereof have not been sufficiently studied in the vegetable juice production method so far. In a series of manufacturing processes that repeat the nitric acid treatment and resin regeneration cycle,
There is a problem that effective processing is not performed.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上記
問題点を解決するため、硝酸イオン含量の少ない野菜汁
を効率よく製造する方法を提案することである。
An object of the present invention is to propose a method for efficiently producing vegetable juice having a low nitrate ion content in order to solve the above problems.

【0006】[0006]

【課題を解決するための手段】本発明は、次の野菜汁の
製造方法である。 (1)野菜の搾汁液をイオン交換樹脂と接触させて硝酸
イオンを吸着する脱硝酸工程、および硝酸イオンを吸着
したイオン交換樹脂を再生する再生工程からなる脱硝酸
−再生サイクルを行う野菜汁の製造方法において、前記
脱硝酸−再生サイクルとして、野菜の搾汁液をCl形強
塩基性アニオン交換樹脂と接触させて硝酸イオンを吸着
する脱硝酸工程、および硝酸イオンを吸着した強塩基性
アニオン交換樹脂を水酸化ナトリウム水溶液と接触させ
たのち塩化ナトリウム水溶液と接触させて再生する再生
工程からなる脱硝酸−再生サイクルを行うことを特徴と
する野菜汁の製造方法。 (2)野菜の搾汁液をイオン交換樹脂と接触させて硝酸
イオンを吸着する脱硝酸工程、および硝酸イオンを吸着
したイオン交換樹脂を再生する再生工程からなる脱硝酸
−再生サイクルを行う野菜汁の製造方法において、前記
脱硝酸−再生サイクルとして、野菜の搾汁液をCl形強
塩基性アニオン交換樹脂と接触させて硝酸イオンを吸着
する脱硝酸工程、および硝酸イオンを吸着した強塩基性
アニオン交換樹脂を水酸化ナトリウム水溶液と接触させ
たのち塩化ナトリウム水溶液と接触させて再生する第1
の再生工程からなる第1の脱硝酸−再生サイクル、なら
びに野菜の搾汁液をCl形強塩基性アニオン交換樹脂と
接触させて硝酸イオンを吸着する脱硝酸工程、および硝
酸イオンを吸着した強塩基性アニオン交換樹脂を水酸化
ナトリウム水溶液と接触させることなく塩化ナトリウム
水溶液のみと接触させて再生する第2の再生工程からな
る第2の脱硝酸−再生サイクルを組み合せ行うことを特
徴とする野菜汁の製造方法。
The present invention is the following method for producing vegetable juice. (1) Vegetable juice that is subjected to a denitrification-regeneration cycle including a denitrification step of adsorbing nitrate ions by contacting a vegetable juice with an ion exchange resin and a regeneration step of regenerating the ion exchange resin adsorbing nitrate ions. In the production method, as the denitrification-regeneration cycle, a denitrification step of adsorbing nitrate ions by bringing a vegetable juice into contact with a Cl-type strongly basic anion exchange resin, and a strongly basic anion exchange resin adsorbing nitrate ions A vegetable juice production method comprising: performing a denitrification-regeneration cycle comprising a regeneration step of contacting an aqueous solution of sodium chloride with an aqueous solution of sodium hydroxide and then contacting the aqueous solution with an aqueous solution of sodium chloride for regeneration. (2) Vegetable juice that is subjected to a denitrification-regeneration cycle including a denitrification step of adsorbing nitrate ions by contacting a vegetable juice with an ion exchange resin and a regeneration step of regenerating the ion exchange resin adsorbing nitrate ions. In the production method, as the denitrification-regeneration cycle, a denitrification step of adsorbing nitrate ions by bringing a vegetable juice into contact with a Cl-type strongly basic anion exchange resin, and a strongly basic anion exchange resin adsorbing nitrate ions Is brought into contact with an aqueous solution of sodium hydroxide and then brought into contact with an aqueous solution of sodium chloride for regeneration.
A denitrification-regeneration cycle comprising a regeneration step; a denitration step of adsorbing nitrate ions by contacting a vegetable squeezed liquid with a Cl-type strongly basic anion exchange resin; and a strong basicity adsorbing nitrate ions. Vegetable juice production characterized by combining a second denitrification-regeneration cycle comprising a second regeneration step of regenerating the anion exchange resin by contacting only an aqueous solution of sodium chloride without contacting the aqueous solution of sodium hydroxide. Method.

【0007】本発明の方法に用いられる野菜は、硝酸イ
オンを含んでいるものであれば種類は限定されない。具
体的な野菜としては、例えばほうれん草、ケール、菜
花、セロリ等があげられる。野菜の搾汁液を得る方法も
特に限定されず、破砕機または圧搾機を用いて得ること
ができる。
[0007] The kind of vegetables used in the method of the present invention is not limited as long as they contain nitrate ions. Specific examples of vegetables include spinach, kale, rape, celery, and the like. The method for obtaining the vegetable juice is also not particularly limited, and can be obtained using a crusher or a press.

【0008】このようにして得られた搾汁液をそのまま
硝酸イオンを除去する脱硝酸処理に供することもできる
が、ろ過、遠心分離等の前処理により繊維質等の固形分
その他の不純物を除去した搾汁液を脱硝酸処理するのが
好ましい。脱硝酸処理に供する搾汁液の濃度は任意であ
るが、溶解固形分濃度(Brix度)として2〜50°
Bx、好ましくは5〜20°Bxの搾汁液を使用するの
が好ましい。このような範囲にBrix度を調整するに
は、例えば減圧下に水分を蒸発させる減圧蒸発濃縮法、
濃縮後に水を添加する方法等の方法により行うことがで
きる。このような搾汁液中に含まれている硝酸イオン濃
度は、通常1000〜6000mg/l(at 10°B
x)である。
The squeezed liquid thus obtained can be directly subjected to a denitrification treatment for removing nitrate ions, but solids such as fibers and other impurities are removed by pretreatment such as filtration and centrifugation. Preferably, the juice is subjected to a denitrification treatment. The concentration of the squeezed liquid to be subjected to the denitrification treatment is arbitrary, but it is 2 to 50 ° as a dissolved solid concentration (Brix degree).
It is preferred to use a juice of Bx, preferably 5-20 ° Bx. In order to adjust the Brix degree to such a range, for example, a vacuum evaporation concentration method of evaporating water under reduced pressure,
It can be performed by a method such as a method of adding water after concentration. The concentration of nitrate ions contained in such a juice is usually 1000 to 6000 mg / l (at 10 ° B
x).

【0009】本発明の方法では、上記のような搾汁液を
Cl形強塩基性アニオン交換樹脂と接触させ、硝酸イオ
ンを吸着させて除去する。OH形のアニオン交換樹脂
は、脱硝酸処理した野菜汁のpHが高くなるので好まし
くない。また弱塩基性アニオン交換樹脂は中性塩分解能
を有しないため、硝酸塩の形の硝酸イオンを除去するこ
とができない。
In the method of the present invention, the above-mentioned squeezed liquid is brought into contact with a Cl-type strongly basic anion exchange resin to adsorb and remove nitrate ions. The OH type anion exchange resin is not preferred because the pH of the vegetable juice after denitrification becomes high. Further, since the weakly basic anion exchange resin does not have a neutral salt decomposability, nitrate ions in the form of nitrate cannot be removed.

【0010】強塩基性アニオン交換樹脂としては、塩基
度の高いテトラアルキルアンモニウム塩タイプのI型樹
脂が化学的に安定で、有機物汚染が少なく、また異臭の
発生も少ないため好ましい。トリアルキルアルカノール
アンモニウム塩タイプのII型樹脂は加水分解により樹脂
が劣化しやすく、野菜の種類によっては異臭を感じる場
合があるので、好ましくない。
As the strongly basic anion exchange resin, a tetraalkylammonium salt type I resin having a high basicity is preferred because it is chemically stable, has little organic contamination, and has little odor. Trialkyl alkanol ammonium salt type II resins are not preferred because the resins are liable to be degraded by hydrolysis and may have an unpleasant odor depending on the type of vegetables.

