JPH11285613A - Hydrogen permeating membrane pump system - Google Patents

Hydrogen permeating membrane pump system

Info

Publication number
JPH11285613A
JPH11285613A JP9151498A JP9151498A JPH11285613A JP H11285613 A JPH11285613 A JP H11285613A JP 9151498 A JP9151498 A JP 9151498A JP 9151498 A JP9151498 A JP 9151498A JP H11285613 A JPH11285613 A JP H11285613A
Authority
JP
Japan
Prior art keywords
hydrogen
thin film
metal thin
metal
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9151498A
Other languages
Japanese (ja)
Inventor
Masayuki Takizawa
沢 真 之 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Research Institute Inc
Original Assignee
Mitsubishi Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Research Institute Inc filed Critical Mitsubishi Research Institute Inc
Priority to JP9151498A priority Critical patent/JPH11285613A/en
Publication of JPH11285613A publication Critical patent/JPH11285613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To use any metal as a thin film to permeate only hydrogen and to select a proper material from a wider range of materials compared to a conventional material by irradiating the surface of the upstream side of a metal thin film with electrons to control the permeating amt. of hydrogen. SOLUTION: In a film pump system in which the upstream side with the presence of hydrogen is separated by a metal thin film from the downstream side so that only hydrogen can be permeated to the downstream side of the metal thin film, the surface of the metal thin film on the upstream side is irradiated with electrons to control the permeating amt. of hydrogen. In this system, any method to irradiate with electrons can be used, and for example, a method of using an electron gun or of discharging can be used. However, if the energy of electrons to irradiate is unnecessarily too high, the metal thin film is sometimes damaged, so that this process should be carefully carried out. Generally, the energy of electrons to irradiate in this system ranges the region with large dissociation reaction cross section of hydrogen molecules, and preferably <=10 eV.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を選択的に透
過させる膜ポンプシステムに関するものである。
TECHNICAL FIELD The present invention relates to a membrane pump system for selectively permeating hydrogen.

【0002】[0002]

【従来の技術】ある種の金属の薄膜は水素および水素同
位体のみを透過させるという特徴を有することがある。
このような薄膜を、核融合炉の燃料回収において、膜ポ
ンプシステムとして適用することが検討されてきた。核
融合炉では、この膜ポンプシステムは燃料である水素を
He灰およびその他の不純物から分離するためのシステ
ムとして検討されている。
2. Description of the Related Art Thin films of certain metals may have the characteristic of permeating only hydrogen and hydrogen isotopes.
It has been studied to apply such a thin film as a membrane pump system in fuel recovery of a fusion reactor. In a fusion reactor, this membrane pump system is being considered as a system for separating hydrogen as a fuel from He ash and other impurities.

【0003】しかしながら、環境に適合し、かつ表面入
射水素に対する透過水素の割合(すなわち透過確率)が
十分であることが認められているのは、表面に不純物原
子層が存在するニオブなど、ごく限られた材料だけであ
り、さらには表面状態の制御技術は確立されていない。
[0003] However, it has been recognized that the ratio of permeated hydrogen to the hydrogen incident on the surface (that is, the probability of permeation) that is compatible with the environment and is sufficient is extremely limited, for example, for niobium having an impurity atomic layer on the surface. In addition, the technology for controlling the surface state has not been established.

【0004】また、水素同位体精製ポンプとして金属薄
膜を適用することも検討されているが、このような用途
に適用できる金属はパラジウムなどの水素溶解度ならび
に拡散係数の高い材料のみに限られている。
[0004] In addition, application of a metal thin film as a hydrogen isotope purification pump has been studied, but metals applicable to such applications are limited to materials having a high hydrogen solubility and a high diffusion coefficient, such as palladium. .

【0005】[0005]

【発明が解決しようとする課題】このように、従来の水
素透過薄膜に用いることができる金属薄膜は限られてお
り、また、その透過確率を制御することは困難であっ
た。従って、このような用途に適用することができる材
料に対する限定を緩和すること、ならびにその水素透過
確率を制御することのできる方法が求められていた。
As described above, the metal thin films which can be used as the conventional hydrogen permeable thin film are limited, and it is difficult to control the permeation probability. Therefore, there has been a need for a method capable of relaxing restrictions on a material that can be applied to such an application and controlling the hydrogen permeation probability.

