JPH1128755A - Production of tubular object - Google Patents

Production of tubular object

Info

Publication number
JPH1128755A
JPH1128755A JP9183646A JP18364697A JPH1128755A JP H1128755 A JPH1128755 A JP H1128755A JP 9183646 A JP9183646 A JP 9183646A JP 18364697 A JP18364697 A JP 18364697A JP H1128755 A JPH1128755 A JP H1128755A
Authority
JP
Japan
Prior art keywords
mold
annular
flow path
reinforcing material
middle mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9183646A
Other languages
Japanese (ja)
Inventor
Koji Yamaguchi
公二 山口
Shunji Hyozu
俊司 俵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP9183646A priority Critical patent/JPH1128755A/en
Publication of JPH1128755A publication Critical patent/JPH1128755A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/33Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles with parts rotatable relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • B29C48/70Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
    • B29C48/71Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows for layer multiplication

Abstract

PROBLEM TO BE SOLVED: To reinforce a tubular object by arranging a reinforcing material in both longitudinal and peripheral directions of the tubular object, in a mold consisting of the rotary cylindrical middle mold inside a cylindrical mold and the rotary inner mold inside the middle mold, by melting and mixing a reinforcing material and thermoplastic resin to pass the resulting mixture through the annular passage between the outer mold and middle mold of the mold and the annular passage between the middle mold and inner mold thereof to allow them to meet with each other in a mold annular confluent passage part to laminate them to extrude the laminate in a tubular form. SOLUTION: The molten mixture containing a reinforcing material and a thermoplastic resin melted and mixed in an extruder is introduced into an extrusion mold 12 from a resin passage 28. The molten mixture is separately introduced into the annular passage A between an outer mold 22 and a middle mold 23 and the annular passage B between the middle mold 23 and an inner mold 24 from the through-holes provided on the circumference of the middle mold 23 at an equal interval to be passed therethrough and allowed to meet with each other in the annular confluent passage part of a mold 12 to be laminated to form a tubular laminated shaped article and a tubular object T is extruded from a mold outlet. The outer layer (a) of the wall thickness of the tubular object T becomes a layer wherein the reinforcing material is oriented in the annular passage A and the inner layer (b) becomes a layer wherein the reinforcing material is oriented in the annular passage B. By this constitution, the tubular member wherein the reinforcing material is oriented in both of peripheral and axial directions is obtained and the tubular member excellent in inner and outer strengths can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強化材により強化
された熱可塑性樹脂よりなる管状体の製造方法に関す
る。
The present invention relates to a method for producing a tubular body made of a thermoplastic resin reinforced by a reinforcing material.

【0002】[0002]

【従来の技術】従来、合成樹脂管状体の強度を大きくす
るために、繊維状の強化材を混入することが行なわれて
いる。
2. Description of the Related Art Conventionally, in order to increase the strength of a synthetic resin tubular body, a fibrous reinforcing material has been mixed.

【0003】しかしながら、従来法によれば、繊維状の
強化材は押出方向に配向されるため、押出方向すなわち
管状体の長手方向には繊維補強されるが、管状体の周方
向には補強されないという欠点があった。
However, according to the conventional method, since the fibrous reinforcing material is oriented in the extrusion direction, the fiber is reinforced in the extrusion direction, that is, in the longitudinal direction of the tubular body, but is not reinforced in the circumferential direction of the tubular body. There was a disadvantage.

【0004】そこで、このような欠点を解決するものと
して、例えば実開昭61−71421号公報に記載され
ているように、ニップル(内型)と、このニップルと同
軸に設けられたダイス(外型)とを備え、ニップル及び
ダイスの何れか一方が回転駆動される金型を用いて押出
成形することにより、周方向に短繊維が配向した管状体
を得る方法が知られている。
In order to solve such a drawback, for example, as described in Japanese Utility Model Application Laid-Open No. 61-71421, a nipple (inner die) and a die (outer die) provided coaxially with the nipple are disclosed. And a method for obtaining a tubular body in which short fibers are oriented in the circumferential direction by extrusion molding using a mold in which one of a nipple and a die is rotationally driven.

【0005】そして、管周方向および長手方向の両方に
強化された管状体を得たい場合には、各々の方法を取り
込んだ2層流路を使用することが考えられる。
If it is desired to obtain a reinforced tubular body in both the circumferential direction and the longitudinal direction, it is conceivable to use a two-layer flow channel incorporating each method.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この方
法を採用した場合、2層が合流する部分では、金型によ
って回転を付与されて周方向へ流動する溶融樹脂と、固
定流路面を長手方向に流動してきた溶融樹脂とが積層さ
れるため、管周方向および長手方向の強化が不充分であ
るという問題がある。
However, when this method is adopted, at the portion where the two layers join, the molten resin which is rotated by the mold and flows in the circumferential direction and the fixed flow path surface are moved in the longitudinal direction. Since the flowing molten resin is laminated, there is a problem that reinforcement in the tube circumferential direction and the longitudinal direction is insufficient.

【0007】本発明は、上記の問題を解決するものであ
り、その目的とするところは、強化材が管状体の長手方
向および周方向のいずれにも配向されて、両方に効率よ
く強化された管状体を成形することができる、管状体の
製造方法を提供しようとすることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to reinforce the material in both the longitudinal direction and the circumferential direction of the tubular body so that both are efficiently reinforced. An object of the present invention is to provide a method for manufacturing a tubular body, which can form the tubular body.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の管状体の製造方法は、略筒状の外型と、外
型の内側に収められかつ樹脂の押出方向と同方向にのび
る回転軸を中心として駆動回転する略筒状の中型と、中
型の内側に収められかつ樹脂の押出方向と同方向にのび
る回転軸を中心として中型と同方向同回転数で駆動回転
する内型とを備えている金型を用意し、外型と中型との
間に横断面環状の流路(以下、環状流路という)が形成
され、中型と内型との間に環状流路が形成されるととも
に、これらの環状流路は金型の出口側部分において合流
して環状合流流路部が形成されており、押出機内で溶融
混合した強化材と熱可塑性樹脂とを含む溶融混合物を、
金型の複数の環状流路に分れて導入し、溶融混合物をこ
れらの流路を通過させ、金型の環状合流流路部において
各環状流路を通過してきた溶融混合物を合流かつ積層し
て、管状積層賦形物を形成し、これを金型出口より押し
出すことを特徴としている。
In order to achieve the above object, a method for manufacturing a tubular body according to the present invention comprises a substantially cylindrical outer mold, and an outer mold which is housed inside the outer mold and has the same direction as the resin extrusion direction. A substantially cylindrical middle mold that is driven and rotated around a rotating shaft extending therethrough, and an inner cylinder that is housed inside the middle mold and is driven and rotated at the same rotational speed in the same direction as the middle mold about a rotating shaft that extends in the same direction as the resin extrusion direction. A mold having a mold is prepared, an annular flow path (hereinafter, referred to as an annular flow path) is formed between the outer mold and the middle mold, and an annular flow path is formed between the middle mold and the inner mold. While being formed, these annular flow paths are joined at the outlet side of the mold to form an annular combined flow path portion, and the molten mixture containing the reinforcing material and the thermoplastic resin melt-mixed in the extruder is formed. ,
The molten mixture is introduced into the plurality of annular flow paths of the mold, the molten mixture is passed through these flow paths, and the molten mixture that has passed through each annular flow path at the annular merging flow path section of the mold is merged and laminated. Thus, a tubular laminated shape is formed and extruded from a mold outlet.

【0009】上記管状体の製造方法において、外型が、
樹脂の押出方向と同方向にのびる回転軸を中心として、
かつ中型および内型の回転方向と同方向に回転数差が1
rpm以上で駆動回転するか、または中型および内型と
異方向に駆動回転するのが、好ましい。
In the above method for manufacturing a tubular body, the outer mold may be
With the rotation axis extending in the same direction as the resin extrusion direction,
In addition, the difference in the number of rotations is 1 in the same
It is preferable to drive and rotate at rpm or higher, or to drive and rotate in a different direction from the middle and inner molds.