【0011】強塩基性アニオン交換樹脂としては、ゲル
型、ポーラス型のいずれの構造のものでも使用できる
が、ポーラス型のものが有機性不純物を吸着するので好
ましい。ゲル型のものはポーラス型のものに比べて洗浄
が難しく、使用期間が短くなるので好ましくない。
As the strongly basic anion exchange resin, any of a gel type and a porous type can be used, but a porous type is preferred because it absorbs organic impurities. The gel type is not preferable because it is more difficult to wash than the porous type and shortens the use period.

【0012】このような強塩基性アニオン交換樹脂は後
述の再生工程に準じて水酸化ナトリウム水溶液を通液し
て、洗浄とOH形への転換を行い、さらに塩化ナトリウ
ム水溶液を通液してCl形にしたのち、熱水(例えば7
0〜75℃)等を通液して殺菌を行い、脱硝酸工程に供
する。
Such a strong basic anion exchange resin is passed through an aqueous sodium hydroxide solution according to the regeneration step described below to carry out washing and conversion to the OH form, and further, is passed through an aqueous sodium chloride solution to remove Cl After shaping, hot water (for example, 7
(0-75 ° C.) and the like to sterilize, and then provide to the denitrification step.

【0013】このようなCl形強塩基性アニオン交換樹
脂に野菜の搾汁液を接触させることにより、
By bringing vegetable juice into contact with such a Cl-type strong basic anion exchange resin,

【化1】 R−Cl- + NO3 - → R−NO3 - + Cl- …(1) (式中、Rは母体樹脂を示す。以下同じ。)のイオン交
換反応が進行し、これより搾汁液中の硝酸イオンがアニ
オン交換樹脂に交換吸着されて、硝酸イオンが除去され
た野菜汁が得られる。
[Image Omitted] The ion exchange reaction of R—Cl + NO 3 → R—NO 3 + Cl (1) (wherein R represents a base resin, the same applies hereinafter) proceeds, and The nitrate ions in the squeezed liquid are exchanged and adsorbed on the anion exchange resin to obtain vegetable juice from which the nitrate ions have been removed.

【0014】接触方法は特に限定されず、バッチ式で行
うこともできるが、アニオン交換樹脂を充填したカラム
に搾汁液を通液するのが好ましい。この場合、下向流で
通液してもよいし、上向流で通液してもよい。硝酸イオ
ンの除去率を90%以上(Brix度が10°Bxの場
合)とするには、通液速度はSV=0.5〜4h-1、好
ましくはSV=1〜2h-1とするのが望ましい。
[0014] The contacting method is not particularly limited, and it can be carried out in a batch system. However, it is preferable to pass the squeezed liquid through a column filled with an anion exchange resin. In this case, the liquid may be passed in a downward flow, or may be passed in an upward flow. In order to obtain a nitrate ion removal rate of 90% or more (when the Brix degree is 10 ° Bx), the liquid passing speed is set to SV = 0.5 to 4 h −1 , preferably SV = 1 to 2 h −1 . Is desirable.

【0015】このようにして脱硝酸工程を継続すると、
硝酸イオンの吸着によりアニオン交換樹脂のイオン交換
能が低下するので、再生工程に移る。脱硝酸工程を終了
する時点では、加圧空気で搾汁液を樹脂層から押し出す
ことにより、野菜汁の回収率を高くすることができる。
When the denitrification step is continued in this way,
Since the ion exchange capacity of the anion exchange resin decreases due to the adsorption of nitrate ions, the process proceeds to the regeneration step. At the time when the denitrification step is completed, the recovery rate of vegetable juice can be increased by extruding the squeezed liquid from the resin layer with pressurized air.

【0016】このようにして搾汁液を押し出した後、水
を樹脂面より100〜200mm高くなるように加え、
攪拌して樹脂に付着した搾汁液を抽出し、樹脂粒表面お
よび細孔中に残存している液を完全に回収するのが好ま
しい。この洗浄回収操作は複数回行うことができる。
After the squeezed liquid is extruded in this manner, water is added so as to be 100 to 200 mm higher than the resin surface.
It is preferable to extract the squeezed liquid adhering to the resin by stirring, and to completely recover the liquid remaining on the surface and pores of the resin particles. This washing and collecting operation can be performed a plurality of times.

【0017】再生は、樹脂層から搾汁液を押し出して水
(例えば純水)と置換し、逆洗を行って樹脂に付着した
懸濁物を除去したのち、薬注を行って樹脂のイオン交換
能を回復する。イオン交換能の回復は塩化ナトリウム水
溶液との接触によって可能であるが、樹脂に付着した有
機性の不純物を除去するためには、塩化ナトリウム水溶
液との接触に先立って、水酸化ナトリウム水溶液との接
触を行うことが必要である。
In the regeneration, the squeezed liquid is extruded from the resin layer, replaced with water (eg, pure water), back-washed to remove the suspension adhered to the resin, and then subjected to chemical injection to ion-exchange the resin. Restores ability. Recovery of ion exchange capacity is possible by contact with aqueous sodium chloride solution, but in order to remove organic impurities attached to the resin, contact with aqueous sodium hydroxide solution prior to contact with aqueous sodium chloride solution It is necessary to do.

【0018】水酸化ナトリウム水溶液との接触は、再生
処理の度毎に行うこともできるし、後述の頻度で省略す
ることもできる。前者の場合、前記脱硝酸工程および再
生処理、すなわち水酸化ナトリウム水溶液と接触させた
のち塩化ナトリウム水溶液と接触させて再生する再生工
程(第1の再生工程)からなる脱硝酸−再生サイクル
(第1の脱硝酸−再生サイクル)を繰り返して行うこと
になる。後者の場合、この第1の脱硝酸−再生サイク
ル、ならびに前記脱硝酸工程および水酸化ナトリウム水
溶液と接触させることなく塩化ナトリウム水溶液のみと
接触させる第2の再生工程からなる第2の脱硝酸−再生
サイクルを組み合せて行うことになる。
The contact with the aqueous sodium hydroxide solution can be carried out every time the regeneration treatment is carried out, or can be omitted at the frequency described later. In the former case, a denitrification-regeneration cycle (first regeneration step) comprising the above-mentioned denitrification step and regeneration treatment, that is, a regeneration step (first regeneration step) of contacting with an aqueous sodium hydroxide solution and then regenerating by contacting with an aqueous sodium chloride solution. Denitrification-regeneration cycle). In the latter case, a second denitrification-regeneration cycle comprising this first denitrification-regeneration cycle, and a second regeneration step of contacting only the aqueous solution of sodium chloride without contacting with the aqueous solution of sodium hydroxide without the above-mentioned denitrification step. This is done by combining the cycles.

【0019】前記第1の再生工程は強塩基性アニオン交
換樹脂を水酸化ナトリウム水溶液と接触させたのち、塩
化ナトリウム水溶液と接触させて行う。このような水酸
化ナトリウム水溶液との接触を行う第1の再生工程は、
脱硝酸工程と再生工程のサイクルの各再生工程において
毎回行うことなく、水酸化ナトリウム水溶液および塩化
ナトリウム水溶液を用いた第1の再生工程と、塩化ナト
リウム水溶液を単独で用いた第2の再生工程とを組み合
せて行うのが好ましい。水酸化ナトリウム水溶液を用い
た再生は、再生工程1〜10回、好ましくは5〜8回に
1回の割合で行うのが望ましい。水酸化ナトリウム水溶
液を用いる割合は、強塩基性アニオン交換樹脂に付着す
る有機成分の量に応じて選択することができ、付着する
有機成分が多い場合には水酸化ナトリウム水溶液を用い
た再生工程の回数を多くする。
The first regeneration step is carried out by contacting the strongly basic anion exchange resin with an aqueous solution of sodium hydroxide and then with an aqueous solution of sodium chloride. The first regeneration step of contacting with such an aqueous solution of sodium hydroxide includes:
A first regeneration step using an aqueous solution of sodium hydroxide and an aqueous solution of sodium chloride, and a second regeneration step using an aqueous solution of sodium chloride alone, without performing each time in each regeneration step of the cycle of the denitrification step and the regeneration step. Is preferably performed in combination. Regeneration using an aqueous solution of sodium hydroxide is desirably performed at a rate of 1 to 10 times, preferably 5 to 8 times. The ratio of using the aqueous sodium hydroxide solution can be selected according to the amount of the organic component adhering to the strong basic anion exchange resin. Increase the number of times.