【0006】[0006]

【課題を解決するための手段】[発明の概要] <要旨>本発明の膜ポンプシステムは、水素の存在する
上流側と水素が流入する下流側とが金属薄膜により隔離
されており、金属薄膜の下流側に水素のみを透過させる
ことができる膜ポンプシステムであって、金属薄膜の上
流側の表面に電子を照射して水素の透過量を制御するこ
と、を特徴とするものである。
[Summary of the Invention] <Summary> In the membrane pump system of the present invention, the upstream side where hydrogen exists and the downstream side where hydrogen flows in are separated by a metal thin film, Is a membrane pump system that allows only hydrogen to permeate downstream of the metal thin film, wherein the surface of the metal thin film on the upstream side is irradiated with electrons to control the amount of permeated hydrogen.

【0007】<効果>本発明のシステムによれば、水素
だけを透過する薄膜として任意の金属を用いることがで
き、従来に比べて幅広い範囲から適当な材料を選択する
ことができる。また、本発明のシステムを用いることに
より、より安価で、より高い耐久性や強度を有する、核
融合炉における水素回収装置や工業過程における水素同
位体精製ポンプなどを製造することができる。
<Effect> According to the system of the present invention, any metal can be used as the thin film that transmits only hydrogen, and an appropriate material can be selected from a wider range than in the past. In addition, by using the system of the present invention, it is possible to manufacture a hydrogen recovery apparatus in a fusion reactor, a hydrogen isotope purification pump in an industrial process, and the like, which are cheaper and have higher durability and strength.

【0008】[発明の具体的説明]本発明のシステムに
用いることのできる金属薄膜の材質は、特に限定されな
い。任意の金属または合金を膜として用いることができ
る。
[Detailed Description of the Invention] The material of the metal thin film that can be used in the system of the present invention is not particularly limited. Any metal or alloy can be used as the film.

【0009】しかし、本発明の効果を利用して、水素溶
解度または拡散係数が高いものが好ましい。また、本発
明によれば、任意の金属または合金を材料として用いる
ことができるので、材料の入手の容易性、強度、安定
性、コスト、およびその他の要件から用いる金属材料を
選択することができる。
However, those utilizing the effects of the present invention and having high hydrogen solubility or diffusion coefficient are preferred. Further, according to the present invention, since any metal or alloy can be used as a material, the metal material to be used can be selected from the availability of the material, strength, stability, cost, and other requirements. .

【0010】なお、本発明でいう用語「水素」は、水素
の他に水素の同位体、すなわち重水素および三重水素も
包含するものとする。
The term "hydrogen" used in the present invention includes not only hydrogen but also isotopes of hydrogen, that is, deuterium and tritium.

【0011】用いることのできる金属の具体的な例とし
ては、水素溶解度や拡散係数の面から有利なパラジウ
ム、白金、マグネシウム、バナジウム、およびその他、
入手の容易性や材料の強度の面からニッケル、鉄、銅、
チタン、クロム、およびその他が挙げられる。また、こ
れらの金属を組み合わせて、すなわち合金として、用い
ることもできる。例えば、LaNi5、FeTi、Mg2
Ni、およびその他の合金は水素溶解度の大きな材料と
して、ステンレス鋼やジュラルミン鋼などは、安価で強
度の大きな材料として、本発明のシステムに使用するこ
とができるものである。
Specific examples of metals that can be used include palladium, platinum, magnesium, vanadium, and others that are advantageous in terms of hydrogen solubility and diffusion coefficient.
Nickel, iron, copper,
Titanium, chromium, and others. Further, these metals can be used in combination, that is, as an alloy. For example, LaNi 5 , FeTi, Mg 2
Ni and other alloys can be used in the system of the present invention as materials having high hydrogen solubility, and stainless steel and duralumin steel can be used as low-cost and high-strength materials.