【0010】また、本発明の管状体の製造方法は、樹脂
の押出方向と同方向にのびる回転軸を中心として駆動回
転する略筒状の外型と、外型の内側に収められかつかつ
樹脂の押出方向と同方向にのびる回転軸を中心として外
型と同方向同回転数で駆動回転する略筒状の中型と、中
型の内側に収められた内型とを備えている金型を用意
し、外型と中型との間に環状流路が形成され、中型と内
型との間に環状流路が形成されるとともに、これらの環
状流路は金型の出口側部分において合流して環状合流流
路部が形成されており、押出機内で溶融混合した強化材
と熱可塑性樹脂とを含む溶融混合物を、金型の複数の環
状流路に分れて導入し、溶融混合物をこれらの流路を通
過させ、金型の環状合流流路部において各環状流路を通
過してきた溶融混合物を合流かつ積層して、管状積層賦
形物を形成し、これを金型出口より押し出すことを特徴
としている。
Further, the method for producing a tubular body of the present invention comprises a substantially cylindrical outer mold which is driven and rotated about a rotating shaft extending in the same direction as the resin extrusion direction; Prepare a mold that has a substantially cylindrical middle mold that is driven and rotated at the same rotation speed in the same direction as the outer mold about the rotation axis extending in the same direction as the extrusion direction, and an inner mold housed inside the middle mold. An annular flow path is formed between the outer mold and the middle mold, an annular flow path is formed between the middle mold and the inner mold, and these annular flow paths join at an outlet side portion of the mold to form an annular flow path. A merging flow path is formed, and a molten mixture containing a reinforcing material and a thermoplastic resin melt-mixed in an extruder is introduced into a plurality of annular flow paths of a mold, and the molten mixture is flown into these flow paths. And the molten mixture that has passed through each annular channel at the annular merging channel of the mold Confluence and then stacked to form a tubular laminate excipients thereof, and wherein this extruding from the die outlet.

【0011】上記管状体の製造方法において、内型が、
樹脂の押出方向と同方向にのびる回転軸を中心として、
かつ中型および外型の回転方向と同方向に回転数差が1
rpm以上で駆動回転するか、または中型および外型と
異方向に駆動回転するのが、好ましい。
In the above method for manufacturing a tubular body, the inner mold may be:
With the rotation axis extending in the same direction as the resin extrusion direction,
And a difference in the number of rotations in the same direction as the rotation direction of the middle and outer molds is 1
It is preferable to drive and rotate at rpm or higher, or to drive and rotate in a different direction from the middle and outer molds.

【0012】(1) 強化材について 本発明に用いられる強化材としては、強化繊維、および
流動状態でせん断力を受けることにより繊維状となる液
晶ポリマーなどがあげられる。
(1) Reinforcing Material Examples of the reinforcing material used in the present invention include a reinforcing fiber and a liquid crystal polymer which becomes fibrous when subjected to a shearing force in a fluidized state.

【0013】強化繊維としては、本発明の製造工程にて
加えられる熱により溶融軟化及び炭化しないものが使用
可能であり、具体的には、ガラス繊維、炭素繊維、金属
繊維、あるいはまたアラミド繊維、ポリエステル繊維、
およびポリアミド繊維などの有機繊維、または絹、綿、
または麻などの天然繊維があげられる。
As the reinforcing fibers, those which do not melt soften and carbonize by the heat applied in the production process of the present invention can be used. Specifically, glass fibers, carbon fibers, metal fibers, or aramid fibers, Polyester fiber,
And organic fibers such as polyamide fibers, or silk, cotton,
Or natural fibers such as hemp.

【0014】強化材として強化繊維を用いる場合、強化
繊維は、モノフィラメントであってもよいし、複数のモ
ノフィラメントが集束されたストランドであってもよ
い。また押出機への供給時の形態は、モノフィラメント
状であってもよいし、チョップドストランド状であって
もよいし、ロービング状であってもよい。
When a reinforcing fiber is used as the reinforcing material, the reinforcing fiber may be a monofilament or a strand in which a plurality of monofilaments are bundled. Further, the form at the time of supply to the extruder may be a monofilament form, a chopped strand form, or a roving form.

【0015】強化繊維の寸法としては、アスペクト比
(強化繊維長/強化繊維径)が5.0以上であることが
好ましい。アスペクト比が5.0以下では、繊維による
強化効果は小さい。得られる管状体中の強化繊維の長さ
が長いほど周方向の強度は大きくなるので、連続繊維を
用いてもよい。
As for the dimensions of the reinforcing fibers, the aspect ratio (reinforcing fiber length / reinforcing fiber diameter) is preferably 5.0 or more. When the aspect ratio is 5.0 or less, the reinforcing effect by the fiber is small. Since the strength in the circumferential direction increases as the length of the reinforcing fibers in the obtained tubular body increases, continuous fibers may be used.

【0016】液晶ポリマーとしては、後述の熱可塑性樹
脂の軟化温度よりも、高い液晶転移温度を有し、流動状
態で加えられるせん断力によって繊維状となるものであ
れば使用可能である。例としては全芳香族液晶ポリエス
テル、半芳香族液晶ポリエステルなどがあげられる。
As the liquid crystal polymer, any polymer having a liquid crystal transition temperature higher than the softening temperature of a thermoplastic resin described later and becoming fibrous by a shear force applied in a fluidized state can be used. Examples include wholly aromatic liquid crystal polyesters and semi-aromatic liquid crystal polyesters.

【0017】液晶ポリマーは、液晶転移温度以上の状態
で熱可塑性樹脂と混練された際、せん断によって繊維化
することが可能である。繊維化した液晶ポリマーの寸法
としては、アスペクト比(繊維長/繊維径)が5.0以
上であることが好ましい。
When a liquid crystal polymer is kneaded with a thermoplastic resin at a temperature equal to or higher than the liquid crystal transition temperature, it can be fiberized by shearing. As dimensions of the fibrous liquid crystal polymer, the aspect ratio (fiber length / fiber diameter) is preferably 5.0 or more.

【0018】強化材および熱可塑性樹脂との混合物に対
し、強化材は、1〜80体積%の範囲になるように含有
され、2〜50体積%の範囲が特に好ましい。含有量が
1体積%より少ないと補強効果は小さく、80体積%よ
り多いと強化材間を結着する樹脂が少ないため、管状体
は弱いものになる。
The reinforcing material is contained in the mixture of the reinforcing material and the thermoplastic resin in the range of 1 to 80% by volume, and particularly preferably in the range of 2 to 50% by volume. When the content is less than 1% by volume, the reinforcing effect is small, and when the content is more than 80% by volume, the amount of resin binding between the reinforcing materials is small, so that the tubular body is weak.

【0019】また、上記強化材による熱可塑性樹脂の強
化を妨げない範囲で、タルク、マイカ、炭酸カルシウ
ム、木粉、粉砕された合成樹脂粉、粉砕された繊維強化
合成樹脂粉などの充填材を配合してもよい。
Fillers such as talc, mica, calcium carbonate, wood powder, crushed synthetic resin powder, and crushed fiber reinforced synthetic resin powder are used as long as the reinforcement of the thermoplastic resin by the reinforcing material is not hindered. You may mix.