【0020】強塩基性アニオン交換樹脂と水酸化ナトリ
ウム水溶液の接触は、濃度2〜6重量%、好ましくは2
〜4重量%、温度35〜60℃、好ましくは50〜55
℃の水酸化ナトリウム水溶液を、SV=2〜6h-1、好
ましくはSV=2〜4h-1の流速で通液して接触させる
のが望ましい。通液は下向流で行うこともできるし、上
向流で行うこともできる。水酸化ナトリウム水溶液の使
用量(再生レベル)は50〜200gNaOH/l−樹
脂、好ましくは100〜150gNaOH/l−樹脂と
するのが望ましい。
The contact between the strongly basic anion exchange resin and the aqueous sodium hydroxide solution is carried out at a concentration of 2 to 6% by weight, preferably 2 to 6% by weight.
-4% by weight, temperature 35-60 ° C, preferably 50-55.
It is desirable that an aqueous solution of sodium hydroxide at a temperature of 0 ° C. is passed through at a flow rate of SV = 2 to 6 h −1 , preferably SV = 2 to 4 h −1 and brought into contact therewith. The liquid can be passed in a downward flow or in an upward flow. The amount (regeneration level) of the aqueous sodium hydroxide solution is preferably 50 to 200 g NaOH / l-resin, and more preferably 100 to 150 g NaOH / l-resin.

【0021】水酸化ナトリウム水溶液と接触させること
により、強塩基性アニオン交換樹脂に付着した搾汁液中
の有機性不純物を除去することができ、これにより硝酸
イオンおよび有機性不純物に対する吸着能力を回復させ
ることができる。また
By contacting with an aqueous solution of sodium hydroxide, organic impurities in the squeezed liquid adhering to the strongly basic anion exchange resin can be removed, thereby recovering the ability to adsorb nitrate ions and organic impurities. be able to. Also

【化2】 R−NO3 - + NaOH → R−OH- + NaNO3 …(2) のイオン交換反応により、硝酸イオンが脱離して樹脂は
OH形に転換される。
By the ion exchange reaction of R—NO 3 + NaOH → R—OH + NaNO 3 (2), nitrate ions are eliminated and the resin is converted to the OH form.

【0022】水酸化ナトリウム水溶液との接触に引続い
て塩化ナトリウム水溶液との接触を行うが、その中間に
水洗を行うと有機性不純物の排出が促進されるので好ま
しいが、水洗を省略してそのまま塩化ナトリウム水溶液
との接触を行ってもよい。
The contact with the aqueous solution of sodium hydroxide is carried out following the contact with the aqueous solution of sodium hydroxide, and washing with water in the middle is preferable because the discharge of organic impurities is promoted. Contact with an aqueous sodium chloride solution may be performed.

【0023】強塩基性アニオン交換樹脂と塩化ナトリウ
ム水溶液の接触は、濃度2〜20重量%、好ましくは5
〜10重量%、温度常温〜60℃、好ましくは15〜3
0℃の塩化ナトリウム水溶液を、SV=2〜6h-1、好
ましくはSV=2〜4h-1の流速で通液して接触させる
のが望ましい。通液は下向流で行うこともできるし、上
向流で行うこともできる。塩化ナトリウムの再生レベル
は200〜500gNaCl/l−樹脂、好ましくは3
00〜400gNaCl/l−樹脂とするのが望まし
い。
The contact between the strongly basic anion exchange resin and the aqueous solution of sodium chloride is carried out at a concentration of 2 to 20% by weight, preferably 5 to 20% by weight.
10 to 10% by weight, temperature normal temperature to 60 ° C, preferably 15 to 3
It is desirable that an aqueous solution of sodium chloride at 0 ° C. is brought into contact with the solution at a flow rate of SV = 2 to 6 h −1 , preferably SV = 2 to 4 h −1 . The liquid can be passed in a downward flow or in an upward flow. The regeneration level of sodium chloride is 200-500 g NaCl / l-resin, preferably 3
Desirably, the amount is from 00 to 400 g NaCl / l-resin.

【0024】OH形に転換された強塩基性アニオン交換
樹脂に塩化ナトリウム水溶液を接触させた場合、
When a sodium chloride aqueous solution is brought into contact with the strongly basic anion exchange resin converted into the OH form,

【化3】 R−OH- + NaCl → R−Cl- + NaOH …(3) のイオン交換反応により、強塩基性アニオン交換樹脂は
Cl形に再生される。
The strongly basic anion exchange resin is regenerated to Cl form by the ion exchange reaction of R—OH + NaCl → R—Cl + NaOH (3)

【0025】一方水酸化ナトリウム水溶液との接触を省
略している場合は、
On the other hand, when the contact with the aqueous solution of sodium hydroxide is omitted,

【化4】 R−NO3 - + NaCl → R−Cl- + NaNO3 …(4) のイオン交換反応により、Cl形に再生される。[Image Omitted] R-NO 3 + NaCl → R-Cl + NaNO 3 (4) Regenerated to the Cl form by an ion exchange reaction.

【0026】上記のような塩化ナトリウム水溶液との接
触を行ったのち、水洗を行って再生工程を終了する。そ
の後、前記野菜汁の搾汁液を樹脂と接触させて脱硝酸処
理を再開し、野菜汁を製造する。
After the contact with the aqueous solution of sodium chloride as described above, washing is performed, and the regeneration step is completed. Thereafter, the vegetable juice is brought into contact with the resin to restart the denitrification treatment, thereby producing vegetable juice.

【0027】上記のような再生工程を行っても微生物の
増殖により処理が悪化する場合があるので、複数回、例
えば5〜10回の第1の再生工程に1回の割合で、殺菌
処理を行うのが好ましい。殺菌処理は脱硝酸処理を再開
する前に、強塩基性アニオン交換樹脂を60〜80℃、
好ましくは70〜80℃の熱水に3〜8時間、好ましく
は3〜5時間浸漬し、殺菌する。特に、再生処理後に一
旦野菜汁の製造を中断する場合には、処理再開までの期
間中に微生物が増殖し、野菜汁中の菌体数が増加する場
合があるので、上記殺菌処理を行うのが好ましい。
[0027] Even if the above-mentioned regeneration step is performed, the treatment may be deteriorated due to the growth of microorganisms. Therefore, the sterilization treatment is performed a plurality of times, for example, once every 5 to 10 times of the first regeneration step. It is preferred to do so. Sterilization treatment, before restarting the denitrification treatment, strong basic anion exchange resin at 60 ~ 80 ℃,
It is preferably immersed in hot water at 70 to 80 ° C. for 3 to 8 hours, preferably 3 to 5 hours, and sterilized. In particular, when the production of vegetable juice is temporarily interrupted after the regeneration process, the microorganisms may grow during the period until the process is restarted, and the number of cells in the vegetable juice may increase. Is preferred.

【0028】このようにして得られた野菜汁は、プレー
トヒータークーラ等による瞬間殺菌などの後処理を行っ
た後、野菜ジュース等のミックス原料などとして使用す
る。この場合、硝酸イオンが少なくなっているので、人
体に対する害はなく、保存期間中のブリキ缶等の金属容
器の腐食は抑制される。
The vegetable juice thus obtained is subjected to post-treatment such as instant sterilization using a plate heater cooler or the like, and then used as a raw material for mixing vegetable juice or the like. In this case, since the amount of nitrate ions is reduced, there is no harm to the human body, and corrosion of a metal container such as a tin can during the storage period is suppressed.