【0012】本発明のシステムでは、前記の金属を薄膜
として用いる。薄膜の厚さは、水素の透過が可能であれ
ば任意であり、特に限定されない。しかしながら、薄膜
の厚さが過度に厚いと水素の透過が不充分となることが
あり、また過度に薄いと薄膜自体の強度が不充分となる
ことがあるので注意が必要である。特に、本発明のシス
テムを核融合炉などに適用しようとした場合、高エネル
ギーの電子線や中性子線に金属薄膜が暴露されることが
あるが、それによる照射損失などによる強度低下などを
考慮するべきであろう。
In the system of the present invention, the above-mentioned metal is used as a thin film. The thickness of the thin film is arbitrary as long as it allows hydrogen to pass therethrough, and is not particularly limited. However, care must be taken because if the thickness of the thin film is excessively large, the permeation of hydrogen may be insufficient, and if the thickness is excessively thin, the strength of the thin film itself may be insufficient. In particular, when the system of the present invention is applied to a fusion reactor or the like, the metal thin film may be exposed to a high-energy electron beam or a neutron beam. We should.

【0013】本発明のシステムでは、前記の金属薄膜に
電子を照射することで、金属薄膜の水素の透過流量を制
御する。また、通常の状態では水素が実質的に透過でき
ない金属であっても、電子を照射することで水素の透過
を可能とする。
In the system of the present invention, by irradiating the metal thin film with electrons, the permeation flow rate of hydrogen through the metal thin film is controlled. In addition, even if the metal is a metal that cannot substantially transmit hydrogen in a normal state, it is possible to transmit hydrogen by irradiating electrons.

【0014】本発明のシステムにおいて、電子を照射す
る方法は任意であり、電子銃による方法、放電による方
法などが挙げられる。しかしながら、照射する電子のエ
ネルギーが不必要に高いと、金属薄膜を破壊することも
あるので、注意が必要である。本発明のシステムにおい
て照射する電子のエネルギーは、一般には水素分子の解
離反応断面積が大きい領域のエネルギー、好ましくは1
0eV以下、である。
In the system of the present invention, the method of irradiating electrons is arbitrary, and examples thereof include a method using an electron gun and a method using discharge. However, care must be taken because if the energy of the irradiated electrons is unnecessarily high, the metal thin film may be destroyed. In the system of the present invention, the energy of the irradiated electrons is generally the energy of the region where the dissociation reaction cross section of the hydrogen molecule is large, preferably 1
0 eV or less.

【0015】本発明において、金属薄膜に電子を照射す
る一つの好ましい方法は、金属薄膜の上流側にある水素
(または不純物含有水素)を放電などによりプラズマ化
させ、金属薄膜に電位的バイアスを与えることで電子を
照射する方法である。
In the present invention, one preferable method of irradiating the metal thin film with electrons is to make hydrogen (or hydrogen containing impurities) upstream of the metal thin film into a plasma by discharge or the like, and to apply a potential bias to the metal thin film. This is a method of irradiating electrons.

【0016】また、本発明のシステムにおいて、金属薄
膜の温度は特に制御する必要はない。
In the system of the present invention, the temperature of the metal thin film does not need to be particularly controlled.

【0017】このような電子の照射による水素透過のメ
カニズムは、以下のように推定されている。金属薄膜近
傍に存在し、さらには薄膜表面に吸着している水素分子
が、照射された電子により解離してプラズマ状態とな
り、金属薄膜への水素注入量が増大する。電子を照射し
ない場合、水素が金属中へ溶解しても、金属表面での再
結合過程を経て、水素分子としてほとんどの水素が上流
側にリサイクリングされる。しかし、本発明のシステム
では、再結合水素分子がさらに電子を照射されて再解離
し、金属中に水素を押し込む作用をするためにリサイク
リングされる水素の量が大幅に減少する。この結果、薄
膜を透過して下流側に放出される水素の量が増大して本
発明のシステムの効果を得ることができる。
The mechanism of hydrogen permeation by such electron irradiation is estimated as follows. Hydrogen molecules present near the metal thin film and further adsorbed on the surface of the thin film are dissociated by the irradiated electrons to form a plasma state, and the amount of hydrogen injected into the metal thin film increases. When electrons are not irradiated, even if hydrogen dissolves in the metal, most of the hydrogen is recycled upstream as a hydrogen molecule through a recombination process on the metal surface. However, in the system of the present invention, the recombination hydrogen molecules are re-dissociated by further irradiation with electrons, and the amount of hydrogen recycled to act to push hydrogen into the metal is greatly reduced. As a result, the amount of hydrogen permeating the thin film and discharged to the downstream side increases, and the effect of the system of the present invention can be obtained.