【0020】(2) 合成樹脂について 本発明に用いられる熱可塑性樹脂としては、押出成形に
より管状体に成形可能な樹脂であれば特に限定されず、
例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニ
ル、ポリスチレン、ポリアミド、ポリエチレンテレフタ
レート、ポリブチレンテレフタレート、ポリカーボネー
ト、ポリフッ化ビニリデン、ポリフェニレンサルファイ
ド、ポリフェニレンオキサイド、ポリエーテルスルホ
ン、ポリエーテルエーテルケトン、ポリメチルメタクリ
レートなどがあげられる。また、上記合成樹脂を主成分
とする共重合体やグラフト樹脂、例えば塩素化ポリ塩化
ビニル、エチレン−塩化ビニル共重合体、酢酸ビニル−
エチレン共重合体、酢酸ビニル−塩化ビニル共重合体、
ウレタン−塩化ビニル共重合体、アクリロニトリル−ブ
タジエン−スレチン共重合体、アクリロニトリル−スチ
レン共重合体、シラン変性ポリエチレン、マレイン酸変
性ポリエチレン、アクリル酸変性ポリプロピレン、マレ
イン酸変性ポリプロピレンなども使用可能である。ま
た、ゴム、エラストマーや架橋性樹脂も使用可能であ
る。
(2) Synthetic Resin The thermoplastic resin used in the present invention is not particularly limited as long as it can be molded into a tubular body by extrusion.
Examples include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyamide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polyether sulfone, polyether ether ketone, polymethyl methacrylate, and the like. Further, a copolymer or a graft resin containing the above synthetic resin as a main component, for example, chlorinated polyvinyl chloride, ethylene-vinyl chloride copolymer, vinyl acetate-
Ethylene copolymer, vinyl acetate-vinyl chloride copolymer,
Urethane-vinyl chloride copolymer, acrylonitrile-butadiene-thretin copolymer, acrylonitrile-styrene copolymer, silane-modified polyethylene, maleic acid-modified polyethylene, acrylic acid-modified polypropylene, maleic acid-modified polypropylene, and the like can also be used. Further, rubber, elastomer and crosslinkable resin can also be used.

【0021】成形温度を考慮すると、120〜250℃
といった比較的低温で成形可能である、ポリエチレン、
ポリプロピレン、ポリ塩化ビニル、ポリスチレン、アク
リロニトリル−ブタジエン−スレチン共重合体などを主
成分とすることが好ましい。
Considering the molding temperature, 120-250 ° C.
Polyethylene, which can be molded at relatively low temperatures such as
It is preferable that the main component be polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-retin copolymer, or the like.

【0022】本発明に使用する合成樹脂は、単独で使用
されても併用されてもよく、上記樹脂のブレンド樹脂、
アロイ樹脂を用いることもできる。
The synthetic resin used in the present invention may be used alone or in combination.
Alloy resins can also be used.

【0023】また合成樹脂には、熱安定剤、滑剤、加工
助剤、可塑剤、酸化防止剤、紫外線吸収剤、改質剤、着
色剤のような添加剤が配合されていてもよい。
The synthetic resin may contain additives such as a heat stabilizer, a lubricant, a processing aid, a plasticizer, an antioxidant, an ultraviolet absorber, a modifier, and a colorant.

【0024】(3) 強化材と合成樹脂との混合について 強化材と合成樹脂との混合は、予めミキサーやタンブラ
ーなどで行なってもよいし、押出機に各々定量的に供給
し、押出機内で混合してもよい。
(3) Mixing of Reinforcement and Synthetic Resin The mixing of the reinforcing material and the synthetic resin may be performed in advance using a mixer or a tumbler, or may be quantitatively supplied to an extruder, and the mixture may be mixed in the extruder. You may mix.

【0025】押出機に各々供給する場合は、強化材と合
成樹脂を別の供給部より供給してもよい。例えば合成樹
脂は押出機ホッパーより供給し、強化材は押出機のスク
リュー途中から供給してもよい。
When supplying the extruders to each other, the reinforcing material and the synthetic resin may be supplied from separate supply units. For example, the synthetic resin may be supplied from an extruder hopper, and the reinforcing material may be supplied in the middle of a screw of the extruder.

【0026】また、強化材が予め含有された合成樹脂を
用いてもよい。例えば強化材と合成樹脂を予め押出機な
どで混練ペレット化したものや、繊維状の強化材のモノ
フィラメント間に合成樹脂を溶融浸入させたものを用い
てもよい。
Further, a synthetic resin containing a reinforcing material in advance may be used. For example, the reinforcing material and the synthetic resin may be kneaded and pelletized with an extruder or the like, or the synthetic resin may be melt-infiltrated between monofilaments of the fibrous reinforcing material.

【0027】押出機への供給時の合成樹脂もしくは強化
材が含有された合成樹脂の状態は、ペレット状、粉体状
であってもよいし、一度他の混練溶融機などで溶融され
た状態で供給されてもよい。
The state of the synthetic resin or the synthetic resin containing the reinforcing material when supplied to the extruder may be in the form of pellets or powder, or may be in the state of being once melted by another kneading melter or the like. May be supplied.

【0028】[0028]

【発明の実施の形態】つぎに、本発明の実施の形態を、
図面を参照して説明する。
Next, an embodiment of the present invention will be described.
This will be described with reference to the drawings.

【0029】まず図1を参照すると、本発明において使
用する管状体の製造装置は、押出機(11)、押出金型(1
2)、冷却手段としての水槽(13)、および引取機(14)を備
えている。
Referring first to FIG. 1, an apparatus for producing a tubular body used in the present invention comprises an extruder (11) and an extrusion die (1).
2) a water tank (13) as cooling means, and a take-off machine (14).

【0030】つぎに、図2を参照すると、押出金型(12)
は、最も外側のジャケット型(21)と、略筒状の外型(22)
と、外型(22)の内側に収められかつ樹脂の押出方向と同
方向にのびる回転軸を中心として駆動回転する略筒状の
中型(23)と、中型(23)の内側に収められかつ樹脂の押出
方向と同方向にのびる回転軸を中心として中型(23)と同
方向同回転数で駆動回転する内型(24)とを備えている。
Next, referring to FIG. 2, the extrusion die (12)
Is the outermost jacket type (21) and the substantially cylindrical outer type (22)
And a substantially cylindrical middle mold (23) that is housed inside the outer mold (22) and driven and rotated about a rotation shaft extending in the same direction as the resin extrusion direction, and housed inside the middle mold (23) and An intermediate mold (23) and an inner mold (24) that is driven and rotated at the same rotational speed in the same direction are provided around a rotating shaft extending in the same direction as the resin extrusion direction.

【0031】外型(22)と中型(23)との間に環状流路(A)
が形成され、中型(23)と内型(24)との間に環状流路(B)
が形成されるとともに、これらの環状流路(A) (B) は金
型(12)の出口側部分において合流して環状合流流路部が
形成されている。
An annular flow path (A) is provided between the outer mold (22) and the middle mold (23).
Is formed, an annular flow path (B) between the middle mold (23) and the inner mold (24).
Are formed, and these annular flow paths (A) and (B) are joined at the outlet side portion of the mold (12) to form an annular combined flow path portion.

【0032】すなわち本発明で用いる金型(12)は、すく
なくとも3重の型によって2重の環状流路を形成するも
のであり、このうちの2重の型は同方向同回転数で駆動
回転され、残り1つの型は駆動回転されていないか、も
しくは他の2つの型と1rpm以上の差を有する回転数
で回転されるものである。
That is, the mold (12) used in the present invention forms a double annular flow path by at least a triple mold, of which the double mold is driven and rotated at the same rotational speed in the same direction. The remaining one mold is not driven or rotated at a rotational speed having a difference of 1 rpm or more from the other two molds.

【0033】図示のものは、外型(22)、中型(23)および
内型(24)が、いずれも駆動モータ(25)(26)(27)により駆
動回転する構造となっている。
The illustrated one has a structure in which an outer mold (22), a middle mold (23) and an inner mold (24) are all driven and rotated by drive motors (25), (26) and (27).

【0034】各型の駆動回転数は、特に限定されるもの
ではないが、1〜1000rpm程度が好ましい。1r
pm未満であると強化材は充分に配向せず、1000r
pm以上であると合成樹脂のせん断による発熱が過大と
なり、製造が困難となる。
The driving speed of each type is not particularly limited, but is preferably about 1 to 1000 rpm. 1r
If it is less than pm, the reinforcing material is not sufficiently oriented, and 1000 r
If it is not less than pm, the heat generated by shearing of the synthetic resin becomes excessive, making the production difficult.