【0029】[0029]

【発明の効果】本発明の野菜汁の製造方法は、強塩基性
アニオン交換樹脂の再生工程として樹脂を水酸化ナトリ
ウム水溶液と接触させたのち塩化ナトリウム水溶液と接
触させる工程を含めるようにしたので、強塩基性アニオ
ン交換樹脂のイオン交換能を高く維持でき、これにより
硝酸イオン含量の少ない野菜汁を効率よく製造すること
ができる。
The method for producing vegetable juice of the present invention includes a step of regenerating a strongly basic anion exchange resin, which comprises the steps of contacting the resin with an aqueous solution of sodium hydroxide and then with an aqueous solution of sodium chloride. The ion exchange capacity of the strongly basic anion exchange resin can be maintained at a high level, whereby a vegetable juice having a low nitrate ion content can be efficiently produced.

【0030】[0030]

【発明の実施の形態】次に本発明を図面の実施例により
説明する。図1は実施例による野菜汁の製造装置を示す
系統図である。図1において、1は脱硝酸塔であり、内
部にCl形強塩基性アニオン交換樹脂により樹脂層2が
形成されている。3は再生塔、4は水酸化ナトリウム水
溶液槽、5は塩化ナトリウム水溶液槽、6は原液タン
ク、7はブロワ、8は中継タンク、9は処理液タンクで
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in the drawings. FIG. 1 is a system diagram showing an apparatus for producing vegetable juice according to an embodiment. In FIG. 1, reference numeral 1 denotes a denitrification tower, in which a resin layer 2 is formed by a Cl-type strong basic anion exchange resin. 3 is a regeneration tower, 4 is a sodium hydroxide aqueous solution tank, 5 is a sodium chloride aqueous solution tank, 6 is a stock solution tank, 7 is a blower, 8 is a relay tank, and 9 is a processing solution tank.

【0031】図1の装置により野菜汁を製造するには、
脱硝酸工程において、バルブ11、12、13が開、バ
ルブ15、16、17、18、19、20、21、33
が閉の状態で、ポンプ25を起動して原液タンク6から
原液(搾汁液)を取り出し、フィルタ26を通過させて
固形分を除去した後、連絡路27、およびこれに接続す
る気液導入口28から脱硝酸塔1の上部に導入する。脱
硝酸塔1に導入した原液は、Cl形強塩基性アニオン交
換樹脂により形成された樹脂層2を前記流速で、下向流
で通過させて硝酸イオンを除去する。樹脂層2では前記
式(1)のイオン交換反応が起こり、硝酸イオンが吸
着、除去される。硝酸イオンを除去した処理液は連絡路
29を通して中継タンク8に導入し、一時貯蔵する。
To produce vegetable juice using the apparatus of FIG.
In the denitrification process, the valves 11, 12, and 13 are opened, and the valves 15, 16, 17, 18, 19, 20, 21, and 33 are opened.
Is closed, the pump 25 is started to take out the undiluted solution (squeezed liquid) from the undiluted solution tank 6 and remove the solid content by passing through the filter 26. Then, the communication path 27 and the gas-liquid introduction port connected thereto are connected. From 28, it is introduced into the upper part of the denitrification tower 1. The undiluted solution introduced into the denitrification tower 1 is passed through the resin layer 2 formed of the Cl-type strong basic anion exchange resin at the above-mentioned flow rate in a downward flow to remove nitrate ions. In the resin layer 2, the ion exchange reaction of the above formula (1) occurs, and nitrate ions are adsorbed and removed. The processing solution from which the nitrate ions have been removed is introduced into the relay tank 8 through the communication path 29 and is temporarily stored.

【0032】原液タンク6が空になった後も、塔内上部
にある原液を処理するため、脱硝酸工程は継続される。
この場合バルブ12、13、15が開、バルブ11、1
6、17、18、19、20、21、31、32、33
が閉の状態で、ブロワ7で加圧した空気を空気路35お
よび連絡路27を通して気液導入口28から脱硝酸塔1
に注入し、原液を樹脂層2を通過させて硝酸イオンを除
去する。次にバルブ21を開、バルブ12、13を閉の
状態にし、給水路36、37および給水口38から、樹
脂層2上面に前記高さになるように純水または軟水を導
入する。その後バルブ16を開、バルブ15を閉の状態
にし、空気路35および連絡路41からブロワ7で加圧
した空気を脱硝酸塔1の底部から注入し、気液導入装置
42から散気して撹拌し、樹脂に付着した原液を抽出
し、樹脂粒表面および細孔中に残存している原液を樹脂
層2から完全に回収した後、中継タンク8に貯蔵する。
なお、散気のために導入した空気は排ガス路(図示せ
ず)から排気する。
[0032] Even after the stock solution tank 6 is emptied, the denitrification step is continued to process the stock solution in the upper part of the tower.
In this case, the valves 12, 13, 15 are opened and the valves 11, 1
6, 17, 18, 19, 20, 21, 31, 32, 33
Is closed, the air pressurized by the blower 7 is passed from the gas-liquid inlet 28 through the air path 35 and the communication path 27 to the denitrification tower 1.
And the stock solution is passed through the resin layer 2 to remove nitrate ions. Next, the valve 21 is opened, the valves 12 and 13 are closed, and pure water or soft water is introduced from the water supply channels 36 and 37 and the water supply port 38 to the upper surface of the resin layer 2 so as to have the height described above. Thereafter, the valve 16 is opened and the valve 15 is closed, and air pressurized by the blower 7 is injected into the air passage 35 and the communication passage 41 from the bottom of the denitrification tower 1 and diffused from the gas-liquid introduction device 42. After stirring, the stock solution adhering to the resin is extracted, and the stock solution remaining on the surface and fine pores of the resin particles is completely recovered from the resin layer 2 and stored in the relay tank 8.
The air introduced for air diffusion is exhausted from an exhaust gas path (not shown).

【0033】次に樹脂の再生が必要になると、バルブ1
6、21を閉、バルブ17、20を開の状態にし、給水
路36および連絡路41を通して気液導入装置42から
洗浄水を導入し、樹脂を洗浄する。このとき生ずる洗浄
排液は集液装置44で集液し、排液路45から排出す
る。その後、バルブ17、20を閉、バルブ19、2
1、52を開の状態にし、連絡路43を通して水ととも
にイオン交換樹脂を再生塔3に移送する。この際、余剰
の水は集液装置81で集め、排液路45から排出する。
Next, when the resin needs to be regenerated, the valve 1
With the valves 6 and 21 closed and the valves 17 and 20 opened, washing water is introduced from the gas-liquid introduction device 42 through the water supply path 36 and the communication path 41 to wash the resin. The cleaning waste liquid generated at this time is collected by a liquid collecting device 44 and discharged from a liquid discharging path 45. Thereafter, the valves 17 and 20 are closed, and the valves 19 and 2 are closed.
1 and 52 are opened, and the ion exchange resin is transferred to the regeneration tower 3 together with water through the communication path 43. At this time, surplus water is collected by the liquid collecting device 81 and discharged from the drainage passage 45.

【0034】再生塔3では、バルブ54、55が開、バ
ルブ19、21、33、51、52、53、58、6
2、66が閉の状態で逆洗し、その排液は気液導入口7
6、連絡路75、排液路45を通って排出される。次
に、バルブ54、55が閉となり、樹脂は樹脂層56を
形成し、この樹脂層56に温水酸化ナトリウム水溶液を
給水装置57から前記条件で、下向流で通液し、樹脂に
付着した有機性不純物を除去する。樹脂層56では前記
式(2)のイオン交換反応が起こり、樹脂はOH形に転
換される。
In the regeneration tower 3, the valves 54 and 55 are opened, and the valves 19, 21, 33, 51, 52, 53, 58 and 6
Backwashing is performed in a state where the ports 2 and 66 are closed.
6. Discharged through the communication path 75 and the drainage path 45. Next, the valves 54 and 55 were closed, the resin formed a resin layer 56, and a hot sodium hydroxide aqueous solution was passed through the resin layer 56 from the water supply device 57 in the downward flow under the above conditions, and adhered to the resin. Remove organic impurities. In the resin layer 56, the ion exchange reaction of the formula (2) occurs, and the resin is converted to the OH form.