【0018】ここで、電子照射量に対する水素透過量の
変化は金属の種類、薄膜の厚さ、および薄膜の表面状態
により異なるが、前記のメカニズムそのものは、金属の
種類、薄膜の厚さ、および薄膜の表面状態に依存しない
で生じるものと考えられる。
Here, the change in the amount of hydrogen permeated with respect to the amount of electron irradiation varies depending on the type of metal, the thickness of the thin film, and the surface state of the thin film. The mechanism itself is based on the type of metal, the thickness of the thin film, and the thickness of the thin film. It is thought to occur without depending on the surface state of the thin film.

【0019】本発明の膜ポンプシステムは、金属薄膜が
水素のみを透過させるために、ポンプとして利用するほ
かに、不純物を含む水素から水素のみを取り出す水素精
製装置や水素回収装置に適用することもできるものであ
る。
The membrane pump system of the present invention can be applied to a hydrogen purifying apparatus or a hydrogen recovery apparatus that extracts only hydrogen from hydrogen containing impurities, in addition to being used as a pump because the metal thin film allows only hydrogen to permeate. You can do it.

【0020】[0020]

【実施例】本発明を実施例に従って説明すれば以下の通
りである。なお、本発明はこれらの例によって限定され
るものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. The present invention is not limited by these examples.

【0021】実施例 プラズマ室と分析室が金属膜で隔離された水素透過実験
装置を準備した。この装置において、プラズマ室には水
素が満たされており、水素は放電によって低エネルギー
状態の弱電離プラズマとされる。一方、分析室は高真空
とされており、付随する分析装置より金属膜を透過して
分析室に移動した水素を分圧変化の形で測定することが
できる。金属膜は電気的に絶縁されており、水素プラズ
マに対して電位的なバイアスを印加することが可能であ
る。
Example A hydrogen permeation test apparatus was prepared in which a plasma chamber and an analysis chamber were separated by a metal film. In this apparatus, the plasma chamber is filled with hydrogen, and the hydrogen is converted into a low energy weakly ionized plasma by discharge. On the other hand, the analysis chamber is set to a high vacuum, and hydrogen that has passed through the metal film and moved to the analysis chamber from the associated analyzer can be measured in the form of a partial pressure change. The metal film is electrically insulated, and can apply a potential bias to the hydrogen plasma.

【0022】金属膜として、透過部分の面積が2c
2、厚さが20〜100μmの、パラジウム、ニッケ
ル、鉄、銅、およびチタンの膜を準備し、これらを前記
の水素透過実験装置にそれぞれ組み込んで水素透過実験
を行った。
As the metal film, the area of the transmitting portion is 2c.
A film of palladium, nickel, iron, copper, and titanium having an m 2 and a thickness of 20 to 100 μm was prepared, and these were incorporated in the above-described hydrogen permeation experiment apparatus, and a hydrogen permeation experiment was performed.

【0023】装置の温度を500K付近に一定に維持
し、プラズマ室に放電を行って水素(本例では重水素を
用いた)をプラズマとした。さらに、金属膜に電位的な
バイアスを印加して、金属膜のプラズマ室側の膜表面に
電子を照射した。
The temperature of the apparatus was kept constant at about 500 K, and a discharge was performed in the plasma chamber to convert hydrogen (in this example, deuterium was used) into plasma. Further, a potential bias was applied to the metal film to irradiate the film surface of the metal film on the plasma chamber side with electrons.

【0024】膜に流れる電流と水素透過流量の関係は図
1に示すとおりであった。
The relationship between the current flowing through the membrane and the flow rate of hydrogen permeation was as shown in FIG.