【0035】請求項2と4記載の発明においては、それ
ぞれ外型、内型の回転方向は、同方向同回転数で回転す
る2つの型と同じでもよいし、異なっていてもよいが、
同方向に回転させる場合、溶融混合物に影響を与える回
転数は、回転数の大きい方から小さい方を引いた回転数
であり、この回転数差は、各々の回転数と同様、1〜1
000rpm程度が好ましい。1rpm未満であると強
化材は充分に配向せず、1000rpm以上であると合
成樹脂のせん断による発熱が過大となり、製造が困難と
なる。
According to the second and fourth aspects of the present invention, the rotation directions of the outer mold and the inner mold may be the same as or different from those of the two molds rotating at the same rotational speed in the same direction.
When rotating in the same direction, the number of rotations that affects the molten mixture is the number of rotations obtained by subtracting the smaller number of rotations from the larger number of rotations.
It is preferably about 000 rpm. If it is less than 1 rpm, the reinforcing material is not sufficiently oriented, and if it is more than 1000 rpm, heat generation due to shearing of the synthetic resin becomes excessive, and production becomes difficult.

【0036】各型の駆動回転は、環状流路を構成する型
の流路面の少なくとも一部に設けられておればよいが、
回転による強化材の配向の緩和を少なくするため、なる
べく押出方向に対して下流側に設けられている方がよ
い。また同様の理由により環状合流流路部もなるべく下
流側に設けている方がよい。
The driving rotation of each type may be provided on at least a part of the flow path surface of the type forming the annular flow path.
In order to reduce the relaxation of the orientation of the reinforcing material due to the rotation, it is better to be provided on the downstream side with respect to the extrusion direction as much as possible. Further, for the same reason, it is preferable that the annular merging flow path is provided as much as possible on the downstream side.

【0037】駆動回転する部分の、流路を構成する軸方
向の長さ(Lr)としては、駆動回転部分の流路間隙
(Dr)に対し、Lr/Drが1以上となるように構成
されることが好ましく、5以上となるように構成される
ことがさらに好ましい。Lr/Drが1未満であると強
化材は充分に配向しない。
The axial length (Lr) of the drive rotating part constituting the flow path is such that Lr / Dr is 1 or more with respect to the flow path gap (Dr) of the drive rotating part. And more preferably 5 or more. When Lr / Dr is less than 1, the reinforcing material is not sufficiently oriented.

【0038】また請求項2と4記載の発明においては、
それぞれ外型、内型の駆動回転する部分の軸方向の長さ
は、同方向同回転数で回転する2つの型と同じでもよい
し、異なっていてもよいが、合流後は強化材の配向状態
が乱れるため、駆動回転させないことが好ましい。
In the inventions according to claims 2 and 4,
The axial lengths of the outer and inner dies, which are driven and rotated, may be the same or different from those of the two dies rotating at the same rotation speed in the same direction. Since the state is disturbed, it is preferable not to drive and rotate.

【0039】駆動回転する部分以外の流路面は、固定さ
れた型によって構成されていてもよいし、駆動回転しな
いけれども若干自由回転可能な固定されていない非駆動
回転型によって構成されていてもよい。
The flow path surface other than the portion which is driven and rotated may be constituted by a fixed mold, or may be constituted by an unfixed non-driven rotation type which does not rotate but can rotate freely. .

【0040】本発明による管状体の製造方法によれば、
図1と図2を参照すると、押出機(11)で溶融混合された
強化材と熱可塑性樹脂とを含む溶融混合物を、樹脂通路
(28)より押出金型(12)に導入し、中型(23)の円周上に等
間隔に設けられた貫通孔より、外型(22)と中型(23)との
間の環状流路(A) および中型(23)と内型(24)との間の環
状流路(B) に分れて導入し、溶融混合物をこれらの流路
を通過させ、金型(12)の環状合流流路部において各環状
流路を通過してきた溶融混合物を合流かつ積層して、管
状積層賦形物を形成し、これを金型出口より管状体(T)
を押し出すものである。このとき、管状体(T) の肉厚
中、外層(a) は環状流路(A) で強化材が配向された層と
なり、内層(b) は環状流路(B) で強化材が配向された層
となる。
According to the method for producing a tubular body according to the present invention,
Referring to FIGS. 1 and 2, a molten mixture containing a reinforcing material and a thermoplastic resin melt-mixed in an extruder (11) is passed through a resin passage.
(28), introduced into the extrusion mold (12), and through the through holes provided at equal intervals on the circumference of the middle mold (23), an annular flow path between the outer mold (22) and the middle mold (23). (A) and into the annular flow path (B) between the middle mold (23) and the inner mold (24) .The molten mixture is passed through these flow paths, and the annular merge of the mold (12) is performed. The molten mixture that has passed through each of the annular flow paths in the flow path section is merged and laminated to form a tubular laminated molded article, which is formed into a tubular body (T) from a mold outlet.
It extrudes. At this time, during the thickness of the tubular body (T), the outer layer (a) becomes a layer in which the reinforcing material is oriented in the annular flow path (A), and the inner layer (b) has the reinforcing material oriented in the annular flow path (B). Layer.

【0041】上記において、押出機(11)としては、単軸
押出機、2軸押出機など、合成樹脂を溶融、混練、押し
出しが可能な成形装置が使用できる。ここで、内型(24)
を回転させる手段として、単軸押出機のスクリューと内
型を一体化し、スクリューの回転を内型の回転としても
よい。
In the above, as the extruder (11), a molding device capable of melting, kneading and extruding a synthetic resin, such as a single screw extruder or a twin screw extruder, can be used. Here, inner mold (24)
As means for rotating the screw, the screw of the single screw extruder and the inner mold may be integrated, and the rotation of the screw may be the rotation of the inner mold.

【0042】金型(12)より押し出された管状体(T) は、
通常の押出成形と同様に、引取機(13)で引き取りつつ、
冷却、賦形を行なえばよいが、管状体(T) が回転しなが
ら金型(12)から押し出されてくる場合には、回転させつ
つ引取り、冷却、賦形できる装置が必要である。
The tubular body (T) extruded from the mold (12) is
As with normal extrusion molding, while taking off with the take-off machine (13),
Cooling and shaping may be performed, but when the tubular body (T) is extruded from the mold (12) while rotating, a device capable of taking up, cooling and shaping while rotating is required.

【0043】管状体を冷却、賦形する方法としては、外
形もしくは内形を所望の形状に保持させつつ、液体もし
くは気体の冷媒中を通過させる方法や、冷媒を通過させ
た所望形状の冷却金型に押し付ける方法などがあげら
れ、製品の寸法、用途によって適宜選択される。
As a method of cooling and shaping the tubular body, a method of passing a liquid or a gaseous refrigerant while maintaining the outer shape or the inner shape in a desired shape, or a cooling metal having a desired shape through which the refrigerant has passed is used. There is a method of pressing against a mold and the like, and it is appropriately selected according to the dimensions and use of the product.

【0044】(作用)本発明の管状体の製造方法は、好
ましくは、強化材と合成樹脂とを含む混合物を、同方向
同回転数で駆動回転される2つの型で構成される環状流
路と、残り1つの型が駆動回転されていないか、もしく
は他の2つの型と1rpm以上の差を有する回転数で回
転される1つの型とで構成される環状流路を通過させ、
前者の環状流路では押出方向すなわち軸方向に配向さ
せ、後者の環状流路では周方向に配向させた後、合流さ
せて押し出すことを特徴とするものである。
(Function) In the method for producing a tubular body of the present invention, preferably, a mixture containing a reinforcing material and a synthetic resin is formed into an annular flow path constituted by two molds driven and rotated at the same rotational speed in the same direction. And the other one mold is not driven and rotated, or passes through an annular flow path composed of one mold that is rotated at a rotation speed having a difference of 1 rpm or more from the other two molds,
The former annular flow path is characterized in that it is oriented in the extrusion direction, that is, the axial direction, and the latter annular flow path is circumferentially oriented, and then merged and extruded.