【0035】再生塔3に供給する温水酸化ナトリウム水
溶液は、バルブ61、62、63が開、バルブ65、6
6、67が閉の状態で、ポンプ68を駆動して水酸化ナ
トリウム水溶液槽4から水酸化ナトリウム水溶液を取り
出し、この水溶液と熱交換器71で加熱した純水または
軟水とをエゼクタ72により吸引して混合することによ
り調製し、この温水酸化ナトリウム水溶液を流路73か
ら給水装置57に供給する。
The hot aqueous sodium hydroxide solution to be supplied to the regeneration tower 3 is opened with the valves 61, 62 and 63 open and the valves 65 and 6.
While the pumps 6 and 67 are closed, the pump 68 is driven to take out the aqueous sodium hydroxide solution from the aqueous sodium hydroxide tank 4, and the aqueous solution and pure water or soft water heated by the heat exchanger 71 are sucked by the ejector 72. The hot sodium hydroxide aqueous solution is supplied from the flow channel 73 to the water supply device 57.

【0036】次にポンプ68を停止し、バルブ61、6
2、63が閉、バルブ31、51が開の状態で、ブロワ
7で加圧した空気を空気路35および連絡路75を通し
て気液導入口76から注入し、再生排液を樹脂層56か
ら押し出す。次にバルブ52、53を開、バルブ31を
閉の状態にし、給水路36および給水口78から純水ま
たは軟水を導入して洗浄する。再生排液および洗浄排液
は集液装置81で集液して排液路45から排出するとと
もに、塔底の気液導入装置64を通り、接続している排
液路82からも排出する。洗浄水および加圧空気は、気
液導入装置64から導入することもできる。水酸化ナト
リウム水溶液を用いた再生工程を省略する場合は、これ
らの操作は省略できるが、再生工程10回のうち1回程
度は水酸化ナトリウム水溶液を用いた再生を行う。
Next, the pump 68 is stopped, and the valves 61 and 6 are stopped.
When the valves 2 and 63 are closed and the valves 31 and 51 are open, the air pressurized by the blower 7 is injected from the gas-liquid inlet 76 through the air path 35 and the communication path 75, and the regenerated waste liquid is pushed out from the resin layer 56. . Next, the valves 52 and 53 are opened and the valve 31 is closed, and pure water or soft water is introduced from the water supply passage 36 and the water supply port 78 for cleaning. The regenerated wastewater and the washing wastewater are collected by a liquid collecting device 81 and discharged from a liquid discharging passage 45, and also discharged from a connected liquid discharging passage 82 through a gas-liquid introducing device 64 at the bottom of the tower. Wash water and pressurized air can also be introduced from the gas-liquid introduction device 64. When the regeneration step using the aqueous sodium hydroxide solution is omitted, these operations can be omitted. However, about one out of ten regeneration steps is performed using the aqueous sodium hydroxide solution.

【0037】次に塩化ナトリウム水溶液槽5から塩化ナ
トリウム水溶液を再生塔3に導入し、給水装置57から
前記条件で、下向流で通液して樹脂を再生する。樹脂層
56では前記式(3)または式(4)のイオン交換反応
が起こり、樹脂はCl形に転換される。再生塔3に供給
する塩化ナトリウム水溶液は、ポンプ84を駆動して取
り出し、この塩化ナトリウム水溶液を、バルブ61、6
2、63が閉、バルブ51、65、66、67が開の状
態で、エゼクタ85により吸引混合し、流路73から給
水装置57に供給する。その際、樹脂層56を通った排
液は、流路82から排出される。本工程終了後は、バル
ブ65を閉、ポンプ84を停止にして再生排液を樹脂層
56から押し出した後、洗浄する。
Next, an aqueous sodium chloride solution is introduced from the aqueous sodium chloride tank 5 into the regeneration tower 3, and the resin is regenerated by flowing the aqueous solution from the water supply device 57 in the downward flow under the above conditions. In the resin layer 56, the ion exchange reaction of the above formula (3) or (4) occurs, and the resin is converted into Cl form. The pump 84 drives the pump 84 to take out the aqueous sodium chloride solution to be supplied to the regeneration tower 3.
When the valves 2, 63 are closed and the valves 51, 65, 66, 67 are open, they are suction-mixed by the ejector 85 and supplied to the water supply device 57 from the channel 73. At that time, the drainage that has passed through the resin layer 56 is discharged from the flow path 82. After the completion of this step, the valve 65 is closed, the pump 84 is stopped, and the regenerated effluent is extruded from the resin layer 56, followed by washing.

【0038】サイクルを繰り返すと、樹脂中の菌増殖に
より処理液中の菌数が増加し、インライン殺菌器の能力
が不足してくることがある。そこで再生終了後には、イ
オン交換樹脂の熱殺菌を行う。まずバルブ51、62、
63を開とし、70〜75℃の温水を樹脂層56に通
す。排水の温度を計り、70℃以上になったら、バルブ
51、62、63をすべて閉とし、このまま3〜5時間
放置する。その後、常温水にて洗浄を行う。これらの操
作は省略することもできるが、サイクル毎の処理液の菌
数増加を監視しながら、再生工程10回のうち1回程度
は実施する。
When the cycle is repeated, the number of bacteria in the processing solution increases due to the proliferation of bacteria in the resin, and the capability of the in-line sterilizer may become insufficient. Therefore, after the end of the regeneration, heat sterilization of the ion exchange resin is performed. First, the valves 51, 62,
63 is opened, and hot water of 70 to 75 ° C. is passed through the resin layer 56. The temperature of the waste water is measured, and when the temperature reaches 70 ° C. or higher, the valves 51, 62, and 63 are all closed, and left as it is for 3 to 5 hours. Thereafter, washing is performed with room temperature water. These operations can be omitted, but about one out of ten regeneration steps is performed while monitoring the increase in the number of bacteria in the processing solution for each cycle.

【0039】再生した樹脂はバルブ18、33、58を
開の状態にして連絡路86から脱硝酸塔1に戻し、再び
脱硝酸処理を繰り返す。この際、水はバルブ18を開い
て、気液導入装置42を経て排出する。中継タンク8中
の処理液は、ポンプ91によりサイクロン92およびフ
ィルタ93に送って固形分を除去した後、インライン殺
菌器94により殺菌する。インライン殺菌器94では、
熱水槽95内の熱水をポンプ96により循環路97を循
環させて間接加熱を行って殺菌する。殺菌した処理液は
処理液タンク9に送り、貯蔵する。このようにして得た
処理液は(野菜汁)は野菜ジュース等のミックス原料な
どとして使用する。
The regenerated resin is returned to the denitrification tower 1 from the communication path 86 with the valves 18, 33, 58 opened, and the denitration process is repeated again. At this time, the water is discharged through the gas-liquid introduction device 42 by opening the valve 18. The processing liquid in the relay tank 8 is sent to a cyclone 92 and a filter 93 by a pump 91 to remove solids, and then sterilized by an in-line sterilizer 94. In the in-line sterilizer 94,
The hot water in the hot water tank 95 is circulated through the circulation path 97 by the pump 96 to perform indirect heating and sterilize. The sterilized processing liquid is sent to the processing liquid tank 9 and stored therein. The treatment liquid (vegetable juice) thus obtained is used as a mixed raw material of vegetable juice and the like.

【0040】このような製造方法においては、水酸化ナ
トリウム水溶液を用いた再生工程を含んでいるので、逆
洗だけでは除去することができない、樹脂に付着した有
機性不純物を除去することができ、これにより樹脂のイ
オン交換能は高く維持され、硝酸イオン含量の少ない野
菜汁を効率よく製造することがきでる。
Since such a production method includes a regeneration step using an aqueous solution of sodium hydroxide, it is possible to remove organic impurities attached to the resin which cannot be removed only by backwashing. As a result, the ion exchange capacity of the resin is maintained at a high level, and vegetable juice having a low nitrate ion content can be efficiently produced.