【0025】まず、パラジウムを金属膜として用いる
と、その高い水素溶解度と拡散係数によって、膜電流が
0であっても水素が透過する。そして、膜電流が印加さ
れると、水素の透過流量はさらに増大する。
First, when palladium is used as a metal film, hydrogen permeates even if the film current is 0 due to its high hydrogen solubility and diffusion coefficient. When a membrane current is applied, the permeation flow rate of hydrogen further increases.

【0026】また、パラジウム以外の金属を金属膜の材
料として用いると、膜電流の小さい領域では水素の透過
流量は非常に小さい。しかし、膜電流を増加させるとい
ずれの金属膜を用いた場合でも水素の透過流量も増大す
ることがわかる。そして、到達する水素透過流量は、パ
ラジウムに電子を照射しない場合に相当する程度にまで
及び、水素透過薄膜として充分なものであることがわか
る。
When a metal other than palladium is used as the material of the metal film, the permeation flow rate of hydrogen is very small in a region where the film current is small. However, it can be seen that increasing the membrane current also increases the permeation flow rate of hydrogen regardless of which metal film is used. The reached hydrogen permeation flow rate reaches a level corresponding to the case where palladium is not irradiated with electrons, and it is understood that the hydrogen permeation flow rate is sufficient as a hydrogen permeable thin film.

【0027】[0027]

【発明の効果】本発明のシステムによれば、水素だけを
透過する薄膜として任意の金属を用いることができ、従
来に比べて幅広い範囲から適当な材料を選択することが
できることは[発明の概要]の項に前記したとおりであ
る。
According to the system of the present invention, an arbitrary metal can be used as a thin film that transmits only hydrogen, and an appropriate material can be selected from a wider range as compared with the prior art. ] Is as described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属薄膜に流れる膜電流と、金属薄膜を透過す
る水素流量の関係を示す図。
FIG. 1 is a view showing a relationship between a film current flowing through a metal thin film and a flow rate of hydrogen permeating the metal thin film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水素の存在する上流側と水素が流入する下
流側とが金属薄膜により隔離されており、金属薄膜の下
流側に水素のみを透過させることができる膜ポンプシス
テムであって、金属薄膜の上流側の表面に電子を照射し
て水素の透過量を制御することを特徴とする、膜ポンプ
システム。
1. A membrane pump system in which an upstream side where hydrogen is present and a downstream side where hydrogen flows in are separated by a metal thin film, and only hydrogen can permeate the downstream side of the metal thin film. A membrane pump system, wherein the upstream surface of the thin film is irradiated with electrons to control the amount of permeation of hydrogen.
【請求項2】金属薄膜の上流側に存在する水素がプラズ
マ化され、金属薄膜に電位的バイアスを印加することで
金属薄膜に電子を照射する、請求項2に記載の水素精製
システム。
2. The hydrogen purification system according to claim 2, wherein hydrogen existing on the upstream side of the metal thin film is turned into plasma, and electrons are irradiated to the metal thin film by applying a potential bias to the metal thin film.
【請求項3】金属が、パラジウム、白金、マグネシウ
ム、バナジウム、ニッケル、鉄、銅、チタン、クロム、
およびそれらの合金からなる群から選ばれるものであ
る、請求項1または2に記載の水素精製システム。
3. The metal is palladium, platinum, magnesium, vanadium, nickel, iron, copper, titanium, chromium,
The hydrogen purification system according to claim 1, wherein the hydrogen purification system is selected from the group consisting of:
【請求項4】金属薄膜の上流側に存在する水素が不純物
を含んでおり、金属薄膜の下流側で精製水素を得る、請
求項1〜3のいずれか1項に記載の膜ポンプシステム。
4. The membrane pump system according to claim 1, wherein hydrogen present on the upstream side of the metal thin film contains impurities, and purified hydrogen is obtained on the downstream side of the metal thin film.
JP9151498A 1998-04-03 1998-04-03 Hydrogen permeating membrane pump system Pending JPH11285613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9151498A JPH11285613A (en) 1998-04-03 1998-04-03 Hydrogen permeating membrane pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9151498A JPH11285613A (en) 1998-04-03 1998-04-03 Hydrogen permeating membrane pump system

Publications (1)

Publication Number Publication Date
JPH11285613A true JPH11285613A (en) 1999-10-19