【0045】本発明の方法によれば、内型および外型の
両方が同方向同回転数で駆動回転する環状流路は相対的
に固定された環状流路と同様であり、強化材は管状体軸
方向に配向し、かつ合流部では周方向に強化材が配向し
た溶融混合物と同じ流動状態で合流する。このことによ
って強化材が、管状体の長手方向および周方向のいずれ
にも配向されて、効率よく強化された高強度の管状体を
得ることができる。
According to the method of the present invention, the annular flow path in which both the inner mold and the outer mold are driven and rotated at the same rotational speed in the same direction is the same as the relatively fixed annular flow path, and the reinforcing material is tubular. It is oriented in the body axis direction, and at the confluence, merges in the same flow state as the molten mixture in which the reinforcing material is oriented in the circumferential direction. As a result, the reinforcing material is oriented in both the longitudinal direction and the circumferential direction of the tubular body, and a high-strength tubular body reinforced efficiently can be obtained.

【0046】[0046]

【実施例】つぎに、本発明の実施例を図面を参照して説
明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0047】図1と図2に示す装置を使用して、本発明
の方法により、外径50mmおよび厚さ5mmの管状体
を製造した。
Using the apparatus shown in FIGS. 1 and 2, a tubular body having an outer diameter of 50 mm and a thickness of 5 mm was produced by the method of the present invention.

【0048】実施例1 強化材として、直径23μmおよび長さ6mmのガラス
繊維のチョップドストランドを用い、合成樹脂として、
JIS−K7210で測定したメルトフローレートが
1.2g/10分の中密度ポリエチレンを用いて、真比
重計算でガラス繊維が5体積%となるようにタンブラー
にて配合した混合物を原材料とした。
Example 1 A glass fiber chopped strand having a diameter of 23 μm and a length of 6 mm was used as a reinforcing material.
Using a medium-density polyethylene having a melt flow rate of 1.2 g / 10 minutes as measured by JIS-K7210 and using a tumbler to mix the glass fibers in a true specific gravity calculation so that the volume becomes 5% by volume as a raw material.

【0049】本実施例で用いる製造装置は、図1に示す
ように、φ50mm単軸押出機(11)、押出金型(12)、冷
却手段としての水槽(13)、および引取機(14)を備えてい
るものである。
As shown in FIG. 1, the manufacturing apparatus used in this embodiment includes a 50 mm single screw extruder (11), an extrusion die (12), a water tank (13) as a cooling means, and a take-off machine (14). It is provided with.

【0050】押出金型(12)は、図2に示すように、最も
外側のジャケット型(21)と、略筒状の外型(22)と、外型
(22)の内側に収められかつ樹脂の押出方向と同方向にの
びる回転軸を中心として駆動回転する略筒状の中型(23)
と、中型(23)の内側に収められかつ樹脂の押出方向と同
方向にのびる回転軸を中心として中型(23)と同方向同回
転数で駆動回転する内型(24)とを備えている。
As shown in FIG. 2, the extrusion die (12) comprises an outermost jacket die (21), a substantially cylindrical outer die (22), and an outer die.
A substantially cylindrical medium-sized (23) that is driven inside and rotates around a rotation axis that is housed inside (22) and extends in the same direction as the resin extrusion direction.
And an inner die (24) housed inside the middle die (23) and driven to rotate at the same rotation speed as the middle die (23) around the rotation shaft extending in the same direction as the resin extrusion direction. .

【0051】外型(22)と中型(23)との間に環状流路(A)
が形成され、中型(23)と内型(24)との間に環状流路(B)
が形成されるとともに、これらの環状流路(A) (B) は金
型(12)の出口側部分において合流して環状合流流路部が
形成されている。
An annular flow path (A) is provided between the outer mold (22) and the middle mold (23).
Is formed, an annular flow path (B) between the middle mold (23) and the inner mold (24).
Are formed, and these annular flow paths (A) and (B) are joined at the outlet side portion of the mold (12) to form an annular combined flow path portion.

【0052】図示のものは、外型(22)、中型(23)および
内型(24)が、いずれも駆動モータ(25)(26)(27)により駆
動回転する構造となっている。
The illustrated one has a structure in which the outer mold (22), the middle mold (23) and the inner mold (24) are all driven and rotated by drive motors (25), (26) and (27).

【0053】押出機(11)で溶融混合された強化材と熱可
塑性樹脂とを含む溶融混合物を、樹脂通路(28)より押出
金型(12)に導入し、中型(23)の円周上に等間隔に設けら
れた貫通孔より、外型(22)と中型(23)との間の環状流路
(A) および中型(23)と内型(24)との間の環状流路(B) に
分れて導入し、溶融混合物をこれらの流路を通過させ、
金型(12)の環状合流流路部において各環状流路を通過し
てきた溶融混合物を合流かつ積層して、管状積層賦形物
を形成し、これを金型出口より管状体(T) を押し出すも
のである。このとき、管状体(T) の肉厚中、外層(a) は
環状流路(A) で強化材が配向された層となり、内層(b)
は環状流路(B) で強化材が配向された層となる。
The molten mixture containing the reinforcing material and the thermoplastic resin melt-mixed in the extruder (11) is introduced into the extrusion mold (12) through the resin passage (28), and is placed on the circumference of the middle mold (23). An annular flow path between the outer mold (22) and the middle mold (23) through through holes provided at equal intervals
(A) and introduced into the annular flow path (B) between the middle mold (23) and the inner mold (24), and the molten mixture was passed through these flow paths,
The molten mixture that has passed through each of the annular channels in the annular merging channel section of the mold (12) is merged and laminated to form a tubular laminated shape, which is formed into a tubular body (T) from the mold outlet. Extrude. At this time, in the thickness of the tubular body (T), the outer layer (a) becomes a layer in which the reinforcing material is oriented in the annular flow path (A), and the inner layer (b)
Is a layer in which the reinforcing material is oriented in the annular flow path (B).

【0054】製造条件は、押出速度0.3m/分、単軸
押出機での合成樹脂の溶融温度200℃、金型(12)の温
度200℃とし、各型の回転数は、中型(23)および内型
(24)を30rpmとし、外型(22)は回転させなかった。
The production conditions were as follows: an extrusion speed of 0.3 m / min, a melting temperature of the synthetic resin in the single screw extruder of 200 ° C., and a temperature of the mold (12) of 200 ° C. ) And inner mold
(24) was set to 30 rpm, and the outer mold (22) was not rotated.

【0055】実施例2 この実施例では、強化材として、JIS−K7121で
測定した液晶転移温度が285℃である全芳香族液晶ポ
リエステルを用い、実施例1で用いた高密度ポリエチレ
ンと、真比重計算で全芳香族ポリエステルが5体積%と
なるようにタンブラーにて配合した混合物を原材料とし
て用いた。
Example 2 In this example, a wholly aromatic liquid crystal polyester having a liquid crystal transition temperature of 285 ° C. measured according to JIS-K7121 was used as a reinforcing material, and the high-density polyethylene used in Example 1 and the true specific gravity were used. A mixture mixed with a tumbler so that the total aromatic polyester was 5% by volume in the calculation was used as a raw material.

【0056】製造装置は、実施例1の場合と同じものを
使用した。
The same manufacturing apparatus as in Example 1 was used.

【0057】製造条件として、単軸押出機(11)での合成
樹脂の溶融温度300℃、金型(12)の温度290℃であ
ること以外は、実施例1の場合と同様とした。液晶ポリ
マーは単軸押出機(11)のスクリューおよび金型(12)内で
の型の回転によりせん断力を受け、熱可塑性樹脂内で繊
維化していた。
The manufacturing conditions were the same as in Example 1 except that the melting temperature of the synthetic resin in the single screw extruder (11) was 300 ° C. and the temperature of the mold (12) was 290 ° C. The liquid crystal polymer was subjected to a shearing force due to the rotation of the screw of the single screw extruder (11) and the mold in the mold (12), and had been fiberized in the thermoplastic resin.

【0058】実施例3 強化材および合成樹脂、並びに製造装置は、実施例1の
場合と同じものを使用した。
Example 3 The same reinforcing material, synthetic resin and manufacturing equipment as in Example 1 were used.