【0041】[0041]

【実施例】実施例1 1)脱硝酸処理 野菜汁としては、ほうれん草を搾汁後、減圧蒸発濃縮法
により30〜40°Bxに濃縮し、凍結保存したものを
用いた。脱硝酸処理に際しては、このほうれん草搾汁液
を解凍した後純水で希釈し、10°Bxに調整したもの
を原液(被処理液)として用い、図1の方法により野菜
汁を製造した。
EXAMPLES Example 1 1) Denitrification Treatment As vegetable juice, spinach was squeezed, concentrated to 30 to 40 ° Bx by a vacuum evaporation method, and frozen and stored. At the time of denitrification, the spinach juice was thawed, diluted with pure water, and adjusted to 10 ° Bx as a stock solution (liquid to be treated) to produce vegetable juice by the method of FIG.

【0042】Cl形強塩基性アニオン交換樹脂として
は、A−118(栗田工業(株)製、I型ポーラスタイ
プ)を使用した。なお、樹脂を最初に使用する場合は、
4重量%の水酸化ナトリウム水溶液を通液したのち純水
で洗浄し、さらに70℃の熱水で3時間殺菌処理し、次
に10重量%塩化ナトリウム水溶液を通液してCl形に
して使用した。2回目以降の脱硝酸処理に使用する場合
は、後述の再生処理に従った。脱硝酸処理は、上記樹脂
1 literを直経50mmのアクリルカラムに充填し、原
液2 literを15℃において下向流で、SV=1h-1
流速で通液してNo.1の処理液2.4 literを得た。
硝酸イオン除去率などの結果を表1に示す。
As the Cl-type strong basic anion exchange resin, A-118 (I-type porous type, manufactured by Kurita Kogyo Co., Ltd.) was used. When using resin for the first time,
After passing a 4% by weight aqueous sodium hydroxide solution, washing with pure water, further sterilizing with hot water of 70 ° C. for 3 hours, and then passing a 10% by weight aqueous sodium chloride solution to form Cl and use did. When used for the second and subsequent denitrification treatments, the regeneration treatment described later was followed. In the denitrification treatment, 1 liter of the above resin was packed in an acrylic column having a diameter of 50 mm, and 2 liter of the stock solution was passed downward at 15 ° C. at a flow rate of SV = 1 h −1 , and No. 1 was passed. 2.4 liters of the treatment solution of No. 1 was obtained.
Table 1 shows the results such as the nitrate ion removal rate.

【0043】2)塩化ナトリウム水溶液による再生処理 樹脂の再生は10重量%の塩化ナトリウム水溶液を常温
下に下向流で、SV=3h-1の流速で薬注して行った。
塩化ナトリウムの使用量は400g/l−樹脂とした。
水洗後、上記1)の脱硝酸処理の方法により原液の脱硝
酸処理を行い、No.2の処理液を得た。同様に再生処
理および脱硝酸処理を繰り返し、No.3〜No.9の
処理液を得た。結果を表1および表2に示す。
2) Regeneration treatment with sodium chloride aqueous solution The resin was regenerated by pouring a 10% by weight aqueous solution of sodium chloride downward at room temperature at a flow rate of SV = 3 h -1 .
The amount of sodium chloride used was 400 g / l-resin.
After washing with water, the stock solution was subjected to denitrification by the method of denitration in 1) above. 2 was obtained. Similarly, the regeneration treatment and the denitrification treatment were repeated. 3-No. 9 was obtained. The results are shown in Tables 1 and 2.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】表1および表2の注 *1 屈折率計で求めた溶解固形分濃度Notes to Tables 1 and 2 * 1 Dissolved solids concentration determined by refractometer

【数1】 (Equation 1)

【0047】表1および表2の結果から、塩化ナトリウ
ム水溶液単独による樹脂再生を繰り返して行うと、徐々
に硝酸イオン除去率が低下していくが、No.8の処理
液までは硝酸イオン除去率は95%以上であり、高い除
去率が得られていることがわかる。
From the results shown in Tables 1 and 2, when the resin regeneration with the sodium chloride aqueous solution alone is repeatedly performed, the nitrate ion removal rate gradually decreases. Up to the treatment liquid No. 8, the nitrate ion removal rate was 95% or more, indicating that a high removal rate was obtained.

【0048】3)水酸化ナトリウム水溶液による再生処
理 No.9の処理液を得た後、水酸化ナトリウム水溶液お
よび塩化ナトリウム水溶液を用いて樹脂の再生を行っ
た。水酸化ナトリウム水溶液の場合は、40℃の2重量
%水酸化ナトリウム水溶液を下向流で、SV=3h-1
流速で通液して行った。水酸化ナトリウムの使用量は1
00g/liter−樹脂とした。その後は水洗した
後、前記と同様にして塩化ナトリウム水溶液を通液して
再生した。再生結果を表3に示す。
3) Regeneration treatment with aqueous sodium hydroxide solution After obtaining the treatment liquid No. 9, the resin was regenerated using an aqueous sodium hydroxide solution and an aqueous sodium chloride solution. In the case of an aqueous sodium hydroxide solution, a 2% by weight aqueous sodium hydroxide solution at 40 ° C. was passed in a downward flow at a flow rate of SV = 3 h −1 . The amount of sodium hydroxide used is 1
00 g / liter-resin. Thereafter, after washing with water, regeneration was performed by passing an aqueous solution of sodium chloride in the same manner as described above. Table 3 shows the reproduction results.

【0049】[0049]

【表3】 [Table 3]

【0050】表3の注Notes for Table 3

【数2】 *2 再生液中に排出されたBOD成分の絶対量(再生
排液量×再生排液BOD濃度) *3 表2のNo.8の処理液を得た樹脂を再生した時
の結果
(Equation 2) * 2 Absolute amount of BOD component discharged into the regenerated solution (regenerated drainage amount × regenerated drainage BOD concentration) * 3 Of regenerating the resin from which the treatment solution 8 was obtained

【0051】表3の結果から、水酸化ナトリウム水溶液
および塩化ナトリウム水溶液を用いて樹脂の再生を行っ
た場合、塩化ナトリウム水溶液単独で再生を行った場合
に比べて、有機物(BOD)の排出量(除去量)が多
く、しかも樹脂の交換基の再生率も高いことがわかる。
From the results shown in Table 3, when the resin was regenerated using an aqueous solution of sodium hydroxide and an aqueous solution of sodium chloride, the amount of organic matter (BOD) discharged (BOD) was lower than when the regeneration was performed using the aqueous solution of sodium chloride alone. (Removed amount) is large, and the regeneration rate of the exchange group of the resin is high.

【0052】上記のようにして水酸化ナトリウム水溶液
および塩化ナトリウム水溶液を用いて再生した樹脂を用
いて、前記1)の方法によりほうれん草の搾汁液を脱硝
酸処理し、No.10の処理液を得た。結果は表2に示
しているが、再生に2液を使用することにより、イオン
交換樹脂の硝酸除去能がほぼ新品レベルまで回復するこ
とがわかる。
Using the resin regenerated with the aqueous sodium hydroxide solution and the aqueous sodium chloride solution as described above, the squeezed liquid of spinach was denitrified by the method of 1). 10 treatment liquids were obtained. The results are shown in Table 2, and it can be seen that the nitric acid removal ability of the ion exchange resin is almost restored to the level of a new product by using two liquids for regeneration.

【0053】4)殺菌処理 前記1)の脱硝酸処理および2)、3)の再生処理の方
法により、脱硝酸処理および再生処理を20サイクル以
上実施した後、装置を3か月間停止した。運転を再開す
る前、塩化ナトリウム水溶液で再生を行った後、樹脂を
70〜80℃の熱水に3時間浸漬して殺菌を行った。
4) Sterilization Treatment According to the denitration treatment of 1) and the regeneration treatment of 2) and 3), the denitrification treatment and the regeneration treatment were carried out for 20 cycles or more, and then the apparatus was stopped for 3 months. Before resuming the operation, the resin was regenerated with an aqueous sodium chloride solution, and the resin was immersed in hot water at 70 to 80 ° C. for 3 hours to perform sterilization.