Family

ID=14028526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9151498A Pending JPH11285613A (en) 1998-04-03 1998-04-03 Hydrogen permeating membrane pump system

Country Status (1)

Country Link
JP (1) JPH11285613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530352A (en) * 2012-09-27 2015-10-15 マーンケン・アンド・パートナー・ゲーエムベーハーMahnken &Partner GmbH Method and apparatus for acquiring hydrogen
WO2019187475A1 (en) * 2018-03-29 2019-10-03 国立大学法人岐阜大学 Hydrogen purification device and hydrogen purification method
JP2019210185A (en) * 2018-06-05 2019-12-12 国立大学法人岐阜大学 Hydrogen recycling system and hydrogen recycling method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530352A (en) * 2012-09-27 2015-10-15 マーンケン・アンド・パートナー・ゲーエムベーハーMahnken &Partner GmbH Method and apparatus for acquiring hydrogen
WO2019187475A1 (en) * 2018-03-29 2019-10-03 国立大学法人岐阜大学 Hydrogen purification device and hydrogen purification method
JP2019172520A (en) * 2018-03-29 2019-10-10 国立大学法人岐阜大学 Hydrogen refining apparatus and hydrogen refining method
US11472701B2 (en) 2018-03-29 2022-10-18 National University Corporation Tokai National Higher Education And Research System Hydrogen purification device and hydrogen purification method
JP2019210185A (en) * 2018-06-05 2019-12-12 国立大学法人岐阜大学 Hydrogen recycling system and hydrogen recycling method
WO2019235169A1 (en) * 2018-06-05 2019-12-12 国立大学法人岐阜大学 Hydrogen recycle system and hydrogen recycle method
KR20200143489A (en) * 2018-06-05 2020-12-23 사와후지 덴키 가부시키가이샤 Hydrogen recycling system and hydrogen recycling method

Similar Documents

Publication Publication Date Title
US5738708A (en) Composite metal membrane
Peachey et al. Composite PdTa metal membranes for hydrogen separation
Moss et al. Multilayer metal membranes for hydrogen separation
Gryaznov Metal containing membranes for the production of ultrapure hydrogen and the recovery of hydrogen isotopes
Alimov et al. Hydrogen permeation through the Pd–Nb–Pd composite membrane: Surface effects and thermal degradation
US3835019A (en) Combined electrolytic hydrogen gas separator and generator for gas chromatographic systems
US3793435A (en) Separation of hydrogen from other gases
US3407571A (en) Hydrogen separation apparatus
Cherkez et al. Deuterium permeation through the low-activated V–4Cr–4Ti alloy under plasma irradiation
JPS59177117A (en) Separation of hydrogen-helium
US7771520B1 (en) System and method for forming a membrane that is super-permeable to hydrogen
Uchida et al. Surface processes of H2 in the initial activationof LaNi5
JPH11285613A (en) Hydrogen permeating membrane pump system
JP2002206135A (en) Hydrogen permeation membrane, its manufacturing method, and its use
Livshits et al. Large-scale effects of H2O and O2 on the absorption and permeation in Nb of energetic hydrogen particles
Waelbroeck et al. Investigation of adsorption and absorption processes of hydrogen in plasma devices with SS or Ti-coated walls
Wu et al. Glow‐discharge enhanced permeation of oxygen through silver
Li et al. Low temperature hydrogen plasma permeation in palladium and its alloys for fuel recycling in fusion systems
Fuerst et al. High temperature deuterium enrichment using TiC coated vanadium membranes
Glazunov Hydrogen permeation through palladium after hydrogen-thermal treatment and exposure to a plasma of glow discharge in hydrogen, helium and argon
Hirooka et al. Laboratory experiments and modeling on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion demo reactor
Benninghoven et al. Hydrogen detection by SIMS: Hydrogen on polycrystalline vanadium
Ivanov et al. On the Possibility of Using an Electrochemical Hydrogen Pump in a Fuel Cycle of Fusion Devices
Yen et al. Sandwiched liquid metal membrane (SLiMM) for hydrogen purification
Kulshrestha et al. Study of gas permeation for asymmetric track-etched polymer blends