【0059】製造条件としては、中型(23)、内型(24)を
30rpm、外型(22)は中型(23)と同方向に50rpm
で回転させたこと以外は、実施例1の場合と同じとし
た。
The production conditions for the middle mold (23) and the inner mold (24) are 30 rpm, and the outer mold (22) is 50 rpm in the same direction as the middle mold (23).
It was the same as in Example 1 except that it was rotated in.

【0060】実施例4 強化材および合成樹脂、並びに製造装置は、実施例1の
場合と同じものを使用した。
Example 4 The same reinforcing material, synthetic resin and manufacturing equipment as in Example 1 were used.

【0061】製造条件としては、外型(22)、中型(23)を
40rpm回転させ、内型(24)は回転させなかったこと
以外は、実施例1の場合と同じとした。
The manufacturing conditions were the same as in Example 1 except that the outer mold (22) and the middle mold (23) were rotated at 40 rpm and the inner mold (24) was not rotated.

【0062】実施例5 強化材および合成樹脂、並びに製造装置は、実施例1の
場合と同じものを使用した。
Example 5 The same reinforcing material, synthetic resin and manufacturing equipment as in Example 1 were used.

【0063】製造条件としては、外型(22)、中型(23)を
30rpm、内型(24)は中型(23)と異方向に5rpmで
回転させたこと以外は、実施例1の場合と同じとした。
The manufacturing conditions were the same as in Example 1 except that the outer mold (22) and the middle mold (23) were rotated at 30 rpm and the inner mold (24) was rotated at 5 rpm in a different direction from the middle mold (23). I assumed the same.

【0064】参考例1 参考のために、強化材および合成樹脂は上記実施例1の
場合と同じものを使用し、製造装置として、本発明等が
設定した図3に示すような構造を有するもので、実施例
1の場合と異なる装置を使用した。
REFERENCE EXAMPLE 1 For reference, the same reinforcing material and synthetic resin as those used in the above-mentioned Example 1 were used, and a manufacturing apparatus having the structure shown in FIG. 3 set by the present invention and the like was used. Therefore, an apparatus different from that in Example 1 was used.

【0065】本参考例で用いる押出金型は、最も外側の
ジャッケット型(31)、外型(32)、中型(33)、および内型
(34)を備えており、外型(32)は駆動モータ(35)により駆
動回転する構造となっている。
The extrusion dies used in this embodiment are the outermost jacket dies (31), outer dies (32), middle dies (33), and inner dies.
(34), and the outer mold (32) is driven and rotated by a drive motor (35).

【0066】押出機で溶融混合された強化材と合成樹脂
の溶融混合物を、樹脂通路(36)より押出金型に導入し、
中型(33)の円周上に等間隔にあけられた孔より、外型(3
2)と中型(33)で構成される流路(A) および中型(33)と内
型(34)とで構成される流路(B) とへ導入した。各流路で
配向した溶融混合物は、押出金型の流路最下流の合流部
で合流・積層され、管状体(T) が形成された。管状体
(T) の肉厚中、外層(a)は流路(A) で配向された層であ
り、内層(b) は流路(B) で配向された層である。
The molten mixture of the reinforcing material and the synthetic resin melt-mixed in the extruder is introduced into an extrusion die through a resin passage (36).
From the holes equally spaced around the circumference of the
The flow was introduced into the flow path (A) composed of 2) and the middle mold (33) and the flow path (B) composed of the middle mold (33) and the inner mold (34). The molten mixture oriented in each flow path was merged and laminated at the most downstream junction of the flow path of the extrusion die to form a tubular body (T). Tubular body
In the thickness of (T), the outer layer (a) is a layer oriented in the channel (A), and the inner layer (b) is a layer oriented in the channel (B).

【0067】製造条件としては、押出速度0.3m/
分、単軸押出機での合成樹脂の溶融温度200℃、金型
の温度200℃とし、外型(32)を30rpmで回転させ
た。
The production conditions were as follows: extrusion speed 0.3 m /
The melting temperature of the synthetic resin in the single screw extruder was set at 200 ° C., the temperature of the mold was set at 200 ° C., and the outer mold (32) was rotated at 30 rpm.

【0068】参考例2 強化材および合成樹脂は上記実施例1の場合と同じもの
を使用し、製造装置として、図4に示すような構造を有
するもので、実施例1の場合と異なる装置を使用した。
REFERENCE EXAMPLE 2 The same reinforcing material and synthetic resin as those used in the first embodiment are used. A manufacturing apparatus having the structure shown in FIG. 4 is different from the first embodiment. used.

【0069】本参考例で用いる押出金型は、外型(42)、
中型(43)、および内型(44)を備えており、内型(44)は駆
動モータ(45)により駆動回転する構造となっている。
The extrusion mold used in this reference example is an outer mold (42),
An inner mold (43) and an inner mold (44) are provided, and the inner mold (44) is driven and rotated by a drive motor (45).

【0070】押出機で溶融混合された強化材と合成樹脂
の溶融混合物を、樹脂通路(46)より押出金型に導入し、
中型(43)の円周上に等間隔に開けられた孔より、外型(4
2)と中型(43)で構成される流路(A) および中型(43)と内
型(44)とで構成される流路(B) とへ導入した。各流路で
配向した溶融混合物は、押出金型の流路最下流の合流部
で合流・積層され、管状体(T) が形成された。管状体
(T) の肉厚中、外層(a)は流路(A) で配向された層であ
り、内層(b) は流路(B) で配向された層である。
The molten mixture of the reinforcing material and the synthetic resin melt-mixed by the extruder is introduced into an extrusion die through a resin passage (46).
From the holes made at regular intervals on the circumference of the middle
The flow was introduced into a flow path (A) composed of 2) and a middle mold (43) and a flow path (B) composed of a middle mold (43) and an inner mold (44). The molten mixture oriented in each flow path was merged and laminated at the most downstream junction of the flow path of the extrusion die to form a tubular body (T). Tubular body
In the thickness of (T), the outer layer (a) is a layer oriented in the channel (A), and the inner layer (b) is a layer oriented in the channel (B).

【0071】製造条件は、押出速度0.3m/分、単軸
押出機での合成樹脂の溶融温度200℃、金型の温度2
00℃とし、内型(44)を50rpmで回転させた。
The production conditions were as follows: an extrusion speed of 0.3 m / min, a melting temperature of synthetic resin in a single screw extruder of 200 ° C., and a mold temperature of 2 ° C.
The temperature was set to 00 ° C., and the inner mold (44) was rotated at 50 rpm.

【0072】管状体成形品の評価 つぎに、上記実施例1〜5および参考例1および2にお
いて得られた管状体成形品の性能を評価するために、下
記の2つのテストを行なった。
Evaluation of Tubular Molded Articles The following two tests were performed to evaluate the performance of the tubular molded articles obtained in Examples 1 to 5 and Reference Examples 1 and 2.

【0073】<周方向引張強度評価>上記実施例および
参考例で得られた各管状体から、幅40mのリング状サ
ンプルを切り出して、リングを切り開き、200℃で熱
プレスすることにより、試験片を作成した。この試験片
を、ASTM−D638に準拠し引張試験を行ない、周
方向の引張強度を測定した。
<Evaluation of Tensile Strength in Circumferential direction> A ring-shaped sample having a width of 40 m was cut out from each tubular body obtained in the above Examples and Reference Examples, the ring was cut open, and hot pressed at 200 ° C. to obtain a test piece. It was created. This test piece was subjected to a tensile test in accordance with ASTM-D638 to measure the tensile strength in the circumferential direction.

【0074】<軸方向引張強度評価>上記実施例および
参考例で得られた各管状体から、軸方向(押出方向)に
幅40mmのサンプルを切り出して、200℃で熱プレ
スすることにより、試験片を作成した。この試験片を、
ASTM−D638に準拠し引張試験を行ない、軸方向
の引張強度を測定した。
<Evaluation of Tensile Strength in Axial Direction> A sample having a width of 40 mm in the axial direction (extrusion direction) was cut out from each of the tubular bodies obtained in the above Examples and Reference Examples, and hot pressed at 200 ° C. Pieces were made. This test piece is
A tensile test was performed according to ASTM-D638 to measure the tensile strength in the axial direction.