【0054】この殺菌処理した樹脂を用いて、前記1)
の方法によりほうれん草の搾汁液を脱硝酸処理して処理
液を得た。この処理液中の一般細菌数と、カビおよび酵
母の数とを次のようにして測定した。一般細菌について
は、標準寒天培地を用い、サンプルを適宜希釈して1m
lあたりの平板培養法にて37℃、48時間培養後判定
した。カビ、酵母については、ポテトデキストロース寒
天培地を用い、サンプルを適宜希釈して1mlあたりの
平板培養法にて30℃、72時間培養後判定した。結果
を表4に示す。なお殺菌処理しない樹脂を用いて得られ
た処理液についても上記と同様に判定して対照とした。
結果を表5に示す。
Using this sterilized resin, the above 1)
The juice of spinach was subjected to a denitrification treatment according to the above method to obtain a treated liquid. The number of general bacteria and the number of molds and yeasts in this treatment solution were measured as follows. For general bacteria, use a standard agar medium and appropriately dilute the sample to 1 m
It was determined after culturing at 37 ° C. for 48 hours by a plate culture method per 1 liter. With respect to mold and yeast, samples were appropriately diluted using a potato dextrose agar medium, and determined by culturing at 30 ° C. for 72 hours per 1 ml of a plate culture method. Table 4 shows the results. In addition, the processing liquid obtained using the resin which was not subjected to the sterilization treatment was also determined in the same manner as described above and used as a control.
Table 5 shows the results.

【0055】[0055]

【表4】 [Table 4]

【0056】[0056]

【表5】 [Table 5]

【0057】上記結果から、熱水殺菌した樹脂を使用す
ることにより、細菌数の少ない野菜汁が得られることが
わかる。
From the above results, it can be seen that the use of hot water-sterilized resin makes it possible to obtain vegetable juice with a low bacterial count.

【0058】実施例2 実施例1と同様にして10°Bxに調整したケール搾汁
液を原液として用い、実施例1と同様にして脱硝酸処理
および塩化ナトリウム水溶液単独による再生処理を操返
して行い、No.1〜No.7の処理液を得た。結果を
表6および表7に示す。
Example 2 Kale squeezed liquid adjusted to 10 ° Bx as in Example 1 was used as a stock solution, and denitrification and regeneration with sodium chloride alone were repeated as in Example 1. , No. 1 to No. 7 was obtained. The results are shown in Tables 6 and 7.

【0059】[0059]

【表6】 [Table 6]

【0060】[0060]

【表7】 表6および表7の注 *1 表1参照 *2 表1参照[Table 7] Notes on Tables 6 and 7 * 1 See Table 1 * 2 See Table 1

【0061】No.7の処理液を得た後、水酸化ナトリ
ウム水溶液および塩化ナトリウム水溶液を用いて実施例
1と同様にして樹脂の再生を行った。再生結果を表8に
示す。
No. After obtaining the treating solution of No. 7, the resin was regenerated in the same manner as in Example 1 using an aqueous solution of sodium hydroxide and an aqueous solution of sodium chloride. Table 8 shows the reproduction results.

【表8】 *1 表3参照 *2 表3参照 *3 表7のNo.6の処理液を得た樹脂を再生した時の結果[Table 8] * 1 See Table 3 * 2 See Table 3 * 3 No. in Table 7 Result of regenerating the resin from which the treatment solution 6 was obtained

【0062】表8の結果から、水酸化ナトリウム水溶液
および塩化ナトリウム水溶液を用いて樹脂の再生を行っ
た場合、塩化ナトリウム水溶液単独で再生を行った場合
に比べて、有機物(BOO)の排出量(除去量)が多
く、しかも樹脂の交換基の再生率も高いことがわかる。
From the results shown in Table 8, when the resin was regenerated using an aqueous solution of sodium hydroxide and an aqueous solution of sodium chloride, the amount of organic substances (BOO) discharged (BOO) was lower than when the regeneration was performed using only the aqueous solution of sodium chloride alone. (Removed amount) is large, and the regeneration rate of the exchange group of the resin is high.

【0063】上記のようにして水酸化ナトリウム水溶液
および塩化ナトリウム水溶液を用いて再生した樹脂を用
いて、前記と同様にしてケール搾汁液を脱硝酸処理し、
No.8の処理液を得た。結果は表7に示しているが、
硝酸イオン除去率は初期と同等まで回復していることが
わかる。
Using the resin regenerated with the aqueous sodium hydroxide solution and the aqueous sodium chloride solution as described above, the kale juice was subjected to a denitrification treatment in the same manner as described above.
No. 8 was obtained. The results are shown in Table 7,
It can be seen that the nitrate ion removal rate has recovered to the same level as the initial stage.

【0064】参考例1 実施例1で用いたものと同様の樹脂A−118を直径1
50mmのアクリルカラムに18 liter充填し、10°
Bxほうれん草搾汁液34 literの脱硝酸処理を行い、
収率を上げる方法を検討した。
Reference Example 1 Resin A-118 similar to that used in Example 1 was prepared by
18 liter packed in 50mm acrylic column, 10 °
Bx spinach squeezed liquid 34 liter denitrification treatment,
A method for increasing the yield was studied.

【0065】脱硝酸塔内の残留液を空気で全て押し出し
た後、さらに樹脂層面の上部200mmまで水を加え
て、ブロワで攪拌後、再び空気で押し出すことにより収
率が約3〜5%向上し、82〜84%となった。同様に
12°Bxに濃縮調整したほうれん草搾汁液を使用した
場合では、上記の水抽出を2回行うことにより86〜9
0%の回収が可能になった。
After all the residual liquid in the denitrification tower is extruded with air, water is further added up to 200 mm above the resin layer surface, stirred with a blower, and extruded again with air to improve the yield by about 3 to 5%. And 82% to 84%. Similarly, when spinach juice concentrated and adjusted to 12 ° Bx is used, the above-mentioned water extraction is performed twice to make 86 to 9
0% recovery is now possible.

【0066】なお回収率(歩留)は、原液の量、Bri
x度に対する処理液の量とBrix度から算出した。ま
た、回収下限のBrix度は、通液開始および水押し出
しとも1.5°Bxとして、処理液の平均Brix度が
7°Bx以下にならないように留意した。
The recovery rate (yield) is based on the amount of the undiluted solution, Bri
It was calculated from the amount of the processing solution with respect to x degrees and the Brix degree. In addition, the Brix degree at the lower limit of recovery was set to 1.5 ° Bx for both the start of the passage and the extrusion of water, and care was taken so that the average Brix degree of the treatment liquid did not become 7 ° Bx or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例による野菜汁の製造装置を示す系統図で
ある。
FIG. 1 is a system diagram showing an apparatus for producing vegetable juice according to an embodiment.

【符号の説明】[Explanation of symbols]