【0075】得られた結果を下記の表1にまとめて示し
た。
The results obtained are shown in Table 1 below.

【0076】[0076]

【表1】 上記表1の結果から明らかなように、本発明の実施例に
よれば、得られた管状成形体の周方向および軸方向の引
張り強度は、いずれも非常に大きく、本発明の製造方法
で得られる管状体は、効率的に周方向および軸方向に強
化されていた。
[Table 1] As is evident from the results of Table 1, according to the examples of the present invention, the obtained tensile strengths in the circumferential direction and the axial direction of the tubular molded product are all very large, and are obtained by the production method of the present invention. The resulting tubular body was efficiently reinforced circumferentially and axially.

【0077】これに対し、参考例で得られた管状成形体
は、周方向および軸方向の引張り強度がいずれも非常に
小さいものであった。
On the other hand, the tubular molded body obtained in the reference example had very low tensile strength in both the circumferential direction and the axial direction.

【0078】[0078]

【発明の効果】本発明による請求項1記載の管状体の製
造方法は、上述のように、略筒状の外型と、外型の内側
に収められかつ樹脂の押出方向と同方向にのびる回転軸
を中心として駆動回転する略筒状の中型と、中型の内側
に収められかつ樹脂の押出方向と同方向にのびる回転軸
を中心として中型と同方向同回転数で駆動回転する内型
とを備えている金型を用意し、外型と中型との間に環状
流路が形成され、中型と内型との間に環状流路が形成さ
れるとともに、これらの環状流路は金型の出口側部分に
おいて合流して環状合流流路部が形成されており、押出
機内で溶融混合した強化材と熱可塑性樹脂とを含む溶融
混合物を、金型の複数の環状流路に分れて導入し、溶融
混合物をこれらの流路を通過させ、金型の環状合流流路
部において各環状流路を通過してきた溶融混合物を合流
かつ積層して、管状積層賦形物を形成し、これを金型出
口より押し出すことを特徴とするものである。
According to the method for manufacturing a tubular body according to the first aspect of the present invention, as described above, the substantially cylindrical outer mold and the outer mold are housed inside and extend in the same direction as the resin extrusion direction. A substantially cylindrical middle mold that rotates and rotates around the rotating shaft, and an inner mold that is housed inside the middle mold and rotates around the rotating shaft that extends in the same direction as the resin extrusion direction at the same rotational speed as the middle mold. A mold having an annular flow path is formed between the outer mold and the middle mold, an annular flow path is formed between the middle mold and the inner mold, and these annular flow paths are formed by the mold. And an annular merging flow path portion is formed at the outlet side portion of the mold, and the molten mixture containing the reinforcing material and the thermoplastic resin melt-mixed in the extruder is divided into a plurality of annular flow paths of the mold. The molten mixture is introduced and passed through these flow paths. The molten mixture has passed through the road confluence and then laminated to form a tubular laminate shaping was which is characterized in that the extruded from the die outlet.

【0079】また本発明による請求項3記載の管状体の
製造方法は、上述のように、樹脂の押出方向と同方向に
のびる回転軸を中心として駆動回転する略筒状の外型
と、外型の内側に収められかつかつ樹脂の押出方向と同
方向にのびる回転軸を中心として外型と同方向同回転数
で駆動回転する略筒状の中型と、中型の内側に収められ
た内型とを備えている金型を用意し、外型と中型との間
に環状流路が形成され、中型と内型との間に環状流路が
形成されるとともに、これらの環状流路は金型の出口側
部分において合流して環状合流流路部が形成されてお
り、押出機内で溶融混合した強化材と熱可塑性樹脂とを
含む溶融混合物を、金型の複数の環状流路に分れて導入
し、溶融混合物をこれらの流路を通過させ、金型の環状
合流流路部において各環状流路を通過してきた溶融混合
物を合流かつ積層して、管状積層賦形物を形成し、これ
を金型出口より押し出すことを特徴とするものである。
According to the third aspect of the present invention, there is provided a method of manufacturing a tubular body, comprising: a substantially cylindrical outer mold that is driven and rotated about a rotation shaft extending in the same direction as the resin extrusion direction; A substantially cylindrical middle mold that is driven inside the mold and rotates at the same rotational speed as the outer mold around the rotation axis extending in the same direction as the resin extrusion direction, and an inner mold housed inside the middle mold A mold having an annular flow path is formed between the outer mold and the middle mold, an annular flow path is formed between the middle mold and the inner mold, and these annular flow paths are formed by the mold. And an annular merging flow path portion is formed at the outlet side portion of the mold, and the molten mixture containing the reinforcing material and the thermoplastic resin melt-mixed in the extruder is divided into a plurality of annular flow paths of the mold. The molten mixture is introduced through these channels, and each The molten mixture that has passed through the Jo flow path joint and laminated to form a tubular laminate shaping was which is characterized in that the extruded from the die outlet.

【0080】本発明によれば、上記いずれの方法の場合
にも、各流路内で周方向および軸方向に強化材を配向さ
せた後、強化材の配向を乱すことなく合流・積層するた
め、周方向および軸方向の両方向に強化材が効率よく配
向した管状体が得られる。このことにより、周方向の強
度に優れ、すなわち内外強度に優れ、かつ軸方向にも強
度に優れる管状体が得られるという効果を奏する。
According to the present invention, in any of the above methods, after the reinforcing material is oriented in the circumferential direction and the axial direction in each flow path, the joining and laminating are performed without disturbing the orientation of the reinforcing material. Thus, a tubular body in which the reinforcing material is efficiently oriented in both the circumferential direction and the axial direction is obtained. Thereby, there is an effect that a tubular body having excellent strength in the circumferential direction, that is, excellent strength in the inside and outside, and excellent strength in the axial direction can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施する装置の概略平面図であ
る。
FIG. 1 is a schematic plan view of an apparatus for performing the method of the present invention.

【図2】図1の装置の押出金型部分の拡大断面図であ
る。
FIG. 2 is an enlarged sectional view of an extrusion die portion of the apparatus of FIG.

【図3】参考例1で用いた押出金型の断面図である。FIG. 3 is a sectional view of an extrusion die used in Reference Example 1.

【図4】参考例2で用いた押出金型の断面図である。FIG. 4 is a sectional view of an extrusion die used in Reference Example 2.

【符号の説明】[Explanation of symbols]

A 環状流路 B 環状流路 a 層 b 層 11 押出機 12 押出金型 13 水槽 14 引取機 21 ジャケット型 22 外型 23 中型 24 内型 25〜27 駆動モータ 28 樹脂通路 Reference Signs List A annular flow path B annular flow path a layer b layer 11 extruder 12 extrusion die 13 water tank 14 take-off machine 21 jacket type 22 outer mold 23 middle mold 24 inner mold 25-27 drive motor 28 resin passage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29L 23:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B29L 23:00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 略筒状の外型と、外型の内側に収められ
かつ樹脂の押出方向と同方向にのびる回転軸を中心とし
て駆動回転する略筒状の中型と、中型の内側に収められ
かつ樹脂の押出方向と同方向にのびる回転軸を中心とし
て中型と同方向同回転数で駆動回転する内型とを備えて
いる金型を用意し、外型と中型との間に環状流路が形成
され、中型と内型との間に環状流路が形成されるととも
に、これらの環状流路は金型の出口側部分において合流
して環状合流流路部が形成されており、押出機内で溶融
混合した強化材と熱可塑性樹脂とを含む溶融混合物を、
金型の複数の環状流路に分れて導入し、溶融混合物をこ
れらの流路を通過させ、金型の環状合流流路部において
各環状流路を通過してきた溶融混合物を合流かつ積層し
て、管状積層賦形物を形成し、これを金型出口より押し
出すことを特徴とする、管状体の製造方法。
1. A substantially cylindrical outer mold, a substantially cylindrical middle mold housed inside the outer mold and driven and rotated about a rotation shaft extending in the same direction as the resin extrusion direction, and housed inside the middle mold. A mold having a middle mold and an inner mold that is driven and rotated at the same rotation speed in the same direction as that of the middle mold is prepared, and an annular flow is provided between the outer mold and the middle mold. A passage is formed, an annular flow path is formed between the middle mold and the inner mold, and these annular flow paths join at an outlet side portion of the mold to form an annular merge flow path portion. A melt mixture containing a reinforcing material and a thermoplastic resin melt-mixed in the machine,
The molten mixture is introduced into the plurality of annular flow paths of the mold, the molten mixture is passed through these flow paths, and the molten mixture that has passed through each annular flow path at the annular merging flow path section of the mold is merged and laminated. Forming a tubular laminate and extruding it from a mold outlet.
【請求項2】 外型が、樹脂の押出方向と同方向にのび
る回転軸を中心として、かつ中型および内型の回転方向
と同方向に回転数差が1rpm以上で駆動回転するか、
または中型および内型と異方向に駆動回転する、請求項
1記載の管状体の製造方法。
2. The method according to claim 1, wherein the outer mold is driven to rotate around a rotation axis extending in the same direction as the resin extrusion direction and at a rotational speed difference of 1 rpm or more in the same direction as the rotation directions of the middle mold and the inner mold.
The method for manufacturing a tubular body according to claim 1, wherein the tubular body is driven and rotated in a different direction from the middle and inner dies.
【請求項3】 樹脂の押出方向と同方向にのびる回転軸
を中心として駆動回転する略筒状の外型と、外型の内側
に収められかつかつ樹脂の押出方向と同方向にのびる回
転軸を中心として外型と同方向同回転数で駆動回転する
略筒状の中型と、中型の内側に収められた内型とを備え
ている金型を用意し、外型と中型との間に環状流路が形
成され、中型と内型との間に環状流路が形成されるとと
もに、これらの環状流路は金型の出口側部分において合
流して環状合流流路部が形成されており、押出機内で溶
融混合した強化材と熱可塑性樹脂とを含む溶融混合物
を、金型の複数の環状流路に分れて導入し、溶融混合物
をこれらの流路を通過させ、金型の環状合流流路部にお
いて各環状流路を通過してきた溶融混合物を合流かつ積
層して、管状積層賦形物を形成し、これを金型出口より
押し出すことを特徴とする、管状体の製造方法。
3. A substantially cylindrical outer die driven and rotated about a rotary shaft extending in the same direction as the resin extrusion direction, and a rotary shaft housed inside the outer die and extending in the same direction as the resin extrusion direction. Prepare a mold that has a substantially cylindrical middle mold that is driven and rotated at the same direction and rotation speed as the outer mold as the center, and an inner mold that is housed inside the middle mold, and has a ring between the outer mold and the middle mold. A flow path is formed, and an annular flow path is formed between the middle mold and the inner mold, and these annular flow paths are joined at an outlet side portion of the mold to form an annular merged flow path portion, The molten mixture containing the reinforcing material and the thermoplastic resin melt-mixed in the extruder is divided into a plurality of annular flow paths of the mold and introduced, and the molten mixture is passed through these flow paths, and the annular merge of the mold is performed. The molten mixture that has passed through each annular channel in the channel section is merged and laminated to form a tubular laminate. Forming a product and extruding the product from a mold outlet.
【請求項4】 内型が、樹脂の押出方向と同方向にのび
る回転軸を中心として、かつ中型および外型の回転方向
と同方向に回転数差が1rpm以上で駆動回転するか、
または中型および外型と異方向に駆動回転する、請求項
3記載の管状体の製造方法。
4. The method according to claim 1, wherein the inner mold is driven to rotate about a rotation axis extending in the same direction as the resin extrusion direction and in the same direction as the rotation directions of the middle mold and the outer mold at a rotation speed difference of 1 rpm or more.
4. The method for producing a tubular body according to claim 3, wherein the tubular body is driven and rotated in a different direction from the middle mold and the outer mold.
JP9183646A 1997-07-09 1997-07-09 Production of tubular object Pending JPH1128755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9183646A JPH1128755A (en) 1997-07-09 1997-07-09 Production of tubular object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9183646A JPH1128755A (en) 1997-07-09 1997-07-09 Production of tubular object

Publications (1)

Publication Number Publication Date
JPH1128755A true JPH1128755A (en) 1999-02-02

Family

ID=16139445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9183646A Pending JPH1128755A (en) 1997-07-09 1997-07-09 Production of tubular object

Country Status (1)

Country Link
JP (1) JPH1128755A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076157A (en) * 2005-09-14 2007-03-29 I K G Kk Apparatus for controlling temperature of polymeric material
JP2016196122A (en) * 2015-04-03 2016-11-24 積水化学工業株式会社 Multi-layer pipeline
JP2016223525A (en) * 2015-05-29 2016-12-28 積水化学工業株式会社 Polyolefin resin multilayer pipe
JP2021021450A (en) * 2019-07-29 2021-02-18 積水化学工業株式会社 Piping
JP2021021451A (en) * 2019-07-29 2021-02-18 積水化学工業株式会社 Piping
CN115503270A (en) * 2022-07-29 2022-12-23 宁波方力科技股份有限公司 Composite reinforced pipe production line based on rotary die and production process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076157A (en) * 2005-09-14 2007-03-29 I K G Kk Apparatus for controlling temperature of polymeric material
JP2016196122A (en) * 2015-04-03 2016-11-24 積水化学工業株式会社 Multi-layer pipeline
JP2016223525A (en) * 2015-05-29 2016-12-28 積水化学工業株式会社 Polyolefin resin multilayer pipe
JP2021021450A (en) * 2019-07-29 2021-02-18 積水化学工業株式会社 Piping
JP2021021451A (en) * 2019-07-29 2021-02-18 積水化学工業株式会社 Piping
CN115503270A (en) * 2022-07-29 2022-12-23 宁波方力科技股份有限公司 Composite reinforced pipe production line based on rotary die and production process

Similar Documents

Publication Publication Date Title
Wilkinson et al. Polymer processing and structure development
JP2000117810A (en) Manufacture of thermoplastic substance charged, changed and reinforced with fiber and twin-screw type extrusion molding machine for execution thereof
JP4968828B2 (en) Screw for resin extruder, resin extruder, and pellet manufacturing method
JPH1128755A (en) Production of tubular object
TWI501859B (en) Glass fiber reinforced thermoplastic synthetic resin composites for the production of compressed products
JP2019528193A (en) Apparatus and method for producing colored plastic melts and uncolored plastic melts
JP3646316B2 (en) Manufacturing method of fiber reinforced thermoplastic resin structure and extruder for manufacturing the same
JPH09309140A (en) Manufacture of tubular form
CN101269540A (en) Extrusion frame head for core rod rotating long glass fiber-reinforced plastics tube
TWI496675B (en) Glass fiber reinforced thermoplastic synthetic resin composites for the production of compressed products
JPH10296833A (en) Manufacture of tubular body
JP2000043120A (en) Production of tubular object
JPH11170334A (en) Method and mold for producing tubular member
AU2019205991B1 (en) The twin-screw extrusion of long carbon fibre reinforced polylactic acid filaments for 3D printing
JPH09136344A (en) Manufacture of tubular member
JP4116747B2 (en) Manufacturing method of multilayer extrusion molded product and direct blow molding method
CN111216375A (en) Preparation process and equipment of PA physical foaming material
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe
CN220593972U (en) Extrusion device of double-sided laminating composite production line
JPH09150447A (en) Method and apparatus for manufacturing tubular body
JPH05228920A (en) Screw type kneader
JPH1128756A (en) Manufacture of tubular product
JPH10180838A (en) Manufacture of tubular body
JPH11105101A (en) Mold for tubular member and manufacture of the member
JPH1071639A (en) Production of tubular member and mold therefor