1 脱硝酸塔 2、56 樹脂層 3 再生塔 4 水酸化ナトリウム水溶液槽 5 塩化ナトリウム水溶液槽 6 原液タンク 7 ブロワ 8 中継タンク 9 処理液タンク 11、12、13,15、16、17、18、19、2
0、21、31、3233、51、52、53、54、
55、61、62、63、65、66、67バルブ 25、68、84、91、96 ポンプ 26、93 フィルタ 27、29、41、43、75、86 連絡路 28、76 気液導入口 35 空気路 36、37 給水路 38、78 給水口 42、64 気液導入装置 44、81 集液装置 45 排液路 57 給水装置 71、 熱交換器 72、85 エゼクタ 73 流路 82 排液路 92 サイクロン 94 殺菌器 95 熱水槽 97 循環路
Reference Signs List 1 denitrification tower 2, 56 resin layer 3 regeneration tower 4 sodium hydroxide aqueous solution tank 5 sodium chloride aqueous solution tank 6 stock solution tank 7 blower 8 relay tank 9 treatment solution tank 11, 12, 13, 15, 16, 17, 18, 19 , 2
0, 21, 31, 3233, 51, 52, 53, 54,
55, 61, 62, 63, 65, 66, 67 valve 25, 68, 84, 91, 96 pump 26, 93 filter 27, 29, 41, 43, 75, 86 communication path 28, 76 gas-liquid inlet 35 air Channels 36 and 37 Water supply channels 38 and 78 Water supply ports 42 and 64 Gas-liquid introduction devices 44 and 81 Liquid collection devices 45 Drainage channels 57 Water supply devices 71 and heat exchangers 72 and 85 Ejectors 73 Flow channels 82 Drainage channels 92 Cyclones 94 Sterilizer 95 Hot water tank 97 Circulation path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森部 隆行 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 勝又 卓也 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Takayuki Moribe 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Kurita Industry Co., Ltd. (72) Inventor Takuya Katsumata 3-4-2 Nishishinjuku, Shinjuku-ku, Tokyo No. Kurita Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 野菜の搾汁液をイオン交換樹脂と接触さ
せて硝酸イオンを吸着する脱硝酸工程、および硝酸イオ
ンを吸着したイオン交換樹脂を再生する再生工程からな
る脱硝酸−再生サイクルを行う野菜汁の製造方法におい
て、 前記脱硝酸−再生サイクルとして、 野菜の搾汁液をCl形強塩基性アニオン交換樹脂と接触
させて硝酸イオンを吸着する脱硝酸工程、および硝酸イ
オンを吸着した強塩基性アニオン交換樹脂を水酸化ナト
リウム水溶液と接触させたのち塩化ナトリウム水溶液と
接触させて再生する再生工程からなる脱硝酸−再生サイ
クルを行うことを特徴とする野菜汁の製造方法。
1. A vegetable which is subjected to a denitrification-regeneration cycle comprising a denitrification step of adsorbing nitrate ions by bringing a vegetable juice into contact with an ion exchange resin and a regeneration step of regenerating the ion exchange resin adsorbing nitrate ions. In the method for producing a juice, the denitrification-regeneration cycle includes: a denitration step in which a vegetable squeezed solution is brought into contact with a Cl-type strong basic anion exchange resin to adsorb nitrate ions; and a strong basic anion adsorbing nitrate ions. A method for producing vegetable juice, comprising performing a denitrification-regeneration cycle comprising a regeneration step of contacting an exchange resin with an aqueous solution of sodium hydroxide and then regenerating by contacting with an aqueous solution of sodium chloride.
【請求項2】 野菜の搾汁液をイオン交換樹脂と接触さ
せて硝酸イオンを吸着する脱硝酸工程、および硝酸イオ
ンを吸着したイオン交換樹脂を再生する再生工程からな
る脱硝酸−再生サイクルを行う野菜汁の製造方法におい
て、 前記脱硝酸−再生サイクルとして、 野菜の搾汁液をCl形強塩基性アニオン交換樹脂と接触
させて硝酸イオンを吸着する脱硝酸工程、および硝酸イ
オンを吸着した強塩基性アニオン交換樹脂を水酸化ナト
リウム水溶液と接触させたのち塩化ナトリウム水溶液と
接触させて再生する第1の再生工程からなる第1の脱硝
酸−再生サイクル、ならびに野菜の搾汁液をCl形強塩
基性アニオン交換樹脂と接触させて硝酸イオンを吸着す
る脱硝酸工程、および硝酸イオンを吸着した強塩基性ア
ニオン交換樹脂を水酸化ナトリウム水溶液と接触させる
ことなく塩化ナトリウム水溶液のみと接触させて再生す
る第2の再生工程からなる第2の脱硝酸−再生サイクル
を組み合せ行うことを特徴とする野菜汁の製造方法。
2. A vegetable which is subjected to a denitrification-regeneration cycle comprising a denitration step of adsorbing nitrate ions by bringing a vegetable juice into contact with an ion exchange resin and a regeneration step of regenerating the ion exchange resin adsorbing nitrate ions. In the method for producing a juice, the denitrification-regeneration cycle includes: a denitration step in which a vegetable squeezed solution is brought into contact with a Cl-type strong basic anion exchange resin to adsorb nitrate ions; and a strong basic anion adsorbing nitrate ions. A first denitrification-regeneration cycle comprising a first regeneration step in which the exchange resin is brought into contact with an aqueous sodium hydroxide solution and then brought into contact with an aqueous sodium chloride solution, and the vegetable squeezed liquid is subjected to Cl-type strong basic anion exchange A denitrification step of adsorbing nitrate ions by contact with the resin, and sodium hydroxide Second de-nitrate of a second reproduction step of reproducing by contacting an aqueous sodium chloride solution only without contact with an aqueous solution - method for producing vegetable juice and performs combination regeneration cycle.
JP09635898A 1998-04-08 1998-04-08 Production method of vegetable juice Expired - Fee Related JP3446599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09635898A JP3446599B2 (en) 1998-04-08 1998-04-08 Production method of vegetable juice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09635898A JP3446599B2 (en) 1998-04-08 1998-04-08 Production method of vegetable juice

Publications (2)

Publication Number Publication Date
JPH11290041A true JPH11290041A (en) 1999-10-26
JP3446599B2 JP3446599B2 (en) 2003-09-16

Family

ID=14162781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09635898A Expired - Fee Related JP3446599B2 (en) 1998-04-08 1998-04-08 Production method of vegetable juice

Country Status (1)

Country Link
JP (1) JP3446599B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483443B1 (en) * 2002-08-29 2005-04-15 (주)메타만나 Method for Removing Nitrate from Plant Material
US7407680B2 (en) 2003-10-01 2008-08-05 Ito En, Ltd. Method for manufacturing vegetable juice and the like with decreased nitrate ions
US7635459B2 (en) 2004-09-21 2009-12-22 Ito En, Ltd. Method of removing nitric acid from aqueous liquid and method of producing drinks
CN114917965A (en) * 2022-04-29 2022-08-19 浙江西热利华智能传感技术有限公司 Alkaline solution generating system and method for chemical instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483443B1 (en) * 2002-08-29 2005-04-15 (주)메타만나 Method for Removing Nitrate from Plant Material
US7407680B2 (en) 2003-10-01 2008-08-05 Ito En, Ltd. Method for manufacturing vegetable juice and the like with decreased nitrate ions
US7635459B2 (en) 2004-09-21 2009-12-22 Ito En, Ltd. Method of removing nitric acid from aqueous liquid and method of producing drinks
CN114917965A (en) * 2022-04-29 2022-08-19 浙江西热利华智能传感技术有限公司 Alkaline solution generating system and method for chemical instrument

Also Published As

Publication number Publication date
JP3446599B2 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
CN106669621B (en) A kind of preparation method and application of chitosan/zeolite adsorbent
CN107055904A (en) A kind of industrial tail end wastewater zero-discharge treatment system and technique
CN111072193A (en) Ultrafiltration mineral water production system
CN102079591A (en) Dual-membrane processing system and method for micro-polluted raw water
JPH11290041A (en) Production of vegetable juice
CN206403119U (en) The production system of fruit-flavored beverage
CN1344690A (en) Water treating method and treater for producing pure health water
CN215667580U (en) Direct drinking water purification treatment device
JP2546750B2 (en) How to sterilize activated carbon
CN114605007A (en) Device and method for treating nitrate radical exchange resin regeneration waste liquid
CN206843268U (en) A kind of industrial tail end wastewater zero-discharge treatment system
AU2013209140A1 (en) A method for removing ammonium nitrogen from organic waste water.
CN110228913A (en) A method of removing musk ambrette in water removal
JP3694871B2 (en) Separation and recovery method of target components
JPH05140799A (en) Sterilizer
CN112811708A (en) Direct drinking water purification treatment method and device
CN101279203A (en) Method for cleaning biological dirt on micro-filtering flat plate film by ultrasonic
CN205874142U (en) Reverse osmosis membrane water processing system
CN220951444U (en) Waste liquid treatment device for extracting supernatant from intestinal bacteria
JP2000024692A (en) Device for treating sulfate ion-containing waste water
CN1493533A (en) Yellow ginger acid spliting waste water resource utilization technique
JPS6331592A (en) Method for making ultrapure water
CN208545243U (en) A kind of salt water reclamation system
JPH07121388B2 (en) Sterilization and neutralization method of activated carbon with acid and alkali
JPH0671255A (en) Method for removing nitrate ion and/or nitrite ion and